
A MARSHALL CAVENDISH 6 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol 1 	 No 6

GAMES PROGRAMMING 6

CREATING THE BIG BANG 	 161

Routines you can add to a variety of games to create
convincing screen 'explosions'

BASIC PROGRAMMING 11

SPRITES ON THE COMMODORE 64 	168

A special, and important, graphics feature of these machines

BASIC PROGRAMMING 12

GET YOUR PROGRAMS IN SHAPE 	173

The first of two articles explaining how to write better
structured, smoother running programs

MACHINE CODE 7

GETTING DOWN BELOW ZERO 	179

How to deal with negative numbers in hex and binary
arithmetic — and when you'll need them

BASIC PROGRAMMING 13

REFINING YOUR SCREEN GRAPHICS 	184

Getting to grips with more sophisticated uses of the BASIC
graphics commands

INDEX
The last part of INPUT, Port 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Page 161, British Aerospace. Pages 162, 164, 166, Chris
Lyons. Page 168, Tudor Art Studio/Bernard Robinson. Page 170, Bernard
Fallon. Page 172, Howard Kingsnorth. Pages 174, 176, Nick Farmer. Page 178,
Nick Farmer, Howard Kingsnorth. Page 180, Dave King. Page 182, David
Lloyd, Dick Ward. Page 184, Hussein Hussein, Martin Cleaver. Page 186,
Hussein Hussein, Peter Dazely. Page 188, David Lloyd. Page 190, Hussein
Hussein, The Photographers Library.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details,
or write to INPUT, Gordon and Gotch
NZ) Ltd, PO Box 1595, Wellington

Malta: Binders are available from
local newsagents.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K, 1 28 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

111■• SPECTRUM 16K,
48K,128, and + %.1' COMMODORE 64 and 128

Fa ACORN ELECTRON, -It IF
BBC B and B+ 	Alin, DRAGON 32 and 64

a TX81 	VIC 20 mr 11COLOUR COMPUTER

■ CREATING SCREEN FLASHES
■ A SIMPLE AEROPLANE BOMBING

RUN PROGRAM
■ HOW TO ADD FLAMES AND

EXPLOSIONS

Explosions are a standard part of the
games programmers' repertoire—in
anything from aerial combat to
interstellar wars. Here are some
ways to program suitable visual
effects that you can use for a whole
variety of games.

It's quite easy to make your games a lot more
spectacular by adding special effects graphics
routines. And they need not be very complex
programs to make a big difference to the look
of your games.

As you'll see, there are many different ways
to produce visual effects—all
you have to remember is
to use the right sort
of effect in the
right sort of
game.

The flame effects detailed here are suitable
for all sorts of games involving buildings,
cars, ships, tanks and so on, but wouldn't
really look right in a space game.

Also, as the flames and explosions have
been drawn using UDGs, the maximum
target size is limited. And this means that you
can't just add them to any game, without
altering the routine.

On the other hand, some of the machines
have screen flash routines which are much
better for space games, and have the added
advantage that they need no adaptation for
use in any game.

The key to the Spectrum 'explosion' is a POKE
which makes the fire and debris of a bomb
blast first flare up, then gradually vanish from
the screen as the building collapses. This is
explained more fully below.

But first you need an aircraft—and a bomb.
So enter this program:

10 FOR n = USR "p" to USR "q"+ 7
20 READ a
30 POKE n,a
40 NEXT n
50 DATA 32,16,136,154,155,8,16,32
60 DATA 0,16,16,120,28,28,0,0

This uses conventional user defined graphics,
as described on pages 38 to 45, to

11101111*".-- create images for both the aircraft
and bomb. RUN the

program and then
check you have

entered the DATA correctly by entering (with-
out a line number)

PRINT AT 10,15; CHR$159; "0"; CHR$160

which will display the two UDGs.
Next you need a building to bomb, but

there is no need for a new program. Just enter
the existing one, - then edit it to read:

10 FOR n = USR "r" to USR "r" + 7
20 READ a
30 POKE n,a
40 NEXT n
50 DATA 255,153,255,153,255,153,255,255

RUN the program again, and test this bit too
by entering (again without a line number)

PRINT AT 20, 15; CHR$ 161

Once you are satisfied, enter NEW to clear
away the old program—the user defined
graphics will, of course, remain in memory
unless you disconnect the power.

THE BOMBING RUN
Now to the bombing program proper. Start
by entering these lines:

10 BORDER 0: PAPER 5: INK 0: CLS
20 LETa$=" ❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑ "
200 PRINT PAPER 4;AT 20,0;a$4;

a$;a$
210 PRINT INK 1;AT 19,12;CHR$ 161;

CHR$ 161;CHR$ 161

What these lines do, as you'll see if you RUN
them, is to PRINT a band of green, 16 pixels
deep, across the bottom of the screen, with a
warehouse building on top. How they do it
illustrates one use of strings in graphics work,
as described on page 95.

Because you need 64 coloured blocks to
make up the 'grass', Line 20 sets up a string of
16 blank squares. Then Line 200 PRINTS
them four times, starting at the beginning of
Line 20 on your screen display and spilling
over into Line 21. This saves you the trouble
of typing a$ 64 times!

The warehouse is built simply by PRINTing
graphics character 'r' (CHR$ 161)—which you
have already set up as a UDG for the
building—four times on top of the grass.

To get the aircraft off the ground and into
action, you need the following lines:

215 PAUSE 100
220 LET ay = 6: LET by = ay
230 FOR x = 0 TO 30
240 PRINT AT ay,x;" ❑ ";CHR$ 159
250 LET bx = x
260 IF by <19 THEN PRINT AT by + 1,

bx + 1;CH R$ 160;AT by,bx;" ❑ "

270 LET by = by + 1: LET bx = bx +1
280 IF x>29 THEN PRINT AT ay,x +1;" ❑ "
290 NEXT x

There's nothing unusual about these: they are
conventional 'moving about the screen' lines
as described on pages 57 to 58 and in almost
every Games Programming article since.
Note, though, how the spaces in Lines 240,
260 and 280 are needed to blank out the 'last
positions' of both aircraft and bomb as they
move on.

THE BIG BANG
Now to the main part of the exercise—the
explosion itself. It is much easier to illustrate
than to describe how it works. So—before you
enter the rest of the program—type in these
lines:

1000 FOR n = 88 to 80 STEP —1
1010 PRINT AT 10,15; CHR$ 150
1020 POKE 23675, n
1030 PAUSE 50
1040 NEXT n
1050 STOP

Do not just type RUN to test
this program. You might
corrupt the program already en-
tered. But if you type RUN 1000, you'll
see the letter G appear on the screen, then
gradually vanish to be replaced by the letter F.

This is because your FOR ... NEXT loop is
gradually stripping one number at a time
from the value stored in memory location
23675, the starting point for your UDGs. So
the letter displayed is gradually working its
way back through the alphabet.

The explosion program works in much the
same way. For safety's sake, enter

POKE 23675, 88

(which restores the memory location to its
original value) and then delete Lines 1000 to
1050 altogether. Then you can enter the rest
of the bombing program:

90 POKE 23675,88
100 FOR n = 0 TO 31: READ a: POKE USR

"a" + n,a: NEXT n
300 FOR e = 88 TO 80 STEP —1
310 POKE 23675,e
320 PRINT INK 2;AT 19,12;CHR$ 145;

CHR$ 147;CHR$ 145: PAUSE 6
330 PRINT INK 2; AT 19,12;CHR$ 147;

CHR$ 145;CHR$ 147: PAUSE 6
340 NEXT e
400 POKE 23675,88
500 GOTO 210
8000 DATA 0,0,0,0,0,0,0,0,2,128,253§,--

126,255,255,255
9000 DATA 0,0,0,0,0,0,0,0466,

231,255,255,255

Here, Lines 100, 8000 and 9000 are setting
up the UDGs you need for the explosion.
Line 100 calls up—and POKEs into memory—
the DATA in Lines 8000 and 9000. Lines 300
and 340 are carrying out much the same
procedure as in your earlier experiment,
stripping away one image to reveal another.

There is, however, one important dif-
ference. The UDGs creating the explosion
are those based on graphics characters B and
D—CH R$ 145 and 147. As they slowly disap-
pear from the screen, you do not want them
replaced by odd letters of the alphabet. So the
first eight letters of each DATA statement,
representing characters A and C—CHR$ 144
and 146—are all Os. So, instead of getting A
and C replacing B and D on the screen, what
you get are blank spaces.

If you want to watch the process more
closely, insert a PAUSE line between Lines 330
and 340.

Line 400 is necessary, of course, to restore
the value in memory location 23675 to its
original 88 before your program repeats itself.

It isn't as easy to program good visual effects
on the Commodore 64 as it is on some other
home computers. The most convincing
explosions rely greatly on the sprite and
hi-res graphic capabilities of this machine.
This means that they both take quite a
lengthy routine for their creation, and also
usually have to be designed specifically for the
program in which they are used. One example
of a sprite-generated 'explosion' which could
be used in several different games is given
later on in this article.

Simpler routines are possible, however—
such as this one for flashing bars—and can be
used very effectively in programs where some
sort of visual interruption is required. This
one could be used to signify the end of a game
or loss of a 'life':

100 PRINT"0"
110 FOR Z=0 TO 23:READ X:POKE

832 + Z,X:NEXT Z
120 SYS 832:GOT0120
130 DATA 162,0,160,200,200,208,

253,160,250,200,208,253,232
135 DATA 142,33,208,142,32,208,224,

16,208,235,96

A rather more interesting routine is the one
which follows, which displays a pattern of
rectangles of continuously changing colours.
This can be used at similar points in a games
program.

5 CS="iiAikiiiMEinit
0E10 111213MEMIL

mgm":PRINT "0";
8 FOR Z=0 TO 48:READ X:POKE

49152+ Z,X:NEXT Z
10 FOR Z=1 TO 24:PRINT MID$

(C$,Z,1)"a ❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑ ";

20 NEXT Z:PRINT "g"
40 FOR Z=0 TO 12
60 FOR ZZ = 55335 —Z+ (r40) TO 56295

—Z— (40 .Z) STEP 40:POKE ZZ,Z:

NEXT ZZ
70 FOR ZZ= 55296 + Z + (Z . 40) TO 56256

+Z— (40 .Z) STEP 40:POKE ZZ,Z:
NEXT ZZ,Z

80 DATA 169,0,141,251,0,169,216,141,
252,0,160,0,177,251,201,0,208,2,169,
16,24

82 DATA 233,0,145,251,24,230,251,165,
251,201,0,208,2,230,252,165,251

84 DATA 201,232,208,224,165,252,201,
219,208,218,96

100 SYS 49152:FOR Z=1 TO 250:NEXT
Z:GOTO 100

The length of the routine is controlled by a
FOR ... NEXT loop in Line 100 which creates a
delay of 250 time units. This value can be
adjusted as required—or try removing the
loop completely for a truly eyestraining
display!

By removing Lines 40, 60 and 70 you lose
the vertical bars, leaving horizontal bands of
colour which move towards the centre. This
form may be preferable if you want to include
some sort of message on the display, which
can be done by adding your comment to the
PRINT statement of Line 20, after the cursor
home symbol:

20 NEXT Z:PRINT "@!"TAB(20)"HELLO"

Obviously, you could embed characters in
this line to format your message properly.

SPRITE EXPLOSION
The short program that follows is a simple
demonstration of how a typical games
program may look and operate if written in
BASIC. This shows a jet plane flying across
the screen and bombing a building.

10 PRINT "Irj":POKE 53280,0:POKE
53281,0

15 PRINT"MgggggIgggigggg
gigIggiggggggggIggggAg"
TAB(20)"a
EE ❑Ig111111111,1 ❑ Do"

20 FOR Z=1 TO 20:PRINT " ig"TAB(Z)
-paunimminpu00 -

30 POKE 1024 + Z*41,32:POKE 1065+Z
. 41,42:POKE 55337 +Z*41,1

40 NEXT Z:PRINT "I§I"TAB(Z)
"DL1g111111111110L1D"

Without an 'explosion', the effect of the bomb
isn't very realistic, so try adding these lines
which make the building slowly collapse:

45 FOR Z=1 TO 20:POKE 1884 + RND(1)
*2,RND(1)1 5 + 110:NEXT Z

50 POKE 1885,223:POKE 1845,32:
POKE 1884,104

Even so, the resulting effect is hardly spec-
tacular. But next add these lines, a routine for
a sprite-based explosion:

1 FOR Z=832 TO 832 +63*2:POKE Z,0:
NEXT Z

2 FOR Z=13 TO 14:FOR A=0 TO 15:
FOR B=0 TO 1: READ X:POKE Z•64
+Al+ B,X:NEXT B,A,Z

3 DATA 0,0,0,0,0,0,0,0,15,240,15,240,
53,92,54,156,54,156,53,92,15,240,15,240

4 DATA 0,0,0,0,0,0,0,0
5 DATA 15,240,15,240,53,92,53,92,213,

87,214,151,214,151,218,167,218,167
6 DATA 214,151,214,151,213,87,53,92,

53,92,15,240,15,240
900 V= 53248:POKE V+ 21,3:POKE V+ 32,

0:POKE V+ 33,0:POKE V+ 37,2:POKE
V+28,3

910 POKE V+ 27,3:A(0) =1:A(1) = 8:
B(0) = 4:B(1)=7

915 FOR LL=1T03:1FLL=1ORLL=3THEN
POKEV+23,0:POKEV+29,0:POKEV,
183:POKEV+1,216:DD=0

920 IF LL= 2 THEN POKEV+23,3:POKE
V+ 29,3:POKE V,175: POKE V+1,208:
DD = 20

925 FOR UU = 1 TO 10:FOR Z=13 TO
14:POKE 2040,Z:POKE V+39,
B(RND(1) . 2)

930 FOR T=1 TO DD:NEXT T:POKE
V + 38,A(RND(1)*2)

940 NEXT Z,UU,LL:POKE V+21,0

RUN the program to display a colourful
explosion. Such a routine can do wonderful
things for even simple games programs.

Despite its apparent complexity, the
program is really quite simple—basically it
consists of generating two sprites and then
swapping these over repeatedly (this will be
explained more fully later). The DATA for the
`explosion' sprites is contained in four lines at
the start of the program. Before this is the
initializing routine, which first clears an area
of memory (locations 832 to 1022 are actually
part of the tape I/O buffer but are available
for sprite storage). In the following line, DATA
is READ and stored in the same, cleared,
locations. Note that Z is given values of 13 and
14 which, multiplied by 64 later in Line 2,
gives the start of storage of each, locations 832
and 896. The figure 64 here reflects the
amount of memory each sprite requires-
63 + 1 bytes in all.

The initializing routine must be placed at
the start of any program. This is why the
second part of the explosion program is
numbered from Line 900, as it would typi -
cally form a subroutine within a larger
program.

Line 900 enables the two sprites—that is,
turns them on—sets the colour of screen and
border to black (the value 0 in location V + 32
and V+ 33, otherwise 53280 and 53281, may
be changed) and changes the colour of the
second 'ring' of each sprite to enhance the
explosion effect. The last instruction on this
line enables multicolour mode for both
sprites.

Thereafter the program proceeds to enable
the background—so you can see detail
through the sprites—and colour the centre of
the explosion. You could try changing the
values of the numbers which follow the equal
signs in Line 910, but notice how only the
`warm' colours and white prove to be
effective.

The next line (Line 915) controls the
pointer, which calls either the small or the
large sprite, alternating the two to create the
pulsing explosion effect. When values of LL
are 1 and 3, the small sprite is in use and when
the value is 2 the large sprite is in use. A
flicker effect is added by the FOR ... NEXT
loop at the start of Line 930. The explosion
routine is ended in Line 940 when the sprite
enable location (53269) is switched off.

The explosion routine can be added to
other programs. To move the position of the
sprites about adjust the values of V and V + 1
in Lines 915 and 920. V is the screen X co-
ordinate, V + 1 is the Y co-ordinate, and the
difference between the two is 33 in each case.
The value of V in Line 915 is 8 more than

whatever value you choose for V in Line 920.
The value of V + 1 in Lines 920 and 915 is
then 33 more than V.

11
Making the screen flash is a very simple way
of showing a collision in mid-air or in space.
Type in this program and try RUNning it on
its own:

7090 MODE 1
8000 FOR T=1 TO 15
8010 FOR COL= 0 TO 7
8020 VDU19,0,COL;0;
8030 NEXT COL
8040 NEXT T
8050 VDU19,0,0;0;

What happens here is very simple. The loop
in Lines 8000 and 8040 changes the screen
colours 15 times—Line 8010 steps through
the eight colours and then the VDU 19 rede-
fines colour 0, the background colour, to each
of the other colours in turn.

You don't actually see the whole screen
change colour, however. What you actually
see is bands of colour creeping up the screen.
This is because the colours change
so rapidly that the TV doesn't
have enough time to alter
the colour of the whole
screen before swap-
ping to the next colour.
Only a small band of

the screen is completed each time.
If you don't like the stripey effect of the last

program then add a short delay which will
allow the complete screen to change colour:

8025 FOR delay =1 TO 200: NEXT

Change Line 8000 as well, or the flashing will
last too long:

8000 FOR T=1 TO 3

If you want to use the program as a subrout-
ine in a game, then you'll have to make two
alterations. First, delete Line 7090—as the
mode will already be defined in the main
program. Then add a RETURN line, such as
8060 RETURN, to the end of the program.

If you SAVEd the .alien game from Games
Programming 5 then you can use that to try
out the effect. Otherwise, use the simple

animation program below. It shows an alien
being hit by a missile:

10 MODE1
15 VDU23;8202;0;0;0;
17 CLS
20 VDU23,224,60,126,219,219,126,60,

92,153
30 VD U23,225,16,16,16,56,56,56,40,108
40 PRINTTAB(19,4)CHR$(224)
50 FOR Y= 31 TO 3 STEP —1
60 PR1NTTAB(19,Y)CHR$(225)
70 A = I N KEY(10)
80 PRINTTAB(19,Y)" ❑ ";
90 NEXT
100 GOSUB 8000
110 GOTO 17
8060 RETURN

Don't forget that there must always be a line
in the main program to call the subroutine. In
the alien program above, this is:

100 GOSUB 8000

So add a line like this (with the appropriate
line numbers) whenever you want to use the
subroutine in your own programs.

GROUND EXPLOSIONS
So far the program has manipulated the
screen display as a whole. An alternative is to
try writing some suitable animated graphics.

