
A MARSHALL CAVENDISH 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol 1 	 No 7

GAMES PROGRAMMING 7

CREATING LEVELS OF DIFFICULTY 	193

How to make a game suitable for both beginners and
experts-plus a new maze game

BASIC PROGRAMMING 14

UNRAVELLING YOUR STRINGS 	201

Understanding the techniques you can use to process
the information contained in a string

MACHINE CODE 8

MEMORIES ARE MADE OF THIS 	20]

Learn about the structure of your computer's
memory, and where it stores what information

BASIC PROGRAMMING 15

GET YOUR PROGRAMS IN SHAPE-2 	216 1
With your program design roughed out, here's how
to work out the finer details

PERIPHERALS

JOYSTICK CONTROLLERS 	 220

Whether you're interested in games or graphics, the
chances are you'll find a joystick useful

INDEX
The last part of INPUT, Part52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Jon Couzins. Pages 193, 195, 196, 199, Paddy Mounter. Pages 198,
200, Ray Duns. Pages 201, 202, 203, 204, 205, 206, 207, Tudor Art Studios. Page
208, Jon Couzins. Page 210, Tony Roberts. Pages 210, 211, 213, 214, 215, Bernard
Fallon. Page 220, Nick Mijnheer. Page 222, Howard Kingsnorth. Joysticks courtesy
of Sonic Foto and Micro Center & Lion House, both of Tottenham Court Road,
London Wl.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.45) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Gordon and Gotch
Ltd, PO Box 213, Alexandria, NSW
2015
New Zealand: See inserts for details,
or write to INPUT,Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from
local newsagents.

BACK NUMBERS
Copies of any part of INPUT can be obtained from the following addresses at the
regular cover price, with no extra charge for postage and packing:
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent

COPIES BY POST
Our Subscription Department can supply your copies direct to you regularly at £1.00
each. For example the cost of 26 issues is £26.00; for any other quantity simply
multiply the number of issues required by £1.00. These rates apply anywhere in the
world. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
For binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in,please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries- and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR Z(81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated bythe following symbols:

SPECTRUM 16K,
48K, 128, and + %•' COMMODORE 64 and 128

11[1 ACORN ELECTRON,
BBC B and B+ IC DRAGON 32 and 64

	VIC 20 mir 1COLOUR COMPUTER

■ HOW TO DRAW A RANDOM MAZE
■ TWO WAYS TO MAKE THE GAME

MORE DIFFICULT
■ HOW TO MOVE THE MAN
• ADDING UP THE SCORE

Some maze games are very easy to
solve but this one gives you two
levels of difficulty and draws a
different maze each time. See how
long you take to find the treasure

Computer games often ask you to choose a
level of difficulty before you start playing.
This allows both beginners and experts to
play the same game, without it being too
difficult or too easy for either.

There are many ways you can introduce
levels of difficulty, depending on the exact
nature of the game. For example, you could
change the number of enemies, introduce a

range of delays into the game, allow more or
less time, vary the problems, and so on.

This time in Games Programming you'll
see how levels of difficulty can be incorpor-
ated into a maze game. The game uses one of
two ways to generate different levels of
difficulty—which method you will see in
detail depends on which machine you have.
The game doesn't involve just trying to find a
way through the maze, but the player has a
fixed time limit in which to guide a man to
some treasure plotted somewhere in the maze.
Note that there is no version for the ZX81
computer.

To make the task easier or more difficult,
there are two possible methods you could use.

You could vary the complexity of the maze
itself, or you could alter the time limit.

The reason why different methods were
chosen for different computers is to do with
the way in which the maze is generated on
them. This is a good example which shows
that when you want to devise games with
different levels of difficulty you'll have to
choose which route you want to follow.

LIVES
When the time runs out for the player trying
to find the treasure, you will want to impose
some kind of penalty. You could make the
player lose some of his score, but the most
widely used penalty is to make him lose a life.

In this game the player is given three lives,
so if you fail to find the treasure within the
time limit on three occasions, the game ends.

RANDOM MAZES
The maze game is based on a random maze-
generating subroutine, which is an interesting
program in itself because it draws a different
maze every time—saving you having to de-
sign a whole series of mazes. Remember how
on page 68 you were shown how to design a

'maze and use DATA lines to incorporate it
into a program, and then imagine how com-
plicated it would be to devise a whole series.