Here's an idea which animates some
flames. They are meant to be superimposed
over a target which has been successfully
destroyed. You could use the flames in a game
involving tanks, ships, buildings, or any
ground-based target.

The program to animate the flames is
written as a PROCedure so it can be added to
any suitable program.

10 MODE1
20 VDU 5
30 FOR T = 224 TO 229:VDU23,T
40 FOR P = 0 TO 7:READ A:VDU A
50 NEXT P
60 NEXT T
70 GCOL0,2:MOVE0,100:MOVE 0,200:PLOT

85,1280,100: PLOT 85,1280,200
80 Q = 1:S = 1:X = 600:Y = 232:FY = Y:

BY = 763
90 PROCFACTORY
100 FOR T = 0 TO 1200 STEP 16
110 MOVE T,800:GCOL0,3:VDU229
120 IF T> 128 AND BY>250 THEN

PROCBOMB
130 IF BY< =250 AND Q<16 THEN

PROCEXPLOSION
140 MOVE T,800:GCOL0,0:VDU226
150 NEXT T
160 GOTO 80

170 DEF PROCBOMB
180 MOVE T —16,BY:GCOL0,0:VDU226
190 BY= BY —16
200 MOVE T,BY:GCOL0,3:VDU228
210 ENDPROC
220 DEF PROCFACTORY
230 GCOL0,3:MOVE 600,200:MOVE692,200:

PLOT85,600,231:PLOT85,692,231:
GCOL0,2: MOVE600,263

240 VDU227,227,227
250 ENDPROC
8000 DEF PROCEXPLOSION
8010 GCOL0,0:MOVE X,Y:VDU226,226,226
8020 MOVE X,Y + 32:VDU226,226,226
8030 GCOL0,2:MOVE X,FY
8040 VDU224 + S,224 + S,224 + S
8050 S =1— S
8060 FY = FY — 2
8070 Q= Q + 1
8080 ENDPROC
9000 DATA 2,128,25,126,126,255,255,255,

4,33,144,66,231,255,255,255
9010 DATA 255,255,255,255,255,255,255,

255
9020 DATA 0,0,0,0,3,15,63,255,0,16,16,

120,28,28,0,0
9030 DATA 32,16,136,254,255,8,16,32

This program shows a plane dropping a bomb
on a factory. If the factory is destroyed, then
two sets of flames are PRINTed, one after the
other to give the impression of a flickering
fire. The flames also gradually die down as the
program proceeds.

Here's how the program works, line-by-
line to create the effect.

The DATA for the two sets of flames is in
Line 9000 and the other DATA lines are for a
blank square, the plane and the bomb. Lines
30 to 60 READ the DATA and set up the UDGs,
and the flames are PRINTed, at the correct
position, by Lines 8030 and 8040. Lines
8010 and 8020 simply blank out the factory
before the flames are displayed. Which set of
flames is PRINTed by Line 8040 depends on
the value of S. S starts off equal to 1, set in
Line 80, so the first time the PROCedure is
called it PRINTs character 244 + 1, that is 245.
Line 8050 changes the value of S to 0 so the
next time round, character 244 + 0, i.e. 244, is
PRINTed. The third time round, S is changed
back to 1 again and so on. As the characters
are swapped back and forth the flames flicker
and appear to be animated. Line 8060 alters
the Y co-ordinate of the flames making them
move down the screen each time giving the
impression that they are dying down.

Finally, Line 8070 uses Q to keep count of
how many times the flames are PRINTed and
when Q =16 the condition in Line 130
becomes false so the procedure is not called

again until the next bomb drops.
The rest of the program controls the

movement of the plane and the bomb and
draws the screen display. Line 70 PLOTs the
ground at the bottom of the screen, Line 90
DRAWS the factory, and Lines 100, 110 and
140 move the plane across the top of the
screen. PROCBOMB is called in Line 120 but
only if the plane has reached its target at
position 250. When the bomb does reach its
target then PROCEXPLOSION is called instead
by Line 130.

LEI 11
Dramatic visual effects that will greatly en-
hance space games can be achieved on the
Dragon or Tandy with very short programs.
Try typing in this one and RUNning it:

7980 PMODE 3,1
7990 PCLS
8000 FOR F=1 TO 1000
8010 SCREEN 1,0
8020 SCREEN 1,1
8030 NEXT F
8040 CLS

You'll see bands of colour creeping down the
screen, caused by the computer switching very
quickly between colour sets. It's an effect you
could use for the end of a particular phase of a
game—penetration of a shield, perhaps?

The mode is set up by Line 7980 and then
the graphics screen is cleared by Line 7990.
Line 8010 switches on one colour set, whilst
Line 8020 switches back to the other. The
FOR ... NEXT loop in Lines 8000 and 8030
switches the two colour sets 1000 times.

This switching changes the colour sets very
rapidly—so quickly, in fact, that the TV
never has enough time to complete changing
the colour of the screen before it has to swap it
back again. Only a small band of the screen is
thus completed in each colour.

If you want to use the program as a
subroutine—either with a game (it'll only
work with games written in one of the
PMODEs, such as that on page 144) or with the
alien program given below—you'll have to

make a few alterations. First, delete Lines
7980 and 7990, then add a RETURN line such
as 8500 RETURN.

10 PMODE 1,1
20 DIM A(3),B(3),M(3)
200 FOR K=1536 TO 2016 STEP 32
210 READ A,B:POKE K,A:POKE K +1,B
220 NEXT
230 G ET(0, 0) — (15,15),A,G
240 GET(0,16) — (15,31),M,G
250 PCLS
260 MX= 120: MY = 191: PX = 120: PY = 20
270 PUT(PX,PY) — (PX +15,PY +15),

A, PSET
280 SCREEN 1,0
290 PUT (MX,MY)— (MX + 15,MY +15),

B,PSET
300 MY = MY— 4
310 IF MY <36 THEN GOSUB 8000:

GOTO 260
320 PUT (MX,MY)— (MX +15,MY + 15),

M,PSET
330 GOTO 290
9000 DATA 252,63,3,192,15,240,61,124,

58,172,245,95,213,87,213,87
9010 DATA 0,128,0,128,0,128,2,160,10,

168,0,192,3,240,15,60

The program shows an alien being hit by a
missile. When the alien is hit, Line 310 calls
up the screen stripe routine.

When used as a subroutine, the screen
stripe program will make stripes in any
PMODE you like, so it can be added to any
game without altering Lines 8000 to 8040.

Here's an adaptation of the above stripes
program which gives a more elaborate effect,
although the screen graphics won't remain
intact as they did in the first case. You can
type it in and RUN it as it is, or add it to
another program—such as the alien
animation—as a subroutine. If you use it as a
subroutine, you'll need to delete Line 7990
and add a RETURN line—as you did before.

7990 PMODE 3,1
8000 FOR F =1 TO 3
8010 FOR K = 0 TO 1

8020 SCREEN 1,K
8030 FOR J =1 TO 4
8040 PCLS J
8050 NEXT J
8060 NEXT K
8070 NEXT F
8080 CLS
As a subroutine it will work in both the two-
colour modes (PMODEs 0, 2 and 4), and the
four-colour modes (PMODEs 1 and 3). In
addition to changing the colour sets, the
routine also clears the screen and changes the
screen colour.

Lines 8030 to 8050 are a FOR ... NEXT loop
which turns the screen to each of the available
colours in the colour set in turn. The program
is designed to look for four colours in the set,
but will work in a two-colour mode despite
this. No errors will be reported and only two
colours will appear on the screen.

One last variation on the program looks
like this:
7990 PMODE 3,1
8000 FOR F=1 TO 5
8010 SCREEN 1,0
8020 FOR K =1 TO 200: NEXT K
8030 SCREEN 1,1
8040 FOR K=1 TO 200: NEXT K
8050 NEXT F
8060 CLS

Either type it in as it is, or use it as a
subroutine by deleting Line 7990 and adding
a RETURN line at the end.

You will see the screen flashing in colour.
This happens because Lines 8020 and 8040
insert short delays allowing the complete
screen to change colour before the colour sets
are swapped. You can experiment by altering
the length of the delay and the number of
times that the colours are swapped.

FLAMES
So far you've seen some ideas for manipulat-
ing the screen display as a whole. But even
better visual effects can be achieved by writ-
ing some suitable animated graphics.

Here's an idea which animates some flames

that you could superimpose over a target
which has been successfully destroyed. Alter-
natively, you could use them in a game
involving any ground-based target.

The program has been written in PMODE 1,
and can't be used as it stands with games
written in other PMODEs. Type it in and RUN it
to see what it looks like:

10 PMODE 1,1
20 DIM B(3),E1(3),E2(3)
30 FOR K=1536 TO 2016 STEP 32
40 READ A,B:POKE K,A:POKE K + 1,B
50 NEXT
60 GET (0,0) - (15,15),E1,G
70 GET (0,16)- (15,31),E2,G
80 SCREEN 1,0
250 PCLS:HX =124:HY =146
8000 FOR N=0 TO 15
8010 PUT (HX,HY+ N) - (HX+ 15,HY+ 15),

El ,PSET
8020 FOR K=1 TO 100:NEXT
8030 PUT (HX,HY+ N)- (HX+ 15,HY+ 15),

E2,PSET
8040 FOR K=1 TO 100:NEXT
8050 PUT (HX,HY+ N) - (HX+ 15,HY+ 15),

B,PSET
8060 NEXT
9000 DATA 0,12,192,0,3,195,63,252,

63,252,255,255,255,255,255,255
9010 DATA 0,48,12,3,195,0,48,12,252,

63,255,255,255,255,255,255

Two sets of flames are PUT on the screen, one
after the other, giving the impression of fire.
The flames also gradually die down.

The program works like this:
The DATA for the flames is in Lines 9000

and 9010. The flames are POKEd on to the
screen by Lines 30 to 50. Because the
program is written in a four-colour mode the
DATA is a little different from the DATA you
saw in Machine Code 2 (page 40). Setting up
colour UDGs will be dealt with in detail later.

Lines 60 to 70 GET the two flame shapes
into arrays El and E2-which were
DIMensioned in Line 20.

Lines 8000 to 8060 animate the flames and
make them die down. Each time the program
goes through the FOR ... NEXT loop the two
flame arrays are PUT on the screen, and
blanked out by PUTting the blank array, B, on
top of them. The top of the flames is lowered
each time by the + N in the PUT lines, so the
flames appear to be dying down. If you don't
see how this works try plotting the coordi-
nates in the PUT lines as the program goes
through the FOR ... NEXT loop.

Although the program will work on its
own, it'll look a lot better if you try it out as a
subroutine with the bombing run program
given below-you'll see a building being
destroyed and then burned down. If you use
the two programs together make sure that
Line 20 is altered so that it appears in the
bombing run-use the machine's editor, or
retype the line. Also, delete Line 80-just
type 80 ENTER .

20 DIM A(3),B(3),H(3),E1(3),E2(3)
200 FOR K=1536 TO 2016 STEP 32
210 READ A,B:POKE K,A:POKE K+1,8
220 NEXT
230 GET(0,0) - (15,15),A,G
240 GET(0,16) - (15,31),H,G
250 PCLS:LINE(0,163) - (255,191),

PSET,BF
260 HX =124:HY = 146:PX= 0:PY = 40:B = 0
270 PUT(HX,HY) - (HX+ 15,HY + 15),H, PSET
280 SCREEN 1,0
290 PUT(PX,PY) - (PX + 15, PY + 15),B, PSET
300 PX= PX+ 4
310 PUT(PX,PY)-(PX+15,PY+15),A,

PSET
320 IF PX = 20 THEN B=1:BX= PX+ 8:

BY= PY+ 8
330 IF B=1 THEN PRESET(BX,BY):

PRESET(BX+2,BY):BX= BX + 2:BY =
BY + 2: PSET(BX,BY,4):PSET(BX+ 2,BY,4)

340 IF BY =148 THEN GOSUB 8000: BY = 0:
GOTO 250

807 	290
8070 RETURN

9020 DATA 0,0,2,0,130,128,162,160,170,
170,162,160,130,128,2,0

9030 DATA 0,3,12,51,60,243,255,255,
255,255,85,85,86,149,86,149

If you want to use the subroutine in other
PMODEs it will have to be changed slightly.
Here are two versions which will allow the
flames to be used with games written in other
modes.

First, here is a program suitable for use in
PMODEs 3 and 4-change the mode number as
appropriate:

10 PMODE 3,1
20 DIM B(6),E1(6),E2(6)
30 FOR K=1536 TO 2496 STEP 64
40 READ A,B:POKE K,A:POKE K+1,B
45 POKE K+32,A:POKE K + 33,B
50 NEXT
60 GET(0,0) - (15,15),E1,G
70 GET(0,16) - (15,31),E2,G
80 SCREEN 1,0
250 PCLS: HX =124:HY =146
8000 FOR N=0 TO 15
8010 PUT(HX,HY+N)-(HX+15,HY+15),

E1,PSET
8020 FOR K=1 TO 100:NEXT
8030 PUT(HX,HY+ N) - (HX+15,HY + 15),

E2,PSET
8040 FOR K=1 TO 100:NEXT
8050 PUT(HX,HY+ N) - (HX+ 15,HY+ 15),

B,PSET
8060 NEXT
9000 DATA 0,12,192,0,3,195,63,252,63,

252,255,255,255,255,255,255
9010 DATA 0,48,12,3,195,0,48,12,252,63,

255,255,255,255,255,255

And secondly, here is a program suitable for
use in PMODE 2.

10 PMODE 2,1
20 DIM B(6),E1(6),E2(6)
30 FOR K=1536 TO 2496 STEP 32
40 READ A:POKE K,A:POKE K+16,A
50 NEXT
60 GET(0,0) - (15,15),E1,G
70 GET(0,16) - (15,31),E2,G
80 SCREEN 1,0
250 PCLS: HX= 124:HY =146
8000 FOR N=0 T015
8010 PUT(HX,HY+ N) - (HX+ 15,HY+ 15),

El,PSET
8020 FOR K=1 TO 100:NEXT
8030 PUT(HX,HY+ N) - (HX+15,HY + 15),

E2,PSET
8040 FOR K=1 TO 100:NEXT
8050 PUT(HX,HY+ N) - (HX+ 15,HY +15),

B,PSET
8060 NEXT
9000 DATA 2,128,25,126,126,255,255,255
9010 DATA 4,33,144,66,231,255,255,255

The sprite is a standard graphics
facility on the Commodore 64,
producing a very mobile high
resolution image. Simple to master,
it's the basis of many games.

A sprite—also called a movable object block
(MOB)—is a special kind of highly mobile
high resolution UDG some uses of which
have already been seen. Apart from its mo-
bility, it has other unusual characteristics—
for example, the ability to expand and con-
tract in width and height upon command. It is
not therefore surprising to find that sprites
are very commonly used in games
programming—but, in fact, sprites can be
used in any program where high resolution
animated graphics are required. A business
program, for example, could make use of one
or more sprites to form an 'icon' (symbol
depicting choice of program operation), or as
part of an animated logo.

There are two types of sprite: standard
high resolution form or multicolour. The
difference between the two is that the former
adopt the chosen foreground colour. Multi-
colour sprites offer a choice of up to four
colours simultaneously, but only by sacrific-
ing some of the horizontal resolution.

To start with, let's look at standard sprites.
Multicolour sprites are covered separately.

DEFINING A SPRITE
Sprites are defined very much like standard
UDGs (see page 38). But a sprite is larger and
so needs more DATA to define it. In fact, it is
three times the width of a standard UDG, and
not quite three times its depth, occupying an
area 24 pixels by 21. Not all of the 504
available pixel positions have to be used (that
is, turned on)—and it may not be possible to
do so in certain instances.

Rather than defining each of the 24 pixels
on each row separately, information about the
sprite shape is contained in three groups of
eight (three bytes) on each of the 21 rows.
This gives a key to the way DATA statement
values used for normal UDGs can be adapted
for use in this case, since these are also
calculated in groups of eight.

The arrangement of bytes in the sprite
takes the following form:

Row 1: BYTE 1 BYTE 2 BYTE 3
Row 2: BYTE 4 BYTE 5 BYTE 6
Row 3: BYTE 7 BYTE 8 BYTE 9

. . . and continues up to:

Row 20: BYTE 58 BYTE 59 BYTE 60
Row 21: BYTE 61 BYTE 62 BYTE 63

So you have side by side groupings of three
bytes for each of the 21 sprite rows.

Each of these bytes handles information in
the same way as a single line of the UDG on
page 38. If you think in terms of decimal
notation, for instance, the possible values for
the pixel positions across each row are shown

in the diagram on page 170.
So if all the eight available pixel positions

(bits) in any one byte are used (that is,
switched on or enabled) the corresponding
decimal value of that byte is 128 + 64 + 32 +
16 + 8 + 4 + 2 + 1, which is 255. If no pixels
are used, the sum of the bit values is 0.
Between the two extremes are unique values
corresponding to any possible permutation
of 'used' pixels. The value obtained can

■ WHAT IS A SPRITE?
■ DEFINING A SPRITE
■ FIRST STEPS
■ DATA GENERATION
■ USING THE SPRITE

■ SPRITES IN MEMORY
■ A NEAT TRICK FOR

TRACING OFF YOUR DESIGN
■ AVOIDING SAVE AND LOAD

PROBLEMS

be used directly within a DATA statement
as part of a sprite definition.

FIRST STEPS
Now let's look at some examples. As with
ordinary UDGs, the best way to start is by
designing the required shape on suitably
ruled graph paper. Mark out an area contain-
ing 24 by 21 squares, and indicate the byte
divisions. Alternatively, photocopy or trace

over the sprite grid provided here or in the
manual. Shown overleaf is an example of a
sprite which actually forms part of the Space
Station program on page 151,

This example shows the
DATA values alongside.

Let's take a closer look at
these. The first byte in the

first row is not used—so the
DATA value of these pixels is 0. /

All but one of the pixels in the next
byte are activated, with the unused

pixel in the last place. The total value
here is thus 128+64+32+16+8+4

+ 2 = 254. The third byte in the first row
is again unused, contributing another 0 to
the DATA. So the values for row 1 are there-
fore 0,8,0.

Before proceeding, have a look at the rest of
the sprite's pixel arrangement. It is often
possible to find another row which uses much
the same configuration for one or more bytes,
particularly in symmetrical designs. If this
happens, you can save having to perform the
DATA calculation more than once. In fact,
there is no such match for row 1, but you will
be able to do this with rows 14 and 16 or rows
17 and 19.

Now move on to the next row. In the first
byte, pixels 2 and 1 are 'on', yielding a value of
2 + 1= 3. In the next byte, pixels 6,5,4 and 1
are 'on' to give 32 + 16 + 8 + 1= 57. And in
the last byte only the first pixel (128) is used.
Total for the row is thus 3,57,128.

In row 3, the first byte has three activated
pixels and a total of 4 + 2 + 1= 7. The second
byte is easy—all the pixels are on, for a
maximum value of 255. The last byte has
128 + 64 = 192. Check the values for the re-
maining rows in the same way.

With this done, you can group all the row
values together to obtain a DATA statement.
For the space station sprite this is:

20 DATA 0,254,0,3,57,128,7,255,192,0,
16,0,16,56,16,56,84,56,124,148,124,
131,255

30 DATA 130,144,58,18,184,16,58,144,16,
18,131,255,130,254,84,254,252,56,126,
0,56

40 DATA 0,0,40,0,0,56,0,1,199,0,6,16,
192,1,199,0,0,124,0

This is how this sprite appears in the Space
Station program on page 151. But it isn't
always necessary to write it in full this way.
With suitable program adjustments so that
these values aren't expected, it is usually
possible to omit unused sprite rows at the
start and end of a definition.

The remaining examples are less com-
plicated designs, and calculating the values is
much more straightforward. See if you can
follow how the values are obtained, and
whether you can find them in the DATA
statements which are located in Lines 20 to
140 of the Space Station program.

DATA GENERATION PROGRAM
The least exciting part of working with a
sprite is calculating the 63 DATA statement
values needed to define it. Instead of doing
this by hand, you can use a utility program to
work out the values for you, and a wide choice
of products of this type is available
commercially.

But all you need to start with is a compara-
tively simple program which lets you 'draw'
the sprite design on the screen, altering it as
you wish. It will then automatically calculate
the corresponding DATA values which you can
use to define the sprite for use in other
programs.

The program which follows does just this,
and gives you the option, if you have a
printer, of taking a hardcopy for future
reference. The program is suitable only for
single-colour high resolution sprites—but is
nonetheless extremely useful. Although typ-
ing it in may seem like a long-winded way of
doing one set of sprite calculations, when you
have done it once you can SAVE the program
for re-use every time you have a sprite to
define:

10 POKE 53280,1:POKE 53281,1:DIM
A$(21),Z(3,21),A(24)

20 PRINT "011"TAB(13)"SPRITE
EDITORS gig"

30 PRINT TAB(8);:INPUT "M PRINTER
OPTION.(11Y/NM)Iii";1$:IF 1$ ="Y"
THEN PR$ = "Y"

40 IF 1$ < > "Y" AND 1$ < > "N" THEN
GOTO 20

50 PRINT" 0.1"TAB(13)"PLEASE WAIT"

60 FOR Z=1 TO 8:READA(Z):A(Z + 8) =
A(Z):A(16 + Z) = A(Z): NEXT: DATAl28,64,
32,16,8,4,2,1

70 FOR Z=1 TO 21:READ A$(Z)
80 FOR ZZ =1 TO 8:IF MID$(A$(Z),

ZZ,1) = "*"THEN Z(1,Z) = Z(1,Z) +
A(ZZ)

90 NEXT ZZ:FOR ZZ= 9 TO 16:IF
MID$(A$(Z),ZZ,1)="*" THEN
Z(2,Z) = Z(2,Z) + A(ZZ)

100 NEXT ZZ:FOR ZZ=17 TO 24:IF
MID$(A$(Z),ZZ,1)="*" THEN
Z(3,Z)=Z(3,Z)+A(ZZ)

110 NEXT ZZ,Z:PRINT "C1g1":1F
PR$="Y" THEN OPEN4,4:CMD4

120 PRINT TAB(12)"ICHARACTER
DATA Ag "

130 FOR Z=1 TO 21:PRINT Z(1,Z);",";
Z(2,Z);",";Z(3,Z);:IF Z<21 THEN
PRINT",";

140 NEXT Z:PRINT:PRINT:IF PR$="Y"
THEN GOTO 170

An example of a sprite
from the Space
Station game—the
station itself—shown
superimposed on a
grid giving row and
bit numbers. See how
the bit values can be
added to form the
DATA numbers. There
are three numbers for
each row because each
one is made up of
three bytes containing
eight pixels each (see
text). If you like, you
can trace over this
grid and use it when
you are designing your
own sprites and wish
to work out the DATA

150 PRINT TAB(7)"gg I PRESS RETURN
TO CONTINUE"

160 GET K$:IF K$< > CHR$(13) THEN
GOTO 160

170 PRINT " "TAB(11)" CHARACTER
DESIGNM gi"

180 PRINT TAB(7)" 1 7654321076543210
76543210"

190 FOR Z=1 TO 21:PRINT TAB(7)"M";
200 FOR ZZ= 1 TO 24:IF MID$(A$(Z),

ZZ,1)="*" THEN PRINT ". E ig";:
GOTO 220

210 PRINT ".";
220 NEXT ZZ:PRINT"I";Z:NEXT Z:IF PR$

="Y" THEN PRINT #4, "CI":
CLOSE4

230 IF PR$ < >"Y" THEN GOTO 230
240 REM ❑ ❑ 7654321 07654321 07654321 0

First design your flying bird on graph
paper. It can then be entered as
asterisks in the data generator program

250 DATA"
260 DATA"
270 DATA"
280 DATA"
290 DATA"
300 DATA"
310 DATA"
320 DATA"
330 DATA"
340 DATA"
350 DATA"
360 DATA"
370 DATA"
380 DATA"
390 DATA"
400 DATA"
410 DATA"
420 DATA"
430 DATA"
440 DATA"
450 DATA"

To use the program, enter the instruction LIST
240–. This will display the 21 rows at the end
of the program—empty DATA lines on which
you can plot the shape of the sprite you want
to design. Each character position within the
DATA statement represents an available pixel
position—the line is 24 characters wide. Use
the cursor controls to move around the lines,
then simply place an asterisk at every point of
your design and remember to press RETURN
to enter each line.

For guidance, the REM statement in Line
240 numbers each of the 24 horizontal po-
sitions which are available for each of the 21
vertical rows.

A typical design is shown bottom left.
This shows the pattern of asterisks used to
define the figure of a flying bird.

When you have completed your design,
RUN the program. The screen then displays a
prompt asking you whether direct printout is
required. If you press N, output is to the

screen. First come the 63 DATA statement
numbers—these you'll have to copy out by
hand if you do not have a printer. For the
example shown, the DATA looks like this:

CHARACTER DATA 128,0,3,192,0,30,240,
0,250,104,1,52,84,2,228,58,2,216,45,
7,144,20,133,32,22,78,64,22,44,64,11,
24,128,5,201,0,3,230,0,0,49,192,16,64,
32,31,129,16,21,194,240,27,54,8,10,9,0,
12,4,128,4,2,64

A large scale display of your sprite can then be
obtained simply by pressing I RETURN .

If you now choose to take a hardcopy using
the printer, simultaneously press RUN/STOP

 and RESTORE' and reR UN the program. Press Y
when the printer option again shows. The
printer output starts with a listing of all the
character DATA, and this is followed by a large
scale printout of the sprite on its entry grid.

Each sprite you define within this program
may be SAVEd as part of it. You can then
reLOAD it at will and change it as necessary to
create further sprites.

USING THE SPRITE
The design and DATA definition stage is
perhaps the easiest part of using a sprite.
Whichever way you work out your DATA
values, they are of no use by themselves. It's
only when you incorporate them in a new
program that you can make use of the sprite
which you have created.

First you need to store the sprite inform-
ation somewhere suitable in the computer's
memory. Then, you can call it up and
manipulate it with your program.

Exactly how this is done is covered a little
later. But for the moment, type in and RUN
this program:

10 V= 53248:X= 150:Y= 157:PRINT "a"
20 FOR 1=16000 TO 16062:READ A:POKE

I,A:NEXT I

25 POKE 2040,250:POKE V+ 21,1:GOTO
50

30 GET A$:A = 0:XX = 0:IF AS= "P" THEN
A= 1:GOTO 50

35 IF A$="L" THEN A= 2:GOTO 50
40 IF A$="Z" THEN XX= —2
45 IF A$ = "X" THEN XX= +2
50 FOR Z=1 TO 10:X=X+XX:IF X>250

THEN X=30
55 IF X<20 THEN X=250
60 IF A=1 AND Y>70 THEN Y=Y-2
65 IF A=2 AND Y<200 THEN Y=Y+2
70 POKE V,X:POKE V+ 1,Y
75 NEXT Z:GOTO 30
100 DATA 128,0,3,192,0,30,240,0,

250,104,1,52,84,2,228,58,2,216,45,
7,144,20

105 DATA 133,32,22,78,64,22,44,
64,11,24,128,5,201,0,3,230,0,0,49,
192,16,64

110 DATA 32,31,129,16,21,194,240,
27,54,8,10,9,0,12,4,128,4,2,64

This instructs the computer to set up a sprite
and then move the image across the screen
under keyboard control using the L, P, Z and
X keys. In this case the sprite chosen is the
flying bird figure defined earlier, but you can
use the same program for any other single-
colour sprite you invent—all you have to
amend is the DATA statements at the end.

If you look at lines 100, 105 and 110, you'll
see that these list the DATA values for the bird
which were generated by the utility program.

Line 10 sets up a series of variables—
basically a starting point for the sprite—and
clears the screen. Line 20 READS the DATA
which defines the sprite and holds it in the
computer's memory. Line 30 then enables or
turns the image on.

Lines 50 to 75 instruct the computer how to

Add the extra program line to the text
program for a simple bird-zapping
game using your newly defined sprite

If 	you're 	using 	the 	sprite
numbers display program here, there's a
quick way of transfering a design to the
DATA statement lines of the program.
Using tracing paper, mark off the key
lines of your design—which should
match the screen in size—and then tape
this on the TV screen once you have
LISTed Lines 240-450. Now simply use
the cursor and plot asterisks 'under-
neath' the lines of your tracing until the
arrangement of these closely matches the
design on the tracing paper.

move the sprite under keyboard control. If you
just want to display the sprite, try editing out
Lines 40, 50, 55, 60, 70, and 75 from the
program. In this case the bird will appear at a
point fixed by the variables X and Y—which are
set at 150 and 157, somewhere near the middle
of the screen. If you enter alternative values for
X and Y in Line 10, you can make the bird
appear wherever you like.

The most complicated part of what's going
on here is in Lines 10 to 25—the part that
actually stores the sprite in the computer's
memory. This is looked at in detail below. But
don't worry if you don't understand it com-
pletely for the moment. How memory works
is covered in depth in a later article.

SPRITES IN MEMORY
A sprite definition requires 63 bytes of mem-
ory for the 63 DATA values. But it is conve-
nient to allocate 64 bytes for each, as this
simplifies some of the calculations. These 64

15 POKE 53280,2:POKE 53281,2:POKE 650, 	50 POKE V,X:POKE V + 1,Y:POKE V+39,7:
128:FOR Z=16000 TO 16000+64"2: 	GET Z$:IF Z$= "Z" AND XX> 30 THEN
POKEZ,O:NEXT 	 XX= XX— 5

1 20 FOR 1=16000 TO 16077:READ A: 	55 IF Z$="X" AND XX <250 THEN
POKE I,A:NEXT 1:T1$ = "000000": 	 XX = XX + 5
POKE V+ 29,1 	 60 IF Z$="P" AND YY> 50 THEN

25 POKE 2040,250:POKE 2041,251: 	 YY = YY — 5
POKE V+ 21,3:XX =100:YY = 100: 	65 IF Z$="L" AND YY <220 THEN
POKE V+40,1 	 YY=YY+5

30 FOR Z=1 TO 5:PRINT "Eg P TIME: 	70 POKE V+ 2,XX:POKE V+ 3,YY:
M"VAL(T1$):IF RND(1)> .30 THEN 	IF PEEK(V+ 30) = 3 THEN S= S +1
POKEV + 23,RND(1)*2 	 75 PRINT "gik"TAB(25)"SCORE:

35 A= INT(RND(1)1)+1:X= X+10: 	 "S:NEXT Z:IF VAL(TIS) < 59 THEN 30
IF X>239 THEN X=30 	 80 PRINT "I§1. 'TIMES UP IL!":

40 IF A=1 AND Y>70 THEN Y=Y-10 	END
45 IF A=2 AND Y <200 THEN Y = Y + 10 	115 DATA 8,0,0,8,0,0,62,0,0,8,0,0,8,0,0

bytes can be stored in any area of spare
memory providing it is a multiple of 64.

Each of these definitions has to be located
once it has been stored, and to do this sprite
pointers are used. There are eight of these, and
each can be POKEd with a value from 0 to 255.
This value is multiplied by 64 to identify the
sprite location. (This is the reason why the
memory location has to be a multiple of 64.)

The maximum value-255—gives, there-
fore, a ceiling value of 255*64, which is 16K,
covering the whole of one block of memory
which the video chip can access. (There are
four such blocks, or 16K banks—only one can
be accessed at any one time.)

The pointers are a powerful tool which
permit you to switch to and fro from any
sprite definition which may be in memory. A
whole sequence of sprites can be called in this
way. Each one will replace its predecessor, so
permitting imaginative animation effects.

In fact, this is a much more efficient way of

—

TAPE SAVES

One of the unpublicised problems when
working with sprites is attempting to
SAVE programs on tape. This occurs
only if you've made the quite forgivable
error of actually RUNning, during the
course of its development, a program
containing a sprite. Quite normal, you
might think, but a source of the
mystifying SAVE errors rather too easily
blamed on the C2N cassette unit!

The only fail-safe solution to the
problem is to precede your normal SAVE
command with the following POKE:

POKE 53269,0:SAVE "PROGNAME"

This disables the sprite display and
eliminates the source of interference
which affects the SAVE routine on tape.
As an alternative, add the POKE to the
end of the program itself.

The same POKE should be used to
precede a LOAD instruction when a new
program is LOADed into the Commodore
following a sprite display. This is not
necessary if you effect a system
coldstart—usually done simply by
switching the machine off and then on!

Disk users will be happy to know that
sprite-related SAVE and LOAD problems
do not extend to these units, and normal
procedures may be used.

making use of sprites: switching the pointer
rather than the sprites themselves leaves the
sprites available for other uses.

The sprite pointers are always located at
the unused end eight bytes of the 1K screen
display memory, which is normally from
2040 to 2047. You can see an example of this
in Line 30 of the flying bird program, where
2040 is used.

It is possible to relocate the screen memory
and in so doing move the sprite pointers too.
Fresh values for the pointers have to be POKEd
into the new sprite pointer locations.

WHERE THE ACTION IS
Before you can control the sprite, you need to
come to grips with the workings of the 6566
VIC-II chip used by the Commodore 64. In
particular, you need to know how to access the
control commands.

This isn't as fearsome as it sounds and is
covered in greater detail in a later article. For
the moment, take a glance at the following
table, which lists the 47 memory addresses
from 53,248 to 53,294 that are used in sprite
programming. The commonly used V + value
shows the relationship of all related addresses,
based on the starting address where
V = 53248.

At first sight the table seems rather daunt-
ing but it is nevertheless an essential reference
point if you're going to get the most from
your sprite programming. The V + value
notation is rather easier to remember than the
specific addresses, and is more efficient on
memory usage—this would be especially
beneficial in long programs. Additionally,
their use considerably simplifies identific-
ation of specific sprite instructions—a useful
aid when program changes and debugging are
necessary.

You can see that each of the normal eight
sprites is numbered, and the value of the
number has important consequences.

You can also see from the table that there
are locations for controlling everything from
sprite positioning to collision detection and
colour.

The actual use of V + value notation is
described in much greater detail in the next
part of this article which uncovers the inner
workings of sprite control. But if you're
curious, have a look at the use of V + values in
the bird program.

There in Line 25 is V + 21, the enabling
command which turns on the sprite. And in
Line 70 the V values set up the X and Y
positions of the sprite on the screen. Further
examples which you can analyze by referring
to the table appear in Line 2400 and others in
the Space Station program.

VIC-II chip memory locations

This is a handy reference table of the
memory locations you will need to access
to control the shape, size, colour and
position of your sprites.

The V + value numbers are the most
useful and the easiest to remember.

Decimal V + value Description
53248 	V 	Sprite-0 X position
53249 	V + 1 	Sprite-0 Y position
53250 	V + 2 	Sprite-1 X position
53251 	V + 3 	Sprite-1 Y position
53252 	V + 4 	Sprite-2 X position
53253 	V + 5 	Sprite-2 Y position
53254 	V + 6 	Sprite-3 X position
53255 	V + 7 	Sprite-3 Y position
53256 	V + 8 	Sprite-4 X position
53257 	V + 9 	Sprite-4 Y position
53258 	V + 10 	Sprite-5 X position
53259 	V + 11 	Sprite-5 Y position
53260 	V + 12 	Sprite-6 X position
53261 	V + 13 	Sprite-6 Y position
53262 	V + 14 	Sprite-7 X position
53263 	V + 15 	Sprite-7 Y position
53264 	V + 16 	MSB of X coordinate
53265 	V + 17 	VIC control register
53266 	V + 18 	Raster register
53267 	(light pen)
53268 	(light pen)
53269 	V + 21 	Sprite display enable
53270 	V + 22 	VIC control register
53271 	V + 23 	Sprite 0-7 Y-expand
53272 	V + 24 	VIC memory control
53273 	V + 25 	Interrupt register
53274 	V + 26 	Interrupt enable
53275 	V + 27 	Background priority
53276 	V + 28 	Select multicolour
53277 	V + 29 	Sprite 0-7 X-expand
53278 	V + 30 	Sprite collision
53279 	V + 31 	Background collision
53280 	V + 32 	Screen border colour
53281 	V + 33 	Background colour 0
53282 	V + 34 	Background colour 1
53283 	V + 35 	Background colour 2
53284 	V + 36 	Background colour 3
53285 	V + 37 	Sprite multicolour 1
53286 	V + 38 	Sprite multicolour 2
53287 	V + 39 . 	Sprite-0 colour
53288 	V+40 	Sprite-i (colour
53289 	V + 41 	Sprite-2 colour
53290 	V + 42 	Sprite-3 colour
53291 	V + 43 	Sprite-4 colour
53292 	V + 44 	Sprite-5 colour
53293 	V + 45 	Sprite-6 colour
53294 	V + 46 	Sprite-7 colour

■ WHAT IS STRUCTURED
PROGRAMMING?