Designing random mazes is much easier
than that, but more complicated than you
might imagine. An obvious way of designing
them might be to print a number of blocks,
say ROM graphics, randomly on the screen.
But the problem is that you might not end up
with a maze at all, because there is no
guarantee of a route through the maze and to
use this method you would have to devise
some way of checking for a way out.

HOW TO PLOT RANDOM MAZES
The best way of drawing random mazes is to
devise a program which plots a random path
and builds it up into a maze. The program for
your machine is designed so that the line is
contained within a frame drawn on the screen.
The line isn't allowed to cross over itself,
either. When the random path cannot go any
further—either it gets stuck in a corner, or
between itself and the frame, or it may even
get caught up in itself—the computer retraces
its steps. It does this a step at a time and
examines the area around the path for clear
space. When the machine finds a space,
another branch of the random path is started,
then continued until it is stuck again, and its
steps are once more retraced. The computer
keeps trying to draw new branches until the
frame is filled—when it gets back to where it
started.

After the program has finished drawing the
maze, there is only one way through—this
way can seem quite obvious because the
branches of the route aren't complicated. The
maze is also solvable by the 'right hand
rule'—following the right hand (or left hand,
for that matter) wall of the maze all the time.
To stop someone doing this you need 'islands'
in the maze to break up the walls. So, after
drawing the maze, the program then plots a
number of random blocks which make the
maze seem more complex and will thwart
anyone using the right hand rule.

SAVE the program on tape once you've
entered it all in because the next article shows
how to add some sound effects.

a
The Spectrum program begins by setting up
UDGs, initializing variables and generally
preparing for the game. Type in this section
of program, but don't RUN it yet:

10 FOR n = 0 TO 23: READ a: POKE USR
"a" + n,a: NEXT n

20 LET hs = 0
30 INPUT "Select level (1 to 6) ❑ ";ta
40 LET to =1100 — 100*ta
50 BORDER 1: PAPER 1: INK 0: CLS :

INK 7
60 LET s=0: LET lives= 3
70 PRINT BRIGHT 1; PAPER 6; INK 2;

"EISCORED ❑ 1=1E1 El ID DHIGH
SCOREDD D DOE1E7 El"

490 DATA 24,24,60,82,82,24,36,36,127,
65,93,85,81,95,64,127,24,24,255,
255,24,24,24,24

Line 10 sets up the UDGs for the game—a
man, some treasure, and a cross—by READing
the DATA in Line 490. The high score—hs—is
set at 0 by Line 20.

Next, the player is asked to choose a level of
difficulty from 1 to 6—the lower the number,
the easier the level. You'll see that in Line 40
lower numbers set longer times, and higher
numbers shorter times.

The display colours are set by Line 50,
before Line 60 initializes the score to 0 and
lives to 3. Finally, Line 70 displays the words
SCORE and HIGH SCORE, along with
spaces for numbers on the screen.

DRAWING THE MAZE
Now type in these lines:

80 FOR n = 22561 TO 22589: POKE n,16:
POKE n + 640,16: NEXT n

90 FOR n =1 TO 21: POKE 22528 +
n*32,16:POKE 22558 + n*32,16:
POKE 22559 + n*32,9:NEXT n

100 LET b = 22593: LET a = b
110 DIM a(4): LET a(1) = —1: LET a(2)

= — 32: LET a(3) = 1: LET a(4) = 32
120 POKE a,56
130 LET j = INT (RND*4) +1: LET g j
140 LET b= a + a(j)*2: IF PEEK b = 8 THEN

POKE b,j: POKE a + a(j),56: LET
a = b: GOTO 130

150 LET j=j+ 1: IF j=5 THEN LET j=1
160 IF j < > g THEN GOTO 140
170 LET j = PEEK a: POKE a,56: IF j < 5

THEN LET a = a — a(j)*2: GOTO 130
180 POKE 22625,56
190 FOR n =1 TO 20
200 LET k= 22528 + 64*(1NT (RND*9) + 2)

+ INT (RND*29) + 1
210 POKE k.56: NEXT n

The border of the maze is Set up by Lines 80
and 90—POKEing 16 into the attributes area of
memory sets the PAPER colour to red, so you
have a border consisting of red blocks.

Lines 100 to 180 are the maze drawing
lines. Don't be tempted to 'BREAK' the
program and clear the screen—the maze will
be lost because it is only stored in the
attributes file.

To complete the maze, Lines 190 to 210
display 20 squares at random positions within
the maze. If the squares land on a wall they
change it into pathway.