■ USING FLOW CHARTS
■ HOW TO USE STRUCTURES

IN BASIC PROGRAMS

Good design makes your programs
easier to understand and easier to
work on. It can also make the
difference between them RUNning
efficiently or failing dismally
When you decide to write your first program
for a computer there is usually an uncontrol-
lable urge to sit down at the keyboard and
start typing in some part of the program
immediately. Maybe the first few lines you
write work. You feel pleased with yourself and
add a few more. You get these to work as well
and so you go on adding lines here and there,
testing as you go until the program has
expanded to perhaps a few hundred lines.

Then, suddenly, disaster! You add a few

lines of code and it does not work any more.
You cannot see any possible reason why it has
stopped working. You change this line, that
line, but still no joy.

However, do not give up. There are ways
to stop this happening and all that it takes is a
little organization. If you follow a few simple
rules when you write your programs then you
should have no trouble at all.

STRUCTURED PROGRAMMING
Standard BASIC was designed to be easy to
use but it has very few structures compared to
other languages and that makes it more
difficult to write structured programs. Struc-
tures are the building blocks that you use to

construct the main shape of your program. In
standard BASIC they are IF ... THEN, FOR ...
NEXT, GOTO and GOSUB, and in BBC BASIC
there are three extra ones—REPEAT ... UNTIL,
PROCedures and functions. You've seen how
most of these are used on their own but the
idea now is to put them together in an orderly
and readable way.

It is very easy and quick to write a few lines
of program that work first time (almost) and
are relatively simple for someone else to
understand. In fact it's not important to take
special care structuring the program if it is
short. The problem comes when you want to
write a large program that does something
useful. In this case, if you start by writing a
program fragment and then add more and

more of the program to it you are likely to get
hopelessly lost—unless you have the memory
of an elephant, that is.

What you need to do is sit down and
systematically design the program first. Most
programs start with a vague idea of something
you wish the computer to do—and the more
complex this is, the vaguer your ideas are
likely to be. The basic concept may be for a
game or a word processing package or any-
thing of a similar type which is so large that
you cannot hold all the ideas about it in your
head at once.

Start by finding somewhere well away
from the computer—preferably in another
room to avoid temptation—and write down
what you want to do in a very general way.
This is the beginnings of what is known as a
design specification or spec for short. For
example you might write:

Index system
The program should allow records in memory
to be created, updated, deleted, sorted and
listed. The records are to be accessed using a
keyword. The entire set of records may be
SAVEd into and LOADed from a file.

Next you must break down this very general
description into a few logical steps or modules.
The operations involved in each module will
probably still be very complicated so they
must be broken down into smaller sections
until you think that each of the lowest level of
modules is short enough to handle. Fig. 1
shows how this might be done for the Index
System.

Each of the smallest sections should be no
more than a page in length—about 60 lines—
but half this length is even better. Each of
these low level modules should be very easy to
understand. Eventually each module will end
up as a subroutine in your program.

The process of breaking problems down
will become easier with experience. And, as
always, the best way to learn how to do it is to
try it. This method of breaking up the
problem is known as top-down design. You
started at the top (the general description of
the program) and worked down to the bottom
(the lowest level of modules). However, you
still have not decided on the order of the
modules—that is, the order in which they are
executed by the program. So this comes next.

FLOW DIAGRAMS
One way to specify this is to use flow diagrams
or flow charts. These are easy to use and being
diagrammatical are easy to understand and
follow at a glance. Like BASIC, they are not
in themselves structured and so they should
be used with caution. You can just as easily
have a tangled and confused flow chart as you
can have a jumbled up program. However, by

2. A single module

following a simple set of rules they may be
used to sort out a program in a straight-
forward and structured way.

Fig. 2 shows how a single module can be
specified. The program follows along the
lines in the direction of the arrows and the
boxes describe what happens at each stage. To
execute a series of modules in sequence you
just add on more boxes in the right order
between start and stop (see fig. 3).

3. Combining several modules

1. Index system/.

A simple flow diagram like this is fine for a
program in which no decisions are made.
However, the power of the computer depends
heavily on its ability to make choices within a
program. This is the familiar IF ... THEN
statement and it is about the most often used
structure in BASIC.

Let's have a look now at all the different
structures and how you can represent them
with flow diagrams.

IF ... THEN ... ELSE
Although there are differences between the
way different computers use the command, IF
... THEN ... ELSE is the basis of all decisions
that the computer has to make. Its flow
diagram is shown in fig. 4 and in BASIC it is
written as:

100 IF condition THEN statementl ELSE
statement2

It means, if the condition is true then state-
ment 1 is executed, otherwise statement 7
2 is executed.

If you look at the flow
diagram you'll notice that
there is only one entry
point and one exit.
This greatly aids
testing and
debugging since
you know exactly
where this section
of the program must
start and finish.
In fact this is a very
important rule of structured
programming: for any section
of code there should be only
one entry and one exit.

Most versions of BASIC do not have ihT
ELSE part—it isn't available on the Spectrum,
ZX81, Commodore 64 or Vic. But that doesn't
matter too much as it can be simulated using
GOTO:

100 ...
110 IF condition THEN GOTO 140
120 statement2 :REM this is the ELSE part
130 GOTO 150
140 statement) :REM this is the THEN part
150...

Of course the line numbers need not be as
shown. Additionally, more than one state-
ment may be included in the THEN and ELSE
parts. For example, here's a section of
program to sort two numbers into the correct
order. It is the basis of an alphabetical sort
routine which will be given in Part 2 of this
article. The ELSE part in this case has four
statements:

100 IF first < = second THEN GOTO 160
110 LET temporary = first
120 LET first = second
130 LET second = temporary
140 LET order$ = "wrong"
150 GOTO 170
160 LET order$ = "right"
170...

This example can also be written out using
ELSE but then it must all be written on one
line. Multiple

4. IF ... THEN ... ELSE

statements are allowed as long ..---
as they are separated by colons:

100 IF first > second THEN temporary=
first: first = second: second = temporary:
order$ = "wrong" ELSE order$ = "right"

As you can see, it's not easy to
read or understand programs
written using long statements
like this. So they should be 	

/

avoided if at all possible.
Finally, in many cases you

may not need the ELSE part
at all. The flow diagram looks

c.-- like fig. 5 and it is written out as:

100 IF condition THEN statement 	E/

which, of course, is just the
..,..____ simple IF ... THEN statement.

NESTED STRUCTURES
The IF ... THEN ... ELSE lines may be nested.
That is, one or both of the statements between
which the IF ... THEN line chooses may
themselves be an IF ... THEN line. For
example, this section of program keeps tally
of how many games two players have won,
and PRINTs out the results after each game:

100 IF T1 < > T2 THEN GOTO 130
110 PRINT "It's a draw!"
120 GOTO 190
130 IF T1 <T2 THEN GOTO 170
140 PRINT "The first player wins"
150 LET P1 = P1 +1
160 GOTO 190
170 PRINT "The second player wins"
180 LET P2 = P2 + 1
190 ...

All structures can be nested in any combin-
ation and, in theory, to any depth. However,
the more nesting you have, the less readable
the program becomes and a sensible limit is a
depth of three or possibly four structures. If
you find yourself needing more then you
should split the program into smaller modules
or subroutines.

Have a look at the last program again. It is
actually rather difficult to follow what is
going on even though it is perfectly well
structured. A useful way to make nested

5. IF ... THEN

statements more readable is to indent the
program lines. This is only possible on the
Acorn and Spectrum computers but on these
you can rewrite the last program as follows:

100 IF T1 < > T2 THEN GOTO 130
110 PRINT "It's a draw!"
120 GOTO 190
130 IF T1 <T2 THEN GOTO 170
140 PRINT "The first player wins"
150 LET P1 = P1 +1
160 GOTO 190
170 PRINT "The second player wins"
180 LET P2= P2+1
190...

On the Acorn computers you can automati-
cally indent all the structured statements by
typing LISTO 7 followed by LIST.

Other ways of making the structure of your
program clearer are by inserting blank lines
around different sections 'and by using REM
statements. Blank lines can be entered on the
Spectrum and Acorn computers by typing the
line number followed by a space and then
!ENTER I or 'RETURN'. You can get a similar effect
to this when you are writing programs on the
Dragon, Tandy and Commodore by typing a
colon instead of the space.

WHILE ... DO
The offer essential structure is the WHILE
... DO statement. This allows looping in a
program and is one of the most useful ways of
creating a loop. It makes the computer DO
something over and over again WHILE a
certain condition is true. Don't worry that
your computer doesn't have the words
WHILE and DO. They are not
available in most forms of BASIC.
But you can make up a structure
that does the same thing using IF .
THEN and GOTO.

The flow diagram is shown in fig. 6
and in BASIC it is written out as:

100 . .
110 IF NOT(condition) THEN GOTO 140
120 statement
130 GOTO 110
140...

Notice that Line 110 reads IF NOT(condition)
... That means it is checking for when the
condition is NOT true—the opposite to
normal. But there is no problem. If the
condition is A = B then NOT(A = B) is
A < > B—similarly NOT(A < B) is A > =
B and so on. You can actually write
NOT(A = B) if you like and the computer will
understand what you mean.

Here is an example of a short program
using a WHILE loop that you can use to time
an egg:

a
5 CLS
10 PRINT AT 3,11;"EGG TIMER"
20 INPUT "How many minutes do you

want?",t
30 PRINT AT 7,5;"Press any key to start"
40 PAUSE 0
50 CLS
60 PRINT FLASH 1;AT 10,9;

70 POKE 23672,0: POKE 23673,0
80 LET time= PEEK 23672 +256*PEEK

23673: IF time > t*5010 THEN
GOTO 110

90 PRINT AT 14,10;INT (time/50); " LI seconds"
100 GOTO 80
105 REM end of WHILE loop

6. WHILE ... DO loop

110 PRINT FLASH 1;AT 14,10;"I=1 IT'S
DONE ❑ "

120 BEEP .5,20

5 PRINT "DKr:POKE 53281,4
10 PRINT TAB(16)"NEGG TIMER"
20 INPUT "gigigg1111=11=101=1

HOW MANY MINUTES DO YOU WANT";T
30 PRINT TAB(8)"gg gggg PRESS SPACE

BAR TO START"
40 GET A$:1F A$="" THEN GOTO 40
50 PRINT "a"
60 PRINT TAB(15)"T IMIN G"
70 T1$ = "000000"
75 REM START OF WHILE LOOP
80 IF VAL(T1$)= >T*100 THEN GOTO 110
90 PRINT "gig gg gjgg"TAB(15);

RIGHT$(TI$,2)" ❑ SECONDS"
100 GOTO 80
105 REM END OF WHILE LOOP
110 PRINT TAB(16)"gg gg IT'S DONE"
120 POKE 54296,15:POKE 54278,128:

POKE 54276,17:POKE 54273,50
130 FOR D=1 TO 200: NEXT:POKE

54276,0:POKE 54278,0

5 PRINT "011":POKE 36879,29
10 PRINT TAB(7)"gg EGG TIMER"
20 PRINT "gggg gg HOW MANY MINUTES

DO":INPUT" ❑ YOU WANT";T
30 PRINT "gg gg gg HIT SPACE BAR TO

START"
40 GET A$:IF A$="" THEN 40
50 PRINT la"
60 PRINT TAB(8)"TIMING"
70 T1$ ="000000"
75 REM START OF WHILE LOOP
80 IF VAL(TI$)= >T*100

THEN 110
90 PRINT "gigggggigggg"TAB(6);

RIG HT$ (Tl$,2)" ❑ SECONDS"
100 GOTO 80
105 REM END OF WHILE LOOP
110 PRINT TAB(6)"gggggg

IT'S DONE"
120 POKE36878,15: POKE36876,200
130 FOR D = 1 TO 200:NEXT:POKE

36876,0

•

5 CLS
10 PRINT TAB(15,2) "EGG TIMER"
20 INPUT TAB(5,4) "HOW MANY MINUTES

DO YOU WANT ❑ ",T
30 PRINT TAB(7,6) "PRESS SPACE BAR

TO START"
40 K$ = GETS
50 CLS:VDU23;8202;0;0;0;
60 PRINT TAB(15,10) "TIMIN G"

70 TIME= 0
75 REM start of WHILE loop
80 IF TIME> T*601 00 THEN

GOTO 110
90 PRINT TAB(13,12);INT(TIME1 100);

" ❑ seconds"
100 GOTO 80
105 REM end of WHILE loop
110 PRINT TAB(14,15) "IT'S DONE"
120 VDU7

14Z
5 CLS
10 PRINT@43,"EGG TIMER"
20 PRINT@129,;:INPUT"HOW MANY

MINUTES DO YOU WANT ❑ ";T

7. Multiple choices

30 PRINT;a196,"PRESS
ANY KEY TO START"

40 A$ =IN KEY$: IF AS
= "- THEN GOTO 40

50 CLS
60 PRINTTi;235,"T I M I N G"
70 TIMER = 0
75 REM START OF WHILE LOOP
80 IF TIMER >T* 3000 THEN GOTO 110
90 PRINT@298,INT(TIMER/50); "SECONDS"
100 GOTO 80
105 REM END OF WHILE LOOP
110 PRINT@364,"IT'S DONE"
120 SOUND 180.3

MULTIPLE CHOICES
The IF ... THEN and WHILE ... DO struc-
tures are usually sufficient for most programs.
However, there are a few extra structures to
make programming even easier. For example,
there are often more than two courses of
action possible at a particular point in a
program. This could be catered for using
nested IF ... THENs but it is more convenient
to use what is known as a CASE structure.
This sets up each option in turn and directs
the computer to a series of possible courses.

The flow diagram for a CASE structure is
shown in fig. 7 and in BASIC a typical

program would look like this:

100 REM CASE of command
110 IF C$="C" THEN GOTO 170
120 IF C$="U" THEN GOTO 190
130 IF C$ "D" THEN GOTO 210
140 IF C$="L" THEN GOTO 230
150 PRINT "Command not recognised"

160 GOTO 240
170 PRINT "Create record": GOSUB 1000
180 GOTO 240
190 PRINT "Update record": GOSUB 2000
200 GOTO 240
210 PRINT "Delete record": GOSUB 3000
220 GOTO 240
230 PRINT "List records": GOSUB 4000
240 REM end of CASE

Another way of making multiple choices is by
using the ON ... GOTO and ON ... GOSUB
statements. However, when using
ON ... GOTO, make sure that each of the
options eventually directs you to the
end of the section, as shown
in the next example where a
GOTO 1210 is needed after each
option to direct the program
to the end of the routine.

1000 REM POLYGON
SUBROUTINE

1010 INPUT "HOW MANY
SIDES DO YOU WANT";N

1020 ON N —2 GOTO
1060,1100,1140,
1160,1180,1200

1030 PRINT "I DON'T
KNOW THE
NAME OF A"

1040 PRINT "POLYGON

WITH ❑ ";N;
" D SIDES."

1050 GOTO 1210
1060 PRINT "THAT'S A TRIANGLE."
1070 PRINT "A TRIANGLE WITH EQUAL

SIDES IS"
1080 PRINT "CALLED AN EQUILATERAL

TRIANGLE."
1090 GOTO 1210
1100 PRINT "THAT'S A QUADRILATERAL."
1110 PRINT "A QUADRILATERAL WITH

EQUAL SIDES"
1120 PRINT "AND ANGLES IS CALLED

A SQUARE."
1130 GOTO 1210
1140 PRINT "THAT'S A PENTAGON."
1150 GOTO 1210
1160 PRINT "THAT'S A HEXAGON."
1170 GOTO 1210
1180 PRINT "THAT'S A HEPTAGON."
1190 GOTO 1210
1200 PRINT "THAT'S AN OCTAGON."
1210 PRINT
1220 RETURN

This is just a subroutine so you can't RUN it
yet. The program to call the routine is given
in the next section.

REPEAT ... UNTIL
The REPEAT ... UNTIL statement is another
useful way of making a program loop (once

P8. REPEAT ... UNTIL loop

again, don't worry if your computer hasn't
got these commands—it can simulate them).
In this case, unlike WHILE ... DO, the loop
is always executed at least once. Have a look at
the flow diagram in fig. 8 and compare it to
fig. 6. In BASIC it is written as:

100 ...

110 statement
120 IF NOT(condition) THEN GOTO 110
130...

Using the subroutine from the last example
you can write a program using a REPEAT loop
as follows:

10 PRINT "I WILL TELL YOU THE NAMES"
20 PRINT "OF SOME POLYGONS."
30 REM START OF LOOP
40 GOSUB 1000
50 INPUT "DO YOU WANT ANOTHER

NAME ❑ ";A$
60 IF LEFT$(A$,1) = "Y" THEN GOTO 30
70 PRINT "GOODBYE!":END

Line 1000 is the polygon subroutine given in
the last section.

Note that on some BBC computers you
may need to change the semicolon to a comma
in Line 50 of the program and Line 1010 of
the subroutine.

BBC BASIC actually has a REPEAT ...
UNTIL statement. What is more, the UNTIL
part of the statement need not be on the same
line as the REPEAT part, unlike the case of the
IF ... THEN ... ELSE statement. So the last
example can be written as:

10 PRINT "I will tell you the names"
20 PRINT "of some polygons."
30 REPEAT
40 GOSUB 1000
50 INPUT "Do you want another name ",

A$
60 UNTIL LEFTS(A$,1) < > "Y"
70 PRINT "Goodbye!"

This is a lot easier to follow than
the last version.

FOR ... NEXT LOOPS
You may not have realized it, but the familiar
FOR ... NEXT loop is just a special case of the
WHILE ... DO loop. It should be used when
the number of times round the loop is known
beforehand as this has to be specified at the
start. The variable that keeps count of the
number of times round the loop is known as
the control variable.

A flow chart for a FOR ... NEXT loop looks
something like fig. 9. Compare it to the
WHILE loop in fig. 6 and you'll see it has the
same overall structure. In BASIC it is
written:

100 FOR i = min TO max STEP val
110 statement
120 NEXT i

It is bad programming practice to jump out of
a FOR loop using a GOTO statement since there
is no way that the BASIC interpreter can
know you have done this. You could quite
legally jump back into the loop later on in the
program, but understanding such a program
would be hard. So don't do it!

PUTTING IT ALL TOGETHER
These structures are all you need, whatever
type of program you are writing. But there is
still a lot more to do before you can complete

the program. You have to specify the
variables you are going to use

and make sure that the
variables in the different

modules don't clash
with each other.

Then you have to sort
out what inputs and outputs
are needed by the program.

Does the shape of the boxes used
in flowcharts have any special
significance?
Yes, flowcharts are drawn using standard
symbols. There are five main shapes:
1. Rounded oblongs are called terminal
boxes and they show where a program
begins and ends.
.2. Circles are connecting symbols used at
the beginning and end of a module.
3. Rectangles are instruction boxes
containing program statements.
4. Diamond shapes are decision boxes.
There are always at least two routes out
of these boxes depending on a decision
made inside the box.
5. Finally, parallelograms (not shown in
this article) are inputloutput boxes
indicating any information input to the
program, and any output to the
screen or a printer.

Finally you have to test each of the modules
and link them all together. How to do all this
and . still keep your program readable and
structured will be covered in Part 2. Mean-
while, have a good, close look at some
programs and see if you can identify the
structures used—if you can find any that is!
Then see if you can improve the program by
making it more structured. Do this on your
own programs or programs from magazines.

9. FOR ... NEXT loop

■ WHEN YOU NEED NEGATIVE
NUMBERS

■ NEGATIVE NUMBER CONVERSION
PROGRAM

■ THE SIGN CONVENTION

Binary and hex are easy to
understand, and they translate
directly onto the computer. But both
have problems if you need to
represent negative numbers.

In games programming you will find that you
need to use negative numbers, for example, to
move about the screen in certain directions.
These have to be encoded in eight-bit bytes,
since the computer has no other means to
store anything in its memory. And this

raises a problem: as you have seen, a byte can
represent any number between 0 and 255, or
00000000 and 11111111. But this uses up all
the binary possibilities in eight bits—there is
no room for a minus or plus sign and no way
in which it could be represented.

In ordinary arithmetic, if you subtract 1
from 0 you get —1. So try that calculation in
eight-bit binary:

00000000
—1

11111111

This does leave you trying to 'borrow' one
from the next place to the left—but when the
binary number is limited to eight bits there is
nowhere left to borrow one from.

Similarly, if you subtract another 1 (to give
— 2 in ordinary arithmetic) you get
11111110. But if 11111111 in binary is 255 in
decimal, then 11111110 must be 254!

It isn't just in binary that you can get
oddities like this. Imagine, for example, what
would happen in decimal if you had no more
than three places, or 'columns', in which to
put your numbers. Look what happens when

you try to add 999 to 100 when these
limitations are imposed:

100
+ 999
(1)099

The 1 in the 'thousands' place has had to go in
brackets. In our three-place arithmetic, there
is just no room for it. So the result of this
addition, in the three-place system, is 99-
which is exactly what you get if you subtract 1
from 100!

Similarly, in a three-place system adding
998 to 100 will act like subtracting 2. And
subtracting 998 from 100 will act like adding 2.

To sum up: the same row of numbers in an
eight-bit byte can represent either a negative
or a positive number-on the face of it, highly
confusing and hard to work with.

What can you do about it? Well, for most
home computer applications there is no need
to worry. Memory addresses and operation
codes, which are both rendered in binary, can
be considered positive always. The only times
you will come across negative numbers are in
DATA or jumps, which are the machine code
equivalent of GOTO statements.

FLIPPING THE BITS
In binary the process used to get from a
positive number to its negative value is known
as 2's complement. It has no really solid
theoretical basis-or at least none that is easy
to understand-but it works.

To get from one binary number to its
negative value, you flip the bits and add 1.
`Flip the bits' means change the bits that are 1
to 0 and those that are 0 to 1.

The following program shows you how
this works. Note that when binary is limited
to eight digits its hex equivalent exactly, fills
two digits. This means that the hex equivalent
of the 2's complement also acts as the
negative.

10 PRINT AT 0,7;"NEGATIVE NUMBERS"
20 PRINT AT 2,1;"DEC";TAB 14;

"BIN";TAB 28;" HEX"
30 LETA$=" ❑❑❑❑ 0000

❑❑❑❑❑❑❑❑❑❑❑ "
40 FOR N=7 TO 13
50 PRINT AT N,6; INVERSE 1;A$
60 NEXT N
70 PRINT AT 8,8;"FLIP BITS";

BRIGHT 1;AT 12,21;"+1"
80 PRINT AT 10,3;"+";AT 10,30;"+"
90 PRINT AT 15,8;"2'S COMPLEMENT"
95 LET C= 0
100 LET DD= -C: DIM A(8)

110 PRINT AT 4,0;"D 	0";AT
4,4-LEN STR$ C;C

115 POKE 23608,C: LET E= PEEK 23608:
LET Z= E: GOSUB 300: PRINT AT
4,29;A$

120 PRINT AT 17,0;" ❑ III DI11";AT
17,4- LEN STR$ DD;DD

130 LET D=128: LET CC= E
140 FOR N=1 T08: LET A(N)= 0
150 IF CC- D> =0 THEN LET A(N) =1: LET

CC= CC- D
160 PRINT BRIGHT 1;AT 4,6+ 2*N;A(N);

AT 10,6 +2*N;1 -A(N)
170 LET D= D/2: NEXT N
180 POKE 23608,DD: LET DD= PEEK

23608: LET D=128
185 LET Z= DD: GOSUB 300: PRINT

AT 17,29;A$
190 FOR N=1 TO 8: LET B=0: IF

DD-D> =0 THEN LET B=1: LET
DD= DD-D

200 PRINT BRIGHT 1;AT 17,6 +2*N;B:
LET D= D/2: NEXT N

210 PRINT AT 18,0;"- - - - ❑ D

- - - - "
220 PRINT AT 19,3;"0 ❑❑ 111 ❑

000000000000000
❑❑❑❑❑ 17100"

230 IF 1NKEY$= "" THEN GOTO 230
240 LET A$= 1NKEY$: IF A$="0" THEN

LET C=C+ 1: IF C=128 THEN LET
C= -128: BEEP 1,1

250 IF A$="B" OR A$="b" THEN LET
C=C-1: IF C= -129 THEN LET
C=127: BEEP 1,1

260 IF A$< >"0" AND A$< >"B" AND
A$ < >"b" THEN INPUT "?";C

270 GOTO 100
300 LET ZA= INT (Z/16): LET

ZB=Z- (16*ZA)
310 LET ZA=ZA+ 48: IF ZA> 57 THEN

LET ZA=ZA +7
320 LET ZB ZB + 48: IF ZB > 57 THEN

LET ZB=ZB+7
330 LET AS= CHR$ ZA: LET A$=A$+CHR$

ZB: RETURN

a
10 PRINT AT 0,7;"NEGATIVE NUMBERS"
20 PRINT AT 21, 1;"DEC"; TAB 14;

"BIN";TAB 28;"HEX"
30 LETA$="1111111.......

•••••••••."
40 FOR N=7 TO 13
50 PRINT AT N,6; A$
60 NEXT N
70 PRINT AT 8,8;"FLIP BITS0";AT

12,21;"+1"
80 PRINT AT 10,3;"+"; AT 10,30;"+"
90 PRINT AT 15,8;"2S COMPLEMENT"

95 LET C=0
100 LET DD= -C
105 DIM A(8)
110 PRINT AT 4,0;"0 DOD";

AT 4,4- LEN STR$ C;C
115 POKE 16507, C
116 LET E= PEEK 16507
117 LETZ=E
118 GOSUB 300
119 PRINT AT 4,29;A$
120 PRINT AT 17,0;"0 ❑ ❑ 0";

AT 17, 4- LEN STR$ DD;DD
130 LET D=128
135 LET CC= E
140 FOR N=1 TO 8
145 LET A(N)= 0
150 IF CC- D> =0 THEN LET A(N) =1
155 IF CC-D> =0 THEN LET CC=

CC - D
160 PRINT AT 4,6 +2*N;A(N);AT

6+2*N; 1 -A(N)
170 LET D= D/2
175 NEXT N
180 POKE 16507,DD
181 LET DD= PEEK 16507
182 LET D=128
185 LET Z= DD
186 GOSUB 300
187 PRINT AT 17,29;A$
190 FOR N=1 TO 8
191 LET B=0

192 IF DD—D> =0 THEN LET B=1
193 IF DD—D> =0 THEN LET DD=

DD— D
200 PRINT AT 17,6 + 2•1‘1;B
205 LET D= D/2
207 NEXT N
210 PRINT AT 18,0;"— — — —

E 	
	 0 0

220 PRINT AT 19,3;"0 ❑ ❑ ❑ ❑
0 ❑ 0 ❑ 0 ❑ 0 ❑ 0 ❑ 0 ❑ 0 ❑
0 ❑❑❑❑❑❑ 00"

230 IF 1NKEY$="" THEN GOTO 230
240 LET A$=1NKEY$
242 IF A$="F" THEN LET C= C+ 1
244 IF A$="F" AND C=128 THEN LET

C=128
250 IF A$="B" THEN LET C= C-1
255 IF A$="B" AND C= —129 THEN LET

C=127
260 IF A$< >"F" AND A$< >"B" THEN

INPUT C
270 GOTO 100
300 LET ZA=INT(Z/16)
305 LET ZB =Z— (16*ZA)
310 LET ZA=ZA+ 28
320 LET ZB=ZB +28
330 LET A$=CHR$ ZA
340 LET A$ = A$ + CHR$ ZB
350 RETURN

20 POKE54277,33:POKE54278,255:
POKE54273 + 23,15: POKE54276,33:
POKE54273,0

30 FOR Z=1 TO 8:READ A(Z):NEXT Z:
DATA 128,64,32,16,8,4,2,1

40 Z$="0123456789ABCDEF":A= 0:
A$ = "+ — ":AA = 1:POKE650,128:
vs="PJPJPJPJPAIIIII"

50 POKE 53280,1:POKE 53281,1:
PRINT "pmgggggggg"

60 FOR Z=1 TO 9:PRINT TAB(5)
"a11101110111011100111111
❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑ ":NEXTZ

70 PRINT "igg" TAB(13)"2'S
COMPLEMENT"

80 PRINT "ig" TAB(12)"NEGATIVE
NUMBERS"

90 PRINT TAB(12)" 	

100 PRINT" 	DECO El
❑ ❑❑ DLJ ❑❑❑❑❑❑
BIN ❑❑❑❑❑❑❑❑❑❑
O 0 0 0 HEX"

110 PRINT "mggggggggpjpjpj
pipmpliyup BITS":
PRINT" ga gig "TAB(29)" + 1"

120 PRINT"0000MI +"
TAB(37)"+"

130 PRINT"gggggggggggi
gggigg 	

	 57.

140 PRINT"11111101110 ❑ ID
O DOID ❑ O ❑ ❑ 0 ❑ DOD DOD
❑ 0 ❑❑ 0 ❑❑ 00 ❑❑❑❑❑
00":GOT0300

150 GET K$:IF K$=""THEN 150
160 S=0:SS= 0:IF K$< > " CI" AND

K$ < >"B" THEN 500
170 Al =A:IF K$< > " El" THEN 210
180 IF AA= 2 THEN Al =A1-1
190 IF AA=1 THEN Al =A1 +1
200 GOTO 240
210 IF K$< >"B" THEN 240
220 IF AA= 2 THEN Al =A1+1
230 IF AA = 1 THEN Al =A1-1
240 IF Al <0 OR Al >128 THEN

AA= AA + 1
250 IF Al >128 THEN Al =127
260 IF Al <0 THEN Al =1
270 A= Al
280 IF A=0 THEN AA=1
290 IF A=128 THEN AA= 2:POKE

54273,9: FORZ =1T020: NEXT:
POKE54273,0

300 IF AA>2 THEN AA=1
310 W=0:IF M=1 THEN T=1:TT= 0

320 IF AA = 2 THEN T= 0:TT=1:W = 1
330 Al = A —W:FOR Z=1 TO 8:

IFA(Z)< =A1 THEN B(Z) = T:C(Z) = TT:
Al =A1 —A(Z):GOT0350

340 B(Z)=TT:C(Z)=T
350 IF B(Z)=1THENS=S+A(Z)
360 NEXT Z:A2=0:FORZ=1T08:

IFC(Z)= 0 THEN A2 = A2 + A(Z)
370 NEXT Z:Al = (255 —A2) +T:IF

Al >255 THENA1 =0
380 FORZ= 1T0 8:1FA(Z)< =Al +W THEN

D(Z) =1:Al =A1 —A(Z):SS= SS + A(Z):
GOT0400

390 D(Z)= 0
400 NEXT Z
410 PRINT`g mg] gr;MID$

(A$,AA,1)" ❑ ❑ ❑ ❑ 111111111"A
420 PRINT" ❑ "V$;:FORZ=1T08:PRINT

B(Z);:NEXT Z
430 ZA= INT(S/16):ZB=S— (16*ZA):

PRINT" DO 0111111"MID$(Z$,ZA + 1,1);
MID$(Z$,ZB + 1,1)

440 PRINT" g] gg gg gg"vs;:FORZ=1T08:
PRINTC(Z);:NEXT:PRINT

450 PRINT"ggggggglgggggg";:
IF AA= 1THENPRINT" — ";

460 IF AA = 2THENPRINT" + ";
470 PRINT" ❑ ❑ ❑ ❑ II III II"A:

PRINT"El"V$;
480 FORZ=1T08:PRINTD(Z);:NEXT Z:

ZA = INT(SS/16):ZB = SS— (16*ZA)
490 PRINT" ❑ ❑ ❑ ❑ ❑ "MID$(Z$,ZA+

1,1);M1D$(Z$,ZB + 1,1): GOT0150
500 1$="":PRINT"M§Igggggg

WEI 	gg gag gg gg
gggggggggg INPUT NUMBER?
(-128 TO +127): ❑❑❑❑

El El II II II ir;
510 FOR Z=1 to 4
520 GETJ$:1FZ= 1 AND (J$="—" OR

J$ = " + ")THEN U$=4:PR1NTU$;:
NEXT Z

530 IF Z=1 THEN 520
540 PRINT "*II 11111";:IF J$=""

THEN 520
550 IF J$=CHR$(13) THEN 610
560 IF 4 = CHR$(20) THEN 500
570 IF ASC(J$) <48 OR ASC(J$) > 57

THEN 520
580 1$ =1$ +4:PRINT J$;:NEXT Z
590 GET J$:IF J$=CHR$(20) THEN 500
600 IF J$ < >CHR$(13) THEN 590
610 IF VAL(1$) <0 OR (VAL(1$)>

128ANDU$="—") OR (VAL(I$) >127
ANDU$="+") THEN500

620 IF U$="—"THEN AA = 2:GOT0640
630 AA=1
640 PRINT:PRINT"Cl 0111111CICI

❑ ❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑❑❑❑❑❑❑❑❑❑❑❑❑
❑ ❑ ❑ ❑ ";:A=VAL(3):GOT0280

20 POKE 36878,15
30 FOR Z=1 TO 8:READ A(Z): NEXT Z:

DATA 128,64,32,16,8,4,2,1
40 Z$="0123456789ABCDEF":A= 0:A$ =

"+ -":AA=1:POKE 650,128:V$=
"11PJ11"

50 POKE 36879,25:PRINT
"Pligggggigill

60 FOR Z=1 TO 9:PRINT "MJ pi a
❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑ ":NEXTZ

70 PRINT "gg pj pi pi pin
COMPLIMENT"

80 PRINT "I§I pi pi PINEGATIVE
NUMBERS"

90 PRINT "pj pi MJ 	

100 PRINT "IDEC11110 El LI El L
BIND E17111E1111HEX"

110 PRINT "mgggigigg mai
FLIP BITS":PRINT TAB(104)" +1"

120 PRINT "0000N +"TAB(19)

130 PRINT "gggiggiggiggggg

140 PRINT "000El01110E1000111
0 ❑ 0 ❑ 0 ❑ 00":GOTO 300

150 GET K$:IF K$="" THEN 150
160 S= 0:SS = 	K$< >"111" AND

K$ < >"B" THEN 500
170 Al =A:IF K$< >" ❑ " THEN 210
180 IF AA=2 THEN Al =A1-1
190 IF AA=1 THEN Al =A1 +1
200 GOTO 240
210 IF K$< >"B" THEN 240
220 IF AA = 2 THEN Al =A1 +1
230 IF AA=1 THEN Al =A1 -1
240 IF Al <0 OR Al >128 THEN

AA= AA + 1
250 IF Al >128 THEN Al =127
260 IF Al <0 THEN Al =1
270 A= Al
280 IF A=0 THEN AA=1
290 IF A=128 THEN AA= 2:POKE

36876,200:FOR Z=1 TO 20:NEXT Z:
POKE 36876,0

300 IF AA> 2 THEN AA= 1
310 W= 0:1F AA=1 THEN T=1:

7=0
320 IF AA=2 THEN T= 0:TT= 1:

W=1
330 Al = A -W:FOR Z=1 TO 8:IF A(Z)

< =A1 THEN B(Z)= T:C(Z)= TT:
Al =A1 -A(Z):GOTO 350

340 B(Z)=TT:C(Z)=T
350 IF B(Z) = 1 THEN S=S+A(Z)
360 NEXT Z:A2 = 0:FOR Z=1 TO 8:IF

C(Z) =0 THEN A2= A2 + A(Z)

370 NEXT Z:A1 = (255 -A2) +T:IF Al >255
THEN Al =0

380 FOR Z=1T08:1FA(Z)< =A1 +W THEN
D(Z) = 1:Al =A1 -A(Z):SS= SS + A(Z):
GOT0400

390 D(Z)= 0
400 NEXT Z
410 PRINT "IggggggEga"

MID$(A$,AA,1):PRINT " gg gg gg
ELLE II MI MI MI a "RIGHTS
(STR$(A),LEN(STR$(A)) -1)

420 PRINT "I§Igg gg gg"V$;:FOR Z=1
TO 8:PRINT RIGHTS(STRS(B(Z)),1)
"El";:NEXT Z

430 ZA = INT(S/16):ZB=S- (16*ZA):
PRINT "a"MIDS(Z$,ZA+ 1,1)
MIDS(Z$,ZB +1,1)

440 PRINT "gg gg gg gg gym: FoR
Z=1 TO 8:PRINT RIGHT$(STR$(C(Z)),1)
"PJ";:NEXT Z:PRINT

450 PRINT "ggigggigggga";:
IF AA=1 THEN PRINT "-"

460 IF M=2 THEN PRINT "+"
470 PRINT "El ❑ 17117IMI MI ma'

RIGHT$(STR$(A),LEN(STR$(A)) -1):
PRINT "0"V$;

480 FOR Z=1 TO 8:PRINT RIGHT$
(STRVD(Z)),1)"El";:NEXT Z:
ZA = INT(SS/16):ZB = SS - (16*ZA)

490 PRINT "a"MIDVZ$,ZA+ 1,1)
MID$(Z$,ZB+1,1):GOTO 150

500 1$ ="":PRINT 	gi !mg gg
gfigligigEggEIggggggrigggg
ggggggggINPUT NUM?
l(-128UT01+127)> ❑❑❑❑