CREATING A GAME
The next section of program deals with the
game itself:

220 LET x=15: LET y=10
230 LET tx = INT (RND*15)*2 +1
240 LET ty= INT (RND*10)*2+ 2
250 PRINT BRIGHT 1; PAPER 2;AT 0,7;

s;AT 0,24;hs
260 POKE 23672,0: POKE 23673,0
270 PRINT FLASH 1; PAPER 3; INK 6;AT

ty,tx;CHR$ 145
280 PRINT INK 2; PAPER 7;AT y,x;CHR$

144
290 IF PEEK 23672 + 256*PEEK 23673 > ta

THEN GOTO 390
300 IF 1NKEY$ = "" THEN GOTO 290
310 LET a$ = INKEYS: LET sx = x: LET sy = Y
320 IF a$ = "z" AND ATTR (y,x — 1) > =56

THEN LET x = x — 1
330 IF a$ = "x" AND ATTR (y,x + 1) > = 56

THEN LET x= x+1
340 IF a$ = "k" AND ATTR (y —1,x) > =56

THEN LET y=y— 1
350 IF a$ = "m" AND ATTR (y + 1, x) > =56

THEN LET y= y + 1
360 PRINT PAPER 7; INK 2;AT sy,sx;

" ❑ ";AT y,x;CHR$ 144
370 IF ty = y AND tx = x THEN GOTO 470
380 GOTO 290

The starting position of the man is set by Line
220—the man starts at 15,10 at the beginning
of each game.

The treasure is placed randomly in the
maze by Lines 230 and 240 and Line 270
displays it on screen. The range of random
numbers chosen in Lines 230 and 240
guarantee that the treasure will land on a path.

Lines 250 displays values for SCORE and
HIGH SCORE—initially 0—and Line 260
sets the clock to 0 by POKEing two memory
locations as you saw on page 101. Line 290
checks if the time limit has been exceeded,
and if it has, jumps to line 390.

The man is displayed by Line 280. Notice
that in Lines 270 and 280 CHR$ 144 and

CHR$ 145 are used to display the UDGs on
the screen. CHR$ has been used here because
it is the clearest in program listings, although
you could use the alternative method using
letters as explained on page 44.

The remaining lines—from Line 300 to
Line 380—deal with moving the man about
the maze. Lines 320 to 350 check that the
appropriate key is being pressed and that the
next square is path not wall before moving
him. The check uses ATTR which was fully
explained for the simple maze game on page
69. Line 260 blanks out the man's last position
and displays him at his new one.

Line 370 tests if the man has reached the
treasure. If he has, it increases the score
before displaying another treasure for the
man to search out.

RAISING THE DEAD
The final section of program is below. At last
you can RUN the game.

390 PRINT FLASH 1; PAPER 0; INK 5;
AT y,x;CHR$ 146

400 LET lives= lives-1: FOR 1=1 TO 200:
NEXT f: IF lives> 0 THEN GOTO 260

410 IF s>hs THEN LET hs=s 	 l I

420 PRINT BRIGHT 1; PAPER 2; AT 0, 24;hs
430 PRINT FLASH 1;AT 10,1;" 0 PRESS

ANY KEY TO PLAY AGAIN ❑ "
440 IF 1NKEY$ < >"" THEN GOTO 440
450 IF 1NKEY$ = "" THEN GOTO 450
460 GOTO 30
470 LET s=s+ ta — PEEK 23672 + 256*PEEK

23673: GOTO 230

Line 390 displays a flashing cross (CHR$ 146)
when the player loses a life before Line 400 1

 subtracts 1 from the lives total. There is a:
pause before the game returns to Line 260'
which resets the clock ready for another
attempt to reach the treasure. Of course, it
only returns if there are lives left.

If no lives remain, Line 410 compares
score and high score. High score is altered if
the latest score is higher. In either case, Lizie/i

 420 displays the high score. /

	

Line 440 is needed in case the player is

(

,.„
still pressing one of the move keys es. '

(
before Line 450 checks for a 	-??0,f,, ii;
keypress to signal another go.

Finally, Line 470 calculates the score aftef
the man and treasure coincide. The v
you

 —

 may remember,-was in Line 370. . -

 NN)"

 ,)'

-CK 	1.11111.1V
When this program is RUN, (((4/-*
you are asked for a level
of difficulty. 1, 2, 3, or 4 can be
entered and these correspond to priRPII.
of 20, 16, 12 and 8 seconds.