III III II Mr
510 FOR Z=1 TO 4
520 GET J$:1F Z=1 AND (J$="-" OR

J$=" + ")THEN U$ =4:PRINT U$;:
NEXT Z

540 PRINT "*1111 	J$="" OR Z=1
THEN 520

550 IF J$=CHR$(13) THEN 610
560 IF J$ = CHR$(20) THEN 500
570 IF ASC(J$) <48 OR ASC(J$) > 57

THEN 520
580 1$ =1$ +J$:PR1NTJ$;:NEXT Z
590 GET J$:IF J$=CHR$(20)

THEN 500
600 IF J$< >CHR$(13)

THEN 590
610 IF VAL(I$) < 0 OR(VAL(I$) > 128

AND U$ =" ")0R(VAL(1$) > 127
AND U$=" +") THEN 500

620 IF U$ =" - "THEN AA = 2:
GOTO 640

630 M=1
640 PRINT:PRINT "0 ❑ 01100

❑❑❑❑❑❑❑❑❑❑❑❑❑
111111111111a11111 L111111";:A=VAL(3):
GOT0280

1E1
10 MODE 1
20 VDU 23;8202;0;0;0;
30 VDU 19,1,6,0,0,0,0,0
40 PRINTTAB(13,3)"NEGATIVE NUMBERS"
50 PRINTTAB(13,4)STR1NG$(16,CHR$

(224))TAB(6)"Dec"TAB(19)"Bin"
TAB(31)"Hex"

60 PRINTTAB(8,13)" +"TAB(33,13)"+"
70 PRINTTAB(11,18)"2's Complement"
80 PRINTTAB(8,22)"0 ❑❑ 11101710 ❑ 0

❑ 0 ❑ 1110E101110001111A
❑ 000"

90 PRINTTAB(7,27)"PRESS SPACE BAR
TO INCREMENT"

100 PRINTTAB(7,29)"PRESS LETTER B
TO DECREMENT"

110 GCOL0,1
120 MOVE320,480:MOVE320,704:PLOT85,

960,480:PLOT85,960,704
130 PRINTTAB(12,11)"FLIP BITS"
140 PRINTTAB(26,15)" +1"
150 VDU 31,6,21,224,224,224,31,31,

21,224,224,224
160 PRINTTAB(11,21)STRING$(18,

CHR$(224))
170 ?&70 = 0
180 T=?&70:IF T=128 THEN SOUND1,

-15,100,10
190 PROCBIN(8): PROCHEX(8)
200 T=T+256*(T>127):PROCDEC(8)
210 T= 255 -T:PROCBIN(13)
220 T=T+1:PROCBIN(20):PROCHEX(20)
230 T=T+256*(T>127):PROCDEC(20)
240 *FX21,0
250 G =GET
260 IF G=32 THEN?&70=?&70 +1:

GOTO 180
270 IF G =66 THEN?&70=?&70 -1:

GOTO 180
280 PRINTTAB(0,30);:INPUT?&70:

PRINTTAB(0,30)STRING$(39,"11 ");:
GOT0180

290 DEF PROCBIN(Y)
300 FOR X=0 TO 7
310 IF - (T AND 2 A X) THEN PRINT

TAB(27- X*2+ (X> 3),Y)"1" ELSE
PRINT TAB(27 - X*2 + (X> 3),Y)"0"

320 NEXT X
330 ENDPROC
340 DEF PROCHEX(Y)
350 X= (T AND 240)/16
360 A$ = CHR$(X + 48 - 7*(X > 9))
370 X= (T AND 15)
380 B$ = CHR$(X + 48 - 7* (X > 9))
390 PRINTTAB(32,Y);A$ + B$
400 ENDPROC
410 DEF PROCDEC(Y)
420 PRINT TAB(6 - LEN(STR$(T)),Y);

"0 ❑ ❑ "T:ENDPROC

fiC "HI
10 CLS
20 PRINT@8,"NEGATIVE NUMBERS";
30 PRINT@40,STRING$(16,

CHR$(131));
40 PRINT@65,"DEC"TAB(15)"BIN"

TAB(28)"HEX"
50 PRINT@226," + "TAB(29)" + ";
60 PRINT@361,"2'S COMPLEMENT"
70 PRINT@483,"0 ❑❑ El 0 0 0

❑ OOO ❑ 000000E100D
117 ❑ CI 00";

80 FOR J =1474 TO 1502:POKE
J,131:NEXT

90 FOR J =1 TO 7
100 FOR K =1 TO 24
110 POKE 1123+K+32%,175
120 NEXT K,J
130 PRINT@165,"FLIP BITS";
140 PRINT@313," +1";
150 AT= AT AND 255
160 T= AT:IF T=128 THEN SOUND 30,2
170 LN =3:GOSUB280:GOSUB310
180 T= T+ 256*(T>127):GOSUB340
190 T= 255 — T:LN =7:GOSUB280
200 T=T+1:T=T AND 255:LN =- 13:

GOSUB280:GOSUB310
210 T= T+ 256* (T >128):GOSUB340
220 1N$ =1NKEY$:IFIN$ < >"B" AND

1N$< >" ❑ " AND 1N$< >CHR$(13)

In the sign convention, 128 acts as its
own negative, and the computer starts
counting upwards again

THEN 220
230 IF IN$="B" THENAT= AT-1:

GOT0150
240 IF 1N$=" El" THEN AT= AT+1:

GOT0150
250 PRINT@384,;:INPUT AT
260 PRINT@384,"ail ❑ ❑ ❑ ";
270 GOTO 150
280 FOR X=0 to 7
290 IF— (T AND 2 t X) THENPRINT

@LN*32 + 23— X*2+ (X > 3),"1"; ELSE
PRINT@LN*32 + 23 — X*2 + (X> 3),"0";

300 NEXT:RETURN
310 IF T<16 THENA$="0" ELSE

A$=""
320 PR1NT@LN*32+29,A$+ HEX$(T);
330 RETURN
340 PRINT©32"LN,M1D$(" El ❑❑ +

STR$(T),LEN (STR$(T)));
350 RETURN

SIGN CONVENTION
For most purposes, as mentioned above, a
binary or hex number can act perfectly well
both as a positive and a negative number. But
sometimes you need to know whether a

number is positive or negative.
When you want a program jump in ma-

chine code you have to specify by how many
bytes you want the computer to jump with a
positive number, to jump forwards; a negative
number for backwards.

What the computer does is to look at the
first bit of the binary number and decide for
itself whether the number is negative or
positive. If the first bit is 1, the computer
takes it as negative. If it is 0, the computer
takes it as positive.

This process is known as the sign conven-
tion. It means that, instead of taking the eight-
bit binary numbers to mean 0 to 255, the
computer treats them as —128 to +127.

In the 2's complement conversion
program, you will notice that the computer
beeps when you get to 128. This is because
128, which is 10000000 in binary, or 80 in
hex, acts as its own negative. (You can check
for yourself:-10000000 +10000000 =
(1)00000000 or 0 in eight-bit binary. Like-
wise 80 +80= (1)00 or 0 in two digit hex.
And 128-128= 0 in decimal.)

So which is it to be? As 10000000 has a 1
in its first bit, the computer treats it as a
negative number: —128. On the other hand
zero—or 00000000—has a 0 in its first bit.
So the computer treats it as positive.

Home computers offer plenty of
scope to the budding artist. Here
are some ways to expand your use
of the BASIC graphics commands
and create new screen pictures.

Once you have mastered the basics of drawing
images on the screen, you can start to extend
your artistic efforts by using some of the
specialized graphics commands available on
your computer. Commands like MOVE, PLOT,
DRAW, PAINT and CIRCLE allow free rein to
your imagination and allow you to create
anything from a display chart to brighten up a
business program, to the background for an
exciting adventure game.

The article on page 84 showed how to use
simple drawing commands to create line
pictures on the screen and, in some cases, how
to add colour. But you can extend these basic
techniques with new ways of plotting dots,
drawing lines, triangles, squares and circles.
Used by themselves or in combination with
colours, they become a powerful means of
forming static or even moving images.

The way in which different computers use
these commands varies from one to another,
but each is capable of some really interesting
effects. The exceptions are the Commodore 64
and Vic 20, whose standard BASIC does not
include these commands. However, you can
gain them by the addition of a suitable ROM
cartridge (see page 87), and this article con-
tains a section explaining how you can use this
facility to extend your Commodore's drawing
potential.

CIRCLES AND ARCS
Circles and arcs are among the most useful
Spectrum 'tools' for drawing on-screen static
graphics.

This golf course program shows how to use
them to draw trees, fences, water, rough and
bunkers, as well as describing the principles
behind them.

You can check your progress as you go by
RUNning each group of lines. Do not NEW
your machine each time; if you leave the lines
intact, you will end up with the scene in fig. 1.

Before you start on the circles, however, it
is best to get the clubhouse out of the way. So
start by entering these lines:

90 BORDER 4: PAPER 4:CLS
200 LET w =10: LET s = 50
210 FOR c =162 TO 174

220 PLOT INK 2;w,c
230 DRAW INK 2;s,0
240 LET w= w+ 2: LET s=s— 4
250 NEXT c
260 FOR b=148 TO 162
270 PLOT INK 2;10,b
280 DRAW INK 2;50,0
290 NEXT b
295 DRAW INK 2;10, — 3: DRAW 0, — 11
300 PRINT INK 0;AT 2,2; "s"; AT 2,4;

"s"; AT 2,6; "s"

Lines 200 to 250 DRAW the roof, using
techniques similar to those in the earlier
chapter on plotting and drawing (pages 84 to
86). It starts off at 10, 162 on the screen with a
line which is 50 pixels wide. Then its width
decreases by four pixels for every one pixel
that it rises.

A similar loop in Lines 260 to 290 DRAWs
the walls, with two extra lines (in Line 295) to
form a porch. Then Line 300 fills in the
windows by the simplest possible method-
PRINTing a black square from the standard
ROM graphics characters through the walls at
three places.

DRAWING AN ARC
On the Spectrum, as explained earlier (page
86) the easiest way to draw a complete circle is
to use the CIRCLE command.

But it you want only part of a circle, the
easiest way is to use an addition to a conven-
tional DRAW statement. You can get a huge
variety of effects by varying this statement, so
it is worthwhile conducting a few experiments
before you go any further. For example, try:

10 PLOT 130, 30
20 DRAW 0, 10, 1
30 GOTO 20

(Don't worry about the error report.)
As you'll recall, the first two numbers in

Line 20 tell the computer to DRAW a line
from the PLOTted point to a spot 10 pixels
above it. What the last number is doing is to
make that line curve, rather than going in a
straight line. How much of a curve you get is
dictated by the size of the number. This tells
the Spectrum to DRAW part of a circle. A
whole circle is represented by 2 times it so the

number 1 makes it DRAW about one-sixth of a
circle (or, more accurately, 1 divided by 2
times 70. If you try changing Line 20 to:

20 DRAW 0, 10, 2

... you'll find you get a more pronounced
series of curves. Similarly, 0, 10, 3 gives a
sawtooth pattern, 0, 10, 4 gives part of a
chain-link fence (or half the trunk of a palm
tree, depending on how you view it!), while 0,
10, 6 produces a spiral.

If, however, you try

20 DRAW 0, 10, 2 . PI

... you may get a surprise. What the Spec-
trum wants to do is DRAW a circle two of

■ USING MOVING LINES ON THE
DRAGON AND ACORN

■ GOLF COURSE SCENE FOR
SPECTRUM AND ACORN

■ LETTERS ON THE DRAGON

■ MORE WAYS WITH COLOUR
■ PICTURES FROM CIRCLES

AND ARCS
■ SIMON'S BASIC FOR

COMMODORE GRAPHICS

whose points are in a straight line. But since
such a circle would be rather bigger than your
living room—indeed, rather bigger than the
solar system—it DRAWS only that part of it
that it can.

For drawing scenery, try this:

10 PLOT 0, 100
20 DRAW RND*5 + 5, 0, 2
30 GOTO 20

This DRAWs the wave pattern of a choppy sea.
For calmer waters, try RND*10 + 10 or even
RND*15 + 10.

One point to remember about such arcs is
that a negative number at the end of your
DRAW line will produce the arc's mirror
image. Now clear Lines 10 to 30 and you can
continue building up the golf course scene.

FENCE AND LAKE
The golf course program has two examples of
arcs used for graphic effect—the first for the
little fence in front of the clubhouse; the
second for the lake.

First type in these lines:

310 FOR f= 0 TO 84 STEP 3
320 PLOT f,142
330 DRAW 3,0,-3
340 NEXT f
345 DRAW 35,-42: DRAW —12,-6

Here the starting off point is 0, 142 on the
screen. What Line 330 does is to DRAW a series
of tight arcs—semi-circles only three pixels
wide—to form the fence. The number you get
is governed by the FOR ... NEXT loop.

Next, enter and RUN these lines:

100 LET x=130: LET y=125: LET z= 50
110 PLOT INK 5;x,0
120 DRAW INK 5;y,z, — 1.25
130 LET x=x+1: LET y=y-1: LET z=z-1
140 IF x> 254 THEN GOTO 170
150 IF z<1 THEN LET z=0
160 GOTO 110

The picture here is more complicated. First
the computer PLOTS a point 130 pixels from
the left and 0 pixels from the bottom of the
screen. Then it DRAWs a line to a point 125
pixels to the right, and up 50 pixels from the

bottom of the screen, 'bending' the line by
— 1.25 radians as it goes.

From that stage the variables take over.
Variable x starts each line one pixel farther to
the right, y makes the line one pixel shorter
than the previous one (else it would run off
the screen), while z makes the line end one
pixel lower than the previous line.

Eventually, of course, z would become a
minus number, making the computer try (but
fail) to PRINT off the bottom of the screen.
Hence the need for Line 150, which makes all
the short lines towards the end of the program
finish on the bottom line of the screen.

TREES AND BUSHES
The golf course program also uses complete
circles—as a substitute for a PAINT or similar
statement, available on some computers but
not on the Spectrum—to produce trees and
scrub. These few lines give some bushes
randomly behind the 'green':

400 FOR r =172 T0168 STEP —1
410 LET x= RND*45 +195
415 PLOT x,r — 2: DRAW 0, — 2
420 CIRCLE x,r,RND*2 + 1
440 CIRCLE x + 10,r,RN D*2 + 1
450 NEXT r

While these few give similar scrub on the
right-hand side:

460 FOR r = 135 T0172 STEP 6
470 LET y = 252
480 CIRCLE y,r,RND + 2
490 NEXT r

The trees in the left-hand bottom corner are
too big to be DRAWn randomly. So a different
technique, READ ... DATA (see pages 104 to
109) is used instead:

900 FOR w=1 TO 3
910 READ a,b
920 PLOT a,b
930 DRAW 0, — 24
940 LET f=- RND*5 + 5
950 CIRCLE a — 10,b + f,f: CIRCLE a,b + f,

f: CIRCLE a + 10,b + f,f
960 CIRCLE a — 5,b + r2,f: CIRCLE a + 5,

b + r2,f
970 CIRCLE a,b +
980 NEXT w
3000 DATA 20,70,52,85,84,100

The trick here is to DRAW the trunks first,
working downwards from the original
PLOTting points, so that you do not get ugly
trunk marks showing through the 'foliage'.
The trunks are PLOTted at 20, 70 and so on by
the DATA in Line 3000. Line 940 randomizes
the sizes of the foliage, while the b + f in Line

950 makes sure that the bottom rows of circles
begin a suitable distance above the trunks.

FINISHING TOUCHES
The driving tee (not exactly pukka; more the
rubber mat you might find on a municipal
course!) is DRAWn by these lines:

1000 LET t= 30
1010 FOR y=0 TO 10
1020 PLOT t,y
1030 DRAW — 30,30
1040 LET t=t+ 2
1050 NEXT y

And these few lines give the flags on the
greens:

170 PLOT 220,140
180 DRAW 0,15: DRAW 8, — 3: DRAW —8,-2
190 PLOT 22, 120
195 DRAW 0,18: DRAW 9, — 3: DRAW —9,-2

Finally, you'll need some bunkers. The
neatest—but a very slow—way of DRAWing
these, in the absence of a PAINT statement, is
to start with a tiny ellipse and make it grow,
pixel by pixel, until it reaches a suitable size.

How to DRAW ellipses is explained in detail
in a later article on the computer's mathe-
matical functions. In the meantime, enter
these lines, then go off and have a coffee while
they are RUNning:

1495 LET r=1
1500 FOR x = 0 TO 2*PI STEP PI/180
1510 PLOT INK 6;168 + r*SIN

x,147 + r*COS x/2.5
1520 PLOT INK 6;235 + r*SIN

x,106 + r*COS x/2.75
1530 PLOT INK 6;225 + r*SIN

x,97 + r* COS x/2.5
1540 NEXT x
1550 LET r=r+2
1560 IF r> 20 THEN GOTO 6000
1570 GOTO 1500

Alternatively, you might like to make up
simpler, but cruder, bunkers using UDGs!

With the addition of the Simons' BASIC
cartridge a large number of additional pro-
gramming commands are made available on
the Commodore 64. Some of these are pro-
vided to simplify graphics programming and
the use of several of these has already been
explained (see pages 87-88).

ARC and ANGL are two extra drawing
commands not yet covered. The first is used
to draw parts of the circumference of a circle
and the command takes the form:

99 ARC 150,50,60,270,1,30,30,1

This would normally be preceded by the
HIRES command, so enter this line also:

90 HIRES 0,1

The first pair of figures after the ARC com-
mand define the screen coordinates of the
centre of the circle whose arc you require. As
usual, these values refer to the pixel positions
in the standard configuration of horizontal (X
value) first, vertical (Y value) next.

Try adjusting one or both these figures and
reRUN the program several times. You'll see
that the higher each of these values becomes,
the closer to the right or bottom of the screen
the curve is plotted until you eventually reach
the border.

The actual length of the arc is regulated by
the next two pairs of values. The first pair (60
and 270) are the start and end angles. If you
imagine you're dealing with a clockface, the
angle count begins and ends at 12 o'clock with
the values 0 and 360. Thus our example curve
begins at 2 o'clock and ends at 9 o'clock. Once
again, try changing the values of just this pair
of figures to gauge the effect.

The next figure (1) is the plotting increment
and by adjusting this to a value in the range 1
to 360 you choose the interval in degrees
the curve produced using the value 10 will
look somewhat coarser than that of the
original program line. As an indication of the
possibilities, make these amendments to the
original program:

90 HIRES 0,1: FOR N = 10 TO 360 STEP 10
99 ARC 160,80,0,360,N,84,60,1
100 NEXT : PAUSE 10

This shows the effect of adjusting the plotting
increment in steps of 10 degrees for a curve
which starts and ends at the same point—in
other words, a circle. (The use of variable, N,
in this example suggests a powerful method of
ringing the changes with minimal extra
programming.)

The pair of values which follows N in this
example regulates the physical appearance of
the 'circle' whose arc is displayed. The first
value is the length, in pixels, of the X or
horizontal radius; the second is that for the Y
or vertical radius. If you want a circular arc
the X value must be 1.4 times the Y value in
HIRES mode, and 1.6 times in MULTI mode.
Otherwise an elliptical curve instead of a
proper circle is the result.

Try adjusting these two values but remem-
ber that you have a maximum resolution of
320 pixels horizontally, 200 vertically in
HIRES mode, and half the horizontal reso-
lution in MULTI mode. The sum of the very
first value after the ARC command—the X
coordinate of the curve centre—and the value

of the X radius of the curve must not exceed
the horizontal limit. Similarly, the sum of the
a problem: as you have seen, a byte can
exceed 200. In both cases, exceeding the limit
causes the curve to run along the screen edge
until the curve reaches an allowable value. At
this point it continues on its way again.

The final figure in the command line is the
plot type value. Putting a 0 here would clear a
dot, obviously of no use. Putting a 1 plots a
dot, and a 2 inverses a dot (turns `off' a dot
that is 'on', and 'on' a dot that is `off').
Substitute the value 2 in the program above to
see what happens.

DRAWING RADII
The next command, ANGL, is used for draw-
ing the radius of a circle and can be used in a
variety of ways to depict things like the spokes
of a wheel or the blades of a fan. It takes the
form (NEW the computer):

10 HIRES 0,1: FOR N = 0 TO 360 STEP 4
20 ANGL 160,80,N,84,60,1
30 NEXT: PAUSE 10

Again, to make the program do a lot of work
with little programming, a variable is in-
cluded as part of a FOR ... NEXT loop. The
first pair of values after the ANGL command
are the X and Y coordinates of the centre of
the circle whose radius is to be drawn—the
starting point of the radius, of course. The
value N is the angle to the perpendicular at
which the radius is to be drawn. Thus the
value 45 here would draw a line from the start
point to another at 3 o'clock to it. As you can
see, values of 0 to 360 can be used. Try
changing the STEP values from 1 to 10, or
setting a fixed value for N in Line 20.

The remaining three values serve exactly
the same function they do with the ARC
command. But you can usefully look at the
`unplot' value 0. Add these lines to your
existing program:

30 NEXT
35 CIRCLE 160,80,84,60,1
40 FOR N=360 TO 0 STEP —4
45 ANGL 160,80,N,84,60,0
50 NEXT: PAUSE 10

This repeats the pattern, adds a circle and
Line 45 then proceeds to erase the work of
Line 20.

BLOCKS OF COLOUR
The command BLOCK enables you to create
coloured rectangles. You could do this by
using REC and PAINT but BLOCK is often more
convenient, particularly where several rect-
angles are required. The command takes the
form that follows (NEW your computer first):

10 HIRES 0,1: MULTI 2,5,6
20 BLOCK 10,10,30,30,1
50 PAUSE 10

When RUN, this displays a single colour
rectangle. The first pair of values define the

top left corner of the rectangle, the next pair
the bottom right corner. The final figure is
the plot type, which, in MULTI mode (selected
in the previous line), selects the first colour
option—value 2, or red. Try changing the
plot type value to 2 or 3 and reRUN the
program. Better still, add these lines:

30 BLOCK 20,20,50,50,2
40 BLOCK 30,30,70,70,3

And three colour blocks should result when
you RUN the program! For a more interesting
result make the following amendments which
display a random sequence of fifteen red,
green and blue blocks:

20 N = 5: M=10: C=1
30 BLOCK N,N,M,M,C
40 N=N+5: M=M+10:

C=INT(RND(1)*3+1)
50 IF M <160 THEN GOTO 30
60 PAUSE 10

DRAWING
DRAW and ROT are two commands used
together to design and display a specified
shape. A sequence of numbered instructions
are used in the form below (NEW the computer
before typing in):

100 DRAW AV 50,150,1

The A$ component of this instruction actu-
ally defines the shape of the drawing, the next
pair of values are the X and Y coordinates of
the starting point, and the final figure is the
familiar plot type value.

A$ can contain numerals from 0 to 9 and
these values signify the following:

0 move one pixel right
1 move one pixel up
2 move one pixel down
3 move one pixel left
4 invalid
5 move right and plot pixel
6 move up and plot pixel
7 move down and plot pixel
8 move left and plot pixel
9 stop drawing

Any combination of numbers may be used in
the string (A$) with a maximum of 74 in any
single line to allow room for the other para-
meters of the DRAW command. Elaborate
drawings require more plotting instructions
than may be contained in a single line but you
can get round this by concatenating several
strings to give a maximum string length of
255 characters. An example of this is:

A$ = "A STRING OF 74 CHARACTERS"
A$ = A$ + "EVEN MORE CHARACTERS"

Which greatly lengthens A$! Now let's look at
an example of A$: (Enter this)

10 A$="555555555555555555657
5657555555555060163788888888
888888888888888888"

20 A$ = AS + "100000000000005550
6881555068865518888365555188
88836555550063"

30 A$ = A$ + "888888888888888811
0555555555575555506388886555
55068888888865"

40 A$ = AS + "555555000688381055
551889"

This in fact defines a downhill skier! But
additional programming is required to dis-
play A$ and this is where the command ROT
comes into play.

ROT allows you to specify the orientation
and size of the defined shape of the DRAW
command. Add this line to the program:

200 ROT 0,1
The first parameter after the command spec-
ifies the degree of rotation of the drawing.
The following values show the range of
orientation that is possible:

0 0 degrees rotation
1 45 degrees rotation
2 90 degrees rotation
3 135 degrees rotation
4 180 degrees rotation
5 225 degrees rotation
6 270 degrees rotation
7 315 degrees rotation
You'll be able to try these as alternative values
in Line 200 when the program is eventually
ready to RUN.

The second value after the ROT command
specifies the size of the drawing. With the
value 1, the shape is displayed at normal size.
Increasing this figure enlarges the drawing
but you must avoid 'overshooting' the avail-
able screen area. To get the program to RUN
properly, enter these additional lines:

50 HIRES 0, 1
250 PAUSE 20

Try RUNing the program several times, alter-
ing values where possible. Strange things may
happen, but always try re RUNing the program
a second time if an anticipated effect fails to
materialize.

Now add these extra lines to the existing
program to see how a group of Simons'
BASIC commands may be used:

50 HIRES 0,1:MULTI 2,5;3:COLOUR 6,1
60 LINE 0,20,320,60,1
65 LINE 32,1,80,7,1
70 LINE 0,10,32,1,1

80 LINE 25,25,100,1,1
85 LINE 100,1,250,50,1
90 CIRCLE 150,20,5,6,1
95 PAINT 5,5,3
115 FOR N=1 TO 5:READ X1,X2,X3,X4,X5
120 FOR Z=1 TO X1 STEP 4
125 LINE X4,X5 + Z,X3,(X5 — 20) + Z,

2+ RND(1)*2
130 LINE X2,X5 + Z,X3,(X5 —20) + Z,

2+ RND(1)*2:NEXT
140 BLOCK X3,X5+ X1 —20,X3,

X5+X1,1::NEXT
N:ROT 0,1

200 LOW COL 1,4,2:FOR Z=25 TO 60STEP 3:
DRAW A$,Z — 3,163,1

205 DRAW A$,Z,163,2:NEXT Z
210 DRAW A$,25,169,3
1000 DATA 50,33,40,47,90
1002 DATA 20,5,10,15,30
1004 DATA 25,15,20,25,60
1006 DATA 120,1,10,19,90
1008 DATA 20,85,90,95,30

Although the Vic 20 has excellent graphics you
really need to add a Super Expander cartridge
before you can make good use of them. The
cartridge provides all the usual graphics com-
mands such as DRAW, CIRCLE and so on, and
the program below shows how you can create a
quite complex picture using these simple
commands:

10 GRAPHIC 2:COLOR 1,6,6,0
20 CIRCLE 2,500,500,100,400
25 FOR Z=1 TO 150 STEP 10
30 CIRCLE 2,500+ SIN(Z)*30,

500 + Z,100,400,60,130: NEXT
35 FOR Z=1 TO 20 STEP 7
40 CIRCLE 2,450,440,30 — Z,20
45 CIRCLE 2,550,440,30 — Z,20
50 DRAW 2,470,740+Z TO 490,

720 +Z TO 510,740 +Z TO 530,
720+Z TO 550,740 +Z:NEXT

60 DRAW 2,490,500 TO 470,640
TO 490,660 TO 510,650

70 CIRCLE 2,510,750,40,20,10,40
80 FOR Z=1 TO 500 STEP20
90 DRAW 2,400,520 TO 200— (r.3),

600+Z TO 520,1000 TO 800 +
(r.3),600+Z TO 600,500:NEXT

100 FOR Z=1 TO 2:CHAR 15 —Z,8 —Z,
"*":NEXT

110 GOTO 110

The program uses a series of ellipses, curves
and straight lines to build up a picture of a
woman's face. Lines 20 and 30 draw the face
and hair, Lines 35 to 70 draw the eyes, nose
and mouth, and Lines 80 to 100 draw the
shoulders. If you have a cartridge see if you
can create a man's face in the same way.

PLOT and DRAW commands don't just limit
you to simple straight line drawing of the type
covered in detail on page 88. With the right
controls, curves, zigzags and a whole range of
textures are at your disposal. And with new
uses for colour as well, you have the basis for a
whole range of visual effects.

The article on page 84 showed how you can
get to grips with simple drawing using PLOT
and DRAW—and how to add colour to your
pictures with just a few more instructions.
Once you've mastered the basic commands,
you can add a new dimension to your graphics
by introducing lines whose shape can be
controlled as they are being drawn. You can
add waves to the surface of your seas, put
jagged rocks on the outline of a cliff face, or
build battlements on a castle. All of these can
be done with a single line.

The secret of adding texture with PLOT and
DRAW commands is not to be limited by the
fixed coordinates that these specify to draw a
single line, but to use the computer's speed to
draw 100 or more short lines, each at a
different angle, across the screen. And instead
of one zig-zag line, you can draw 50 or even
2000 at different heights across the screen to
produce a wide range of different effects. For
example, a program could move the cursor a
random distance up and down for every unit
that it moves to the right. This would draw an
irregular jagged line—just what you need for
drawing rocks, or perhaps a cracked pane of
glass.

DRAWING RANDOM LINES
One example of this type of control uses FOR
... NEXT loops to alter the co-ordinates of a

Unlike most computers, the Acorn ma-
chines allow you to use the whole of the
TV screen for your text or drawing.
However, on some TV sets you might
find that the display is too far up or too
far down the screen so that you lose part
of the picture. This commonly happens
near the corners of the screen.

Luckily, the BBC computer has a way
to correct this using the *TV command.
*TV 1 moves the display up one line and
*TV 255 moves it down one line. Other
numbers between 1 and 255 move the
display even more. Typing a ,1 after it
turns off the interlace (fuzziness).

But note that these commands only
come into effect after you press !BREAK or
change MODE.

line randomly between limits. To see how this
works, enter the lines below and RUN the
program. Do not be put off by the % signs;
they are there just to make the plotting faster.
The program would work without them.

10 MODE 2
20 GCOL 0,1
30 LET Y% = 800
40 FOR X%= 0 T01279
50 LET Y% = Y% — 30
60 IFY%<0 THEN END
70 MOVE X%, Y%
80 FOR A%=1 TO 150
90 PLOT 1,RND(20),RND(30) —15
100 NEXT A%,X%

What this does is to give a series of lines across
the screen. To achieve this, a colour mode
(Line 10) and a colour in which to draw (Line
20) are selected.

The crux of the program is Line 90, which
draws a line from a point on the left edge of
the screen to a random point to the right, then
from a point near this new point to another
random point, and so on across the screen.
The starting point is set up at Lines 30 to 50.
These lines set X% = 0 and Y% = 770. Line 90
lets the cursor move to the first random point
and PLOTs. The next starting point is selected
at Lines 40 and 50, and the next finishing
point is selected at Line 90.

The effect will vary according to the
number of times each line is drawn and the
limits you set for A% in Line 80. The
variations on this routine are numerous. Try
changing each value in turn to see the result.
You might want a perspective view, to give
the effect of a mountain range—as you will see
when the next block of program is RUN. It is
almost the same as the one above, but with
different values:

10 MODE 2
20 GCOL 0,1
30 LET Y%= —180
40 FOR X%= —10 T01279
50 LET Y%= Y% + 20
60 IF Y%> 150 THEN END
70 MOVE X%,Y%
80 FOR A%=1 T0150
90 PLOT 1,RND(20),RND(40) —15
100 NEXT A%,X%

DRAWING AN AREA OF ROUGH
Alternatively, you might want just a small
patch of the screen textured by drawing lines

2. Simons' BASIC makes drawing easy on the Commodore 1. Use arcs and circles for the Spectrum golf course

across the television screen. The next block of
program could represent a growth of tall grass
or weeds, just the thing for an area of rough
ground—in a game of golf, for example. Type
NEW, then type in and RUN these next few
lines:

10 MODE 2
20 GCOL 0,130:GCOL 0,1
30 CLG
40 FOR T=1 TO 50
50 MOVE 600+ RND(100),600 + RND(100)
60 FOR A=1 TO 10
70 PLOT 1,RND(20),RND(30) —15
80 NEXT A,T

Line 30 clears the screen to green—the
background colour selected at Line 20. This

itime, though, the starting points are ran-
rdomly selected (Line 50) each time the
program looks at Line 40. The finishing
points, too, are randomly selected and
PLOTted (Line 70) each time the program
looks at Line 60. This gives an irregular edge
to the textured area, instead of a sharp
rectangular edge. Again, the effect can be
varied extensively. Try the program in MODE
1, then change Line 10 back to MODE 2.

MAKING A BUNKER
The next element in a golf course might be a

sand obstacle or bunker. The technique of
PLOTting random co-ordinates is again a
useful solution to this problem. Add these
lines to the program above:

90 GCOL 0,3
100 FOR T = 0 TO 150
120 MOVE 200+ RND(100),50 + RND(100)
130 FOR A= 0 TO 10
140 PLOT 65,20,RND(50) — 10
150 NEXT A,T

This time the PLOT command displays not
lines, but single points. As for the rough, a
random starting position is set up (Line 120).
Each time the program steps through the FOR
... NEXT loop starting at Line 100, a single
point is PLOTted 20 units away in the X
direction and — 9 to 40 units in the Y
direction.

Here is another picturesque example of the
dot shading techniques:

200 MODE 2
210 GCOL 0,130
220 CLG
230 GCOL 0,3
240 FOR Y%=1024 TO 100 STEP —8
250 FOR X%=0 TO 1279 STEP RND(5) +10
260 IF RND(1200)<Y%THEN PLOT 69,X%"
270 NEXT X%,Y%

Line 210 selects a green background, then
Line 260 builds up a picture of shaded dots.
The striking perspective of the whiter back-
ground is given by the IF ... THEN condition
at Line 260, which PLOTs points less frequ-
ently as the program advances.

This type of control is ideal when you wish
to make a picture or set the scene for a game.
And you can bring several elements together
or reposition them simply for different views.
For example, here are some lines to bring
together the rough, bunker and two woods:

200 GCOL 0,0
210 FOR Y%=1023 TO 850 STEP —10
220 MOVE 0,Y%
230 DRAW 150,Y%
240 NEXT Y%
245 REM 	WOODS 2

250 FOR Y%=840 TO 700 STEP —10
260 MOVE 0,Y%
270 LET X% = Y%— 690
280 DRAW X% — 20,Y%
290 NEXT Y%
295 REM 	WOODS 3
400 LET X1% = 500
410 LET X2% =1100
420 FOR Y% = 1023 TO 825 STEP —10
430 LET X1%= X1%+ 10
440 MOVE X1%,Y%
450 LET X2% = X2% — 20
460 DRAW X2%,Y%
470 NEXT Y%

Notice that as you enter these lines they will
overwrite the previous lines for the picture.

COMPLETING THE GOLF COURSE
Enter the next block of lines to change an area
of the background colour to form a lake:

500 GCOL 0,4
510 MOVE 1279,650
520 MOVE 1279,600
530 PLOT 85,1100,600
540 PLOT 85,1000,400
550 MOVE 1279,600
560 PLOT 85,1279,100

This block of program PLOTs and fills three
triangles—the first is set up at Lines 510, 520
and 530, the second at Lines 520, 530 and 540
and the third at Lines 540, 550 and 560.
Enter the next block and RUN the program to
see a colourful course complete with a flag to
mark one of the holes and a rectangle to mark
a building:

590 REM 	BUILDING
595 GCOL 0,1
600 MOVE 0,500
610 MOVE 50,500
620 PLOT 85,0,300
630 PLOT 85,50,300
640 REM FLAG
700 MOVE 300,800
710 DRAW 300,900
720 GCOL 0,6
730 MOVE 380,880
740 PLOT 85,300,860

Both objects are PLOTted as triangles—in a
similar way to before.

Building up the golf course in stages like

this lets you test and refine each element
before adding it to the whole picture. Now
you know how it's done, see if you can design
a different picture, like the snow scene that is
illustrated on page 189.

NC "HI
THE DRAW COMMAND
The LINE and CIRCLE commands are very
useful for drawing simple or regular shapes
with little effort by the programmer. But as
you try to draw more sophisticated shapes
you'll find that your programs become very
long and unwieldy. Imagine how long the
program would be to draw something like the
ship in fig. 1, if you had to use a LINE
statement for each separate line on the ship.

To avoid this problem, you need to use the
computer's DRAW command. Using DRAW,
you can direct the course of a line while it is
being drawn. You can tell the computer to take
the line a set distance to the right, then some
other distance up, then to the left, and so on.
You give it these instructions as a string, so the
program can be much more compact.