The object of the game is to reach
the treasure—a randomly positioned
asterisk—in the shortest possible time. Your
`man' is a pi character and the Z, X, P and L
keys are used to direct him to the target:

50 POKE53280,6:1NPUT" p INPUT LEVEL
(1 —4) 61";A:IFA <10RA >4THEN50

60 LE = 5 — A:LE= LE*4 +4
100 PRINT"IDggrA=1186:POKE

650,255
105 FORZ = 0T039:POKE1104 + Z,102: POKE

1984 + Z,102: P0KE55376 + Z,1: POKE
56256 +Z,1:NEXT

110 A(0) = —1:A(1) = — 40:A(2) = +1:A(3)
=40:FOR F=1 TO 21

150 PRINT"AZIE ❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑

❑ mi E";:NEXT F:POKEA,4
220 J = INT(RND(1)*4):G =J:P0KE54272+ A,7
230 B = A+ A(J)*2:IFPEEK(B)=160THEN

POKEB,J:POKE54272 +A,6:POKE
A + A(J),32:A = B:GOT0220

240 J = (J +1)* — (J <3):IFJ < > GTHEN230
250 J = PEEK(A):POKEA,32:IFJ <4THEN

A = A— A(J)*2:GOTO 220
1000 LV=3:FORZ=1T060:X=INT(RND(1)*

40+ 1) + INT(RND(1)*9)*80
1002 IFPEEK(1184+ X) =160ANDPEEK

(1224 + X) = 160THENPOKE1184 + X,32
1004 NEXT Z
1006 X= RND(1)*720:IFPEEK(1223+ X) < >

32THEN1006

1008 OL= 1223 + X:POKEOL,42
1010 T1$ = "000000":POKEA,94:J =3
1013 PRINT"§";:FORZ =1T062:PRINT

" ❑ ";:NEXT: PRINT" HIGH
SCORE: AI"HS

1014 PRINT- PI LV:M"LV" E E
"Tr CI E ❑ E

ISCORE:M"SC
1015 IF VAL (T1$) > = LE THEN 2000
1016 GETZ$:1FZ$=""THEN1014
1017 IF Z$ = "Z"THENJ = 0
1018 IF Z$ = "X"THENJ =2
1019 IF Z$ = "P"THENJ =1
1020 IF Z$ = "L"THENJ =3
1021 B = A + A(J):IFPEEK(B) < >102 AND

PEEK(B) < >160 THEN 1040
1030 GOTO 1014
1040 IFPEEK(B) = 42THEN3000
1050 POKEB,94:POKEA,32:A = B:GOTO 1014
2000 LV= LV-1:FORZ=155TOOSTEP —1:

POKEA,RND(1)*6 + 109
2003 NEXT:POKEA,94:IFLV> OTHEN1010
2005 PRINT"@E ❑ ❑ M ❑ — ❑

NEW MAZE ❑❑❑❑❑❑❑H❑❑❑❑

HIJIHIPAIIIPJPJPJPJH
PJCIDEg F7 E 11; —11111ISTART"

2006 SC= 0:LV= 3:GETK$:1FK$ = " ri"
THEN50

2007 1FK$ ="E"THEN1010
2010 G0T02006
3000 SC= SC + 50 — VAL(T3):POKEOL32:

IFSC> HSTHENHS = SC
3010 GOT01006

On the Vic 20, you need to use these Lines in
place of those with the same Line numbers in
the program for the Commodore 64:

50 POKE 36879,110:INPUT"0
INPUT LEVEL(1-4) 	";A:IFA < 1 OR
A > 4THEN50

100 PRINT "0 gg gr:A=7770:POKE
650,128

105 FORZ = 0T021:P0KE7724 + Z,102:
POKE8142 + Z,102:POKE38480 + Z,1:
P0KE38862 + Z,1:NEXT

110 A(0) = —1:A(1) = — 22:A(2) =1:
A(3) =22:FORF =1T018

150 PRINT"MMB ❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑

❑ MAIN":
NEXT F:POKEA,4

220 J = INT(RND(1)*4):G = J:POKE
30720 + A,7

230 B = A + A(J)*2:IF PEEK(B) =160
THEN POKEB,J:P0KE30720 < A,6:
POKEA + A(J),32:A = B:GOT0220

1000 LV = 3:FORZ = 1T060:X = 1 NT(RN D
(1)*22) +1 +1NT(RND(1)*8)*44

1002 IFPEEK(7724 + X) =160ANDPEEK

(7746 + X) =160THENPOKE7724 + X,32
1006 X= RND(1)196:1FPEEK(7724 + X)