As an example, type in and RUN this
program, which creates the ship in only ten
lines:

10 PMODE 4,1
20 PCLS5
30 SCREEN1,1
40 DRAW"BM23,96C0"
50 DRAW"R28E2U3L6UR6E2R5F2D3R3U2R7D

2R4U9E2R4F2D5R3U2R4U6E3R5D8"
60 DRAW" R3U24L3UR8DL4D24R F2R5D4R4U4

R6U9E3R5D1OR4U2R4U14RD10R3U2"
70 DRAW"R4D11R7U3E2R4F2D3RD8R3U5E2R

8D2R6U2R7UE2R6F2D4R4U4E2R5F2"
80 DRAW"R6DL6D3R24G12L195H4U5"
90 PAINT(127,100),0,0
100 GOTO 100

The program works like this:
Lines 10 to 30 set up the initial conditions.

Line 10 selects PMODE 4 so that the highest
resolution can be used. PCLS 5 in Line 20
clears the screen and changes it to Buff.

The series of DRAW commands in Lines 40
to 80 form the outline of the ship. In each
case, DRAW operates on the string of instruc-
tions, which are contained within the inverted
commas which follow.

Line 40 is the simplest, with a short string
that contains instructions telling the machine
where to start DRAWing, and in what colour.
The first instruction is the letters BM. This
stands for Blank Move, and positions the
`drawing pen' at the place you want your
graphic to start. The starting position is given
by the co-ordinates which follow it, in this
case 23,96—notice that these aren't enclosed

by brackets as in some of the other graphics
commands. The final instruction in the string
is the DRAW colour, CO or Black.

Line 50 starts to trace the outline. The
string which controls the DRAW command
may look very confusing, but it's really very
simple. It consists of a series of directions and
distances. The letters control the direction of
the line and the numbers give its length in
pixels. If there isn't a number after a direc-
tion, then it will move one pixel only.

There are eight directions which you can
use: U means Up, D means Down, L means
Left, R means Right, E means draw at 45
degrees (up to the right), F means draw at 135
degrees (down to the right), G means draw at
225 degrees (down to the left) and H means
draw at 315 degrees (up to the left).

Reading from the start of Line 50, the
strings tells the computer to draw right 28
pixels, at 45 degrees 2 pixels, up 3 pixels, and
so on. Try translating the string into pencil
movements on graph paper to see how the
ship's outline builds up.

Lines 60 to 80 contain similar strings
which complete the ship's outline. You could
use just one long string instead of all these
lines, but a large number of instructions tends
to get unwieldy and hard to correct. Finally,
the outline is turned into a silhouette by Line
90 which PAINTs the ship black.

DRAWING LETTERS
One of the limitations with graphics programs
is that the Dragon and Tandy can't display text
on the graphics screen. This means that you
can't PRINT out a score, for example, on a game
that uses the high resolution graphics. The
game on page 98, for example, is all displayed
on the text screen for that reason.

There is a solution to this problem,
though. You can design your own characters
using the DRAW command. Type in and RUN
this program and you'll see how HELLO can
be DRAWn:

10 PMODE 3,1
20 PCLS
30 SCR EEN1,0
40 HE$ = "D4BR3U2NL3U2BR5L3D2NR2D2

R3BR5L3U4BR5D4R3BR2U4R3D4L3"
50 DRAW" B M110,50;C3S8" + H E$
60 GOTO 60

The message is DRAWn in PMODE 3, a four-
colour mode.

Line 40 shows you another characteristic
of the DRAW command. As it operates on a
string of instructions you can define string
variables and call them up in a DRAW com-
mand later in the program.

The instructions in HE$ tell the computer

how to DRAW the letters in HELLO. Try
translating the instructions into pen move-
ments as you did before, remembering that B
means blank, and no line will appear from
DRAWing with an instruction preceded by a B.

If you have several words you wish to
display on the graphics screen, such as BAD
LUCK, WELL DONE, and so on, you can
set up further strings, BL$ and WD$ for
example. Try working out the instructions for
one of these on graph paper. Once you have
defined the strings, you can call these up
whenever they are needed in the program.

HELLO is DRAWn by Line 50. The start
position is at 110,50, the colour is number 3
(Blue) so you'll see a blue word, and in size 8
(double scale). S may be followed by a
number from 1 to 62-1 is quarter size, 4 is
normal size (the default, which you get in the
absence of instructions) and 8 is double size.

As Line 50 demonstrates, you can join up
strings of DRAW instructions just like any
other strings. If you want to call up other
strings—such as BL$ or WD$—you can set
them up in just the same way as Line 50.
Move to the start point using BM, then set up
the colour with C and the size with S.

LONGER MESSAGES
Defining strings for each message you want to
display can become tedious if you have a large
number of them.

The solution is to define all the characters
you might want to use, by typing in a program
like the one that follows:

10 PMODE 3,1
20 DIM LE$(26)
30 PCLS
40 FOR K = 0 TO 26:READ LE$(K):NEXT
50 FOR K = 0 TO 9:READ NU$(K):NEXT
60 DATA BR2,ND4R3D2NL3ND2BE2,ND4R3

DGNL2FDNL3BU4BR2,NR3D4R3BU4BR2,
N D4R2FD2GL2BE4BR, NR3D2NR2D2R3
BU4BR2

70 DATA NR3D2NR2D2BE4BR,NR3D4R3U2
LBE2BR,D4BR3U2NL3U2BR2,ND4BR2,
BD4REU3L2R3BR2,D2ND2NF2E2BR2

80 DATA D4R3BU4BR2,ND4FREND4BR2,
ND4F3DU4BR2,NR3D4R3U4BR2,ND4R3
D2NL3BE2,NR3D4R3NHU4BR2

90 DATA ND4R3D2L2F2BU4BR2,BD4R3U2
L3U2R3BR2,RND4RBR2,D4R2U4BR2,
D3FEU3BR2,D4EFU4BR2

100 DATA DF2DBL2UE2UBR2,DFND2
EUBR2,R3G3DR3BU4BR2

110 DATA NR2D4R2U4BR2,BDEND4BR2,
R2D2L2D2R2BU4BR2,NR2BD2NR2BD2
R2U4BR2,D2R2D2U4BR2,NR2D2R2D2L2
BE4, D4R2U2L2 B E2B R2, R2N D4 B R2,
NR2D4R2U2NL2U2BR2,NR2D2R2D2U4BR2

120 SCREEN1,0
130 A$ = "TESTING 0123456789"
140 DRAW"BM60,50;C3S8"
150 GOSUB 9000
160 GOTO 160
9000 FOR K=1 TO LEN(A$)
9010 B$ = M1D$(A$,K,1)
9020 IF B$> ="0" AND B$< = "9"

THEN DRAW NU$(VAL(B$)):GOTO 9050
9030 IF B$ = " 0" THEN N = 0 ELSE

N = ASC(B$) — 64
9040 DRAW LE$(N)
9050 NEXT
9060 RETURN

A character set, consisting of capital letters
from A to Z, digits from 0 to 9 and, most
important, a space, is contained in the DATA
lines—Lines 60 to 110. This DATA is READ
into the letter and number arrays—LE$ and
NU$—by Lines 40 and 50.

To use the character set, you must define
the message, along with the start position and
any other information, such as size and
colour. Line 130 contains a test message, A$.
In this case it is TESTING 0123456789, but you
could substitute anything you choose. Line
140 sets the start position, the colour and the
size. With the message defined and the start
point set, you can tell the machine to DRAW the
message. The printing subroutine—starting at
Line 9000—examines each character in A$,
one at a time, finds the appropriate instruc-
tions in the arrays (see Games Programming,
pages 144-147) and then DRAWs the character
on the screen.

By changing the string in Line 130, and, if
necessary, the start position in Line 140 you
can DRAW any message you wish. Since the
part of the program that DRAWs the letters is a
subroutine, you can have as many messages as
you like during the program—you must call
them all A$ though.

This is extremely useful if, for example,
you have a series of messages you wish to
display at various points during a game. You
could incorporate the letter drawing program
into the game as it stands—start the game at
Line 120 or somewhere after the DATA, except
for any DIM, CLEAR and PCLEAR lines which
should be right at the start of the whole
program. When you want to write the mes-
sage, just set up strings containing the display
you want, at the point it is needed in the
program. Then add a DRAW statement like in
Line 140, and call the printing subroutine by
including GOSUB 9000.

AND FINALLY
Once you've worked out the instructions for
drawing a shape you can draw it the right way

up, on either side, or even upside down. All
you need to do is to include a further
instruction in the string, A followed by a value
from 0 to 3.

A0 means DRAW at 0 degrees—in other
words upright. Al will put the house on its
side, leaning to the right—at 90 degrees. A2
will place the house upside down—at 180
degrees. And A3 will put the house on its side,
leaning to the left—at 270 degrees.

Being able to control the angle at which the
image is DRAWn is useful because you can
DRAW a graphic in four different ways from
just one set of instructions—you do not have
to tell the computer how to DRAW each
separate version of the graphic.

To see how it works in practice, type in and
RUN this program:

10 PMODE 3,1
20 PCLS
30 SCREEN 1,0
40 S$ = "NR16E8F4U4R2D6F2D12L6U6L4

D6L6U12"
50 FOR K =1 TO 20
60 D= RND (200) + 27:E= RND (140) + 27:

C= RND (3)+1:A= RND (4)-1
70 DRAW "BM" + STR$(D) + "," +

STR$(E) + "C" + STR$(C) + "A" +
STR$(A) + "XS$;"

80 NEXT K
90 GOTO 90

You will find 20 houses, each identical except
for their colour and orientation.

The shape of the houses is defined in the
string in Line 40. Four random numbers are
chosen by Line 60—D and E are the start co-
ordinates, C is a colour and A is the angle at
which the house will be DRAWn.

Line 70 DRAWs the house, adding together
all the parts of the string and the random
numbers. The STR$ function converts the
numeric variables into strings—in effect it
puts inverted commas round the value of the
numeric variables. For example, if D = 2 then
STR$(D) = "2".

What Line 70 does, then, is to begin with a
blank move to a random start point, add a
random colour instruction, and finally the
DRAWing instructions themselves at a random
angle. The X before S$ means 'execute a
substring', and allows you to add one string to
another during DRAWing rather like + HE$
did earlier.

The time to use X is when string space is
limited in the machine's memory. X allows you
to put a string together from various parts
without actually creating a new string—adding
strings together requires more string space,
which wastes memory.

PROCedures, Acorn
	 64

Program

	

65 	BASIC 	 8
BREAKing into 	 4, 7, 11
line numbers 	 7

	

124-128 	punctuation of 	 4

	

88-91 	slowing down 	 17

	

7 	PSET, Dragon, Tandy 	 13, 90-91

	

35-37 	Punctuation, in PRINT statements 119-123

142

66
113-116

80-83
38-45

156-160
65-67

179-183
111-112
110-116

8-15
68-75

71
101-102

97-99
28

71, 88-90
26-32, 59

180-183

19
10-15, 23

111
96

110-116

64
62
67
35

35-36

64
133

88
101,108
59,101

22-25
84

88-89
90
71

15,99,108-109
13,40,101

101
117-123

26-32,117-123

26-27
8-9,31-32

11,28
30

R
RAM
	

25,44,46
Random numbers
	

2-7
READ
	

40-44, 104-109
REC, Commodore 64
	

87
Records 	 75-77
REPEAT ...UNTIL, Acorn

	
36

Resolution, high and low
	

84
RESTORE
	

106-107
RETURN
	

62
RIGHTS, Commodore 64
	

101, 102
RND function
	

2-7
ROM graphics 	26-32, 107-109
Running man, building a,

Acorn 	 28-29
RUN/STOP, Commodore 64, Vic 20 	7

S
Satellite, building a

Dragon
	

26-27
SAVE
	

22-25
Scoring
	

97, 100-101
SCREEN, Dragon, Tandy
	40, 90

Screen drawing program
	

132-133
Screen formatting
	

117-123
Shell, firing a
	

10-15
Ship, drawing a

Dragon, Tandy
	

191
Simons' BASIC, Commodore 64

	
87-88

Snow scene, Commodore 64
	

186-188
Spaces, using

Commodore 64, Vic 20
	

122
Sprite, Commodore 64
	

14, 15, 168-172
STEP
	

17, 21
STOP, Spectrum, ZX81
	

4, 64
String variables
	

4-5, 95-96
STRINGS
	

98
Subroutines
	

62-63
Symbols, arithmetic
	

6

T
TAB
	

117-122
Tables, multiplication
	

5-7
Tank, controlling and

creating a
	

10-15
Teletext graphics, BBC
	

28
Terminating numbers
	

34
Timing 	 97, 101-103
Twos complement
	

179-183

U
UDG, definition of
	

8-15, 40-44
grids for
	

8-11
DATA for
	 45

creating your own
	

38-45

V
VAL, Commodore 64 	 101
Variables 	 3-5, 92-96, 104-108
VDU command, Acorn 	28-29, 70, 99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172

IF...THEN
	

3, 33-37
INK, Spectrum
	 86

INKEY, Acorn
	28-29, 103, 134-135

INKEYS
	

54-55, 132-135
INPUT
	

3-5, 117-122, 129-135
INPUT prompts
	

130-131
INT, Commodore 64, Spectrum

	
2-3

176-177
64 	Keypress, detection of

	
54-55

36 	Keywords, spelling of
	

19

89
90
17

152-153
85-91

191-192

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
AND
Animation
Applications

family finance
	 136-143

hobbies' files
	

46-53, 75-79
letter writer
	

124-128
Assembly language
	

66-67
Assignment statement
	

66-67, 92
ATTR, Spectrum
	

68-69

B
BASIC
	

65
BASIC programming

arrays
	

152-155
decision making
	

33-37
how to PLOT, DRAW,
LINE, PAINT
	

84-91
inputting information
	

129-135
programmer's road signs
	

60-64
READ and DATA
	

104-109
random numbers 	 2-7
refining your graphics 	184-192
screen displays 	 117-123
structured programming 	173-178
the FOR ...NEXT loop 	16-21
variables 	 92-96

Binary 	 38, 41, 44, 45, 113-116
negative numbers 	 179-183

Brackets, use of 	 35
Breaking out of a program 	 4
Bridge, drawing a

Spectrum 	 108
Byte, definition of 	 114

C
Cassette recorders, choice of

	
24

Castle, drawing a
Dragon, Tandy
	

108
Christmas program

Acorn
	

64
CHRS, Dragon, Tandy
	

26-27
CIRCLE
	

86-91
CLEAR

Dragon, Tandy
	

14, 27
Spectrum
	

10
Clock, internal
	

69-73
COLOUR
	

87-90
Control variables 	 94
Craps program 	 63
Cursor, definition of
	

7
control codes, Commodores
	

123

D
DATA

for arrays
	

154-155
for graphics
	

107-109
machine code
	

67
statements
	

8-14, 40-45
Decimal

conversions from binary
	

38, 42
converting fractions into binary

	
114

Decision making
	

33-37
Default colours

Acorn
Dragon, Tandy

Delays in programs
DIMensioning an array
DRAW
Drawing letters, Dragon, Tandy

E
Egg-timer program
ENDPROC, Acorn
Error, causes of

F

G
Games

aliens and missiles
	

144-151
animation
	

26-32
arrays for games
	

155
bombing run program
	

161-167
controlling movement
	

54-59
firing missiles
	

55-58
fruit machine
	

36
guessing
	

3-5
maze game
	

68-74
minefield
	

97-103
moving characters
	

54-59
routines
	

8-15
scoring and timing
	

69-73
space station game
	

144-151
visual explosions
	

161-167
GET, Commodore 64 	55, 132-134
GETS, Acorn 	55, 57, 58, 103, 132-134
GETlf, Commodore 64, Vic 20

	
135

Golf-course, drawing a
Acorn, Spectrum 	 184-191

GOSUB 	 62-64
GOTO 	 18-21, 60-62
Graph-drawing program

Acorn 	 64
Graphics

characters
	

38-45
creating and moving UDGs

	
8-15

drawing on the screen
	

132-133
drawing pictures
	

107-109
explosions for games
	

161-167
fire-breathing dragon
	

80-83
frog UDG
	

10-15
instant embroidery
	

21
'low-resolution
	

26-32
painting by numbers
	

19
refining your graphics
	

184-192
sunset pattern
	

20
tank UDG
	

10-15
using PLOT, DRAW,
CIRCLE, LINE, PAINT 	85-90
also see animation;
movement; ROM graphics;
teletext; UDG.

H
Helicopter, building a

Commodore 64
	

31
Hexadecimal
	

38, 42, 45, 156-160
HIRES, Commodore 64
	

87
Hobbies file
	 46-53, 75-79

House, drawing a
Acorn
	 107-108

Commodore 64
	

108-109

L
Languages, computer

see Assembly language;
BASIC; Machine code

Letter writing program
LINE, Dragon, Tandy
Line numbers, in programs
Logical operators
Lower case letters,

Dragon, Tandy

M
Machine code

advantages of
binary numbers
drawing dragon with
games graphics
hexadecimal
low level languages
negative numbers
nonary numbers
number bases
speeding up games routines

Maze programs
MIDS, Acorn

Commodore 64
Minefield game
MODE, Acorn
MOVE, Acorn
Movement

N
Negative binary numbers,

conversion program
Nested loop, definition

and use of
NEW
Nonary numbers
Null strings
Number bases

0
ON ... GOSUB
ON ...GOTO
Opcodes
Operators
OR

P
Parameters
Password program
PAUSE

Commodore 64
Spectrum

PEEK
Peripherals, cassettes
Pixel
PLOT
PMODE, Dragon, Tandy
POINT, Acorn
POKE

Commodore 64
Dragon, Tandy'
Spectrum

Positioning text
PRINT
PRINT AT

Dragon, Tandy
Spectrum, ZX81

PRINT TAB, Acorn
Commodore 64, Vic 20

	

35-36 	Family finance program 	136-143

	

26-32 	File, saving and loading a 	 77
Filing system program 	46-53, 75-79
Flow charts 	 173-178
Flying bird sprite, Commodore 64 168-172
FOR...NEXT loop 	 16-21

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

JDiscover how the MEMORY of your
computer is built up—and what you are
doing when you load machine code
programs into it

.1 In Games Programming, there's a
run-down on how to add LEVELS OF
DIFFICULTY to make your games
suitable for beginners or experts—plus a
complete new maze game program

Learn about STRING SLICING
techniques which give you the ability to
make use of stored information
selectively

/ To bring together your skills at
STRUCTURING A PROGRAM, there's
an analysis of the techniques applied to a
complete program for numeric or
alphabetical sorting

:.1 JOYSTICKS are among the cheaper
and more versatile of the peripherals you
can add—and they're not just limited to
games

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