< > 32TH EN1006
1008 OL = 7724 + X:POKEOL,42
1013 PRINT" Igr ;: FORZ 1T033:

PRINT" E ";:NEXT:PRINT"11 HS:
Ai"; HS

1015 PRINT "EggiLv:A"Lv
C ilTIMEA"TI$

" SC: A - sc: I FVAL(T1$) > =

LE E TH EN2000
2005 PRINT"I§I ❑ MF11L-NEW

MAZE ❑ M F7 ILI-START ❑ "

Both of the Commodore programs start by
setting the screen colour and asking for the
desired playing level (Line 50). The actual
routine for creating the maze is contained in
Lines 100 to 250. First, a chequered border is
drawn and the enclosed area is immediately
filled with yellow blanks using the PRINT
string of Line 150. The physical limits of this
are set in Line 110.

The random pattern of the maze is pro-
duced by Line 220, where J can be given any
value from 0 to 3. This is later converted to
the characters @, A, B and C which represent
the directions left, up, right, and down. When
the program is RUN and the maze is being
created, you can see these characters flashing
briefly on the screen. The corresponding
directional change is made and a blank is left
behind—in the normal screen colour—and it
is this that forms part of the maze. The
donkey work is carried out by Line 230.

The characters @, A, B and C are actuaN
plotted into memory as the maze is construc-

ted but do not appear on the screen—except
momentarily—because they are overprinted
with the background colour. When the mov-
ing cursor is able to move into a yellow blank
square, it does so. If it cannot move in the first
randomly chosen direction it tries another,
eventually returning along its original route
when all the allowable yellow blanks have
been removed. The cursor tries at every point
to go anywhere but back along its original
route, and this is how areas of yellow blanks
which were originally bypassed are eventually
incorporated within the maze.

The last part of Line 240 checks to see if
the cursor has reached its home position, the
starting point. If it hasn't, the program jumps
to the next line which resets the direction and
maze-making routine.

Lines 1000 to 1004 then print further
blanks, at random along the maze wall.

Line 1006 then randomly selects the posi-
tion of the asterisk (the treasure), which is
printed using the POKE in the following line.

The program then sets the built-in timer to
zero, clears anything from the top rows
(where later a screen prompt is displayed) and
also PRINTS the high score display (variable
HS), lives remaining (LV —1), time elapsed

since the built in clock was zeroed 	and the
current score (SC). The final part of Line
1015 checks whether or not your time is up.

The next five lines of the program test for
your keypress, entering the corresponding
value into the first part of Line 1021, your
new location. The PEEKS which follow this
check to see if the direction is valid, and that
you haven't gone into the maze wall. The
routine at Lines 1040 and 1050 checks
whether you have hit the asterisk and, if you
haven't, prints your man at his new position
as well as deleting him at his former position.
The new location is set (A= B) and the
RETURN is made. The next line (1030) re-
directs the program to Line 1015 which
updates the score and checks the time.

If the check proves negative the GOTO
directs the program to Line 2000 where the
lives count (LV) is reduced by 1 and your man
flickers through a change of 155 characters.
Line 2003 then replaces your man, restarting
the program again at Line 1010 if you have
lives remaining, displaying screen prompts
for a new maze and restart if you do not. Line
2006 resets the score and lives variables and
checks for an Lig keypress, in effect
reRUNning the program if this is detected.
Line 2007 responds to an IN keypress by
restarting the game part of the program.

If, during a game, you manage to reach the
asterisk within the time limit, the routine at
Lines 3000 and 3010 adds the updated score,
deletes the asterisk and sets a new high score.

II
The Acorn computers use a simple change of
MODE to create the two levels of difficulty.
Since MODE 0 has twice as many columns as
MODE 1 this is a straightforward way of
making the maze twice as difficult. You are
asked to choose between an easy maze in
MODE 1, and a harder one in MODE 0.

Here is the main part of the program. The
procedures are all defined later on but their
names have been chosen so you know
straightaway what each does. The variables
used at this stage are: D, the level of difficulty;
X and Y, the start position of the man; M, the
number of men or lives and SC, your score.

10 PROCinitialize
20 MODE(1 — D)
30 PROCconstructmaze
40 PROCdisplaymaze
50 TIME= 0
60 X= 32/(D+ 1):Y= 1023 — 4 . 32
70 VDU5
80 REPEAT
90 PROCpIay
100 UNTIL M < 0
110 PROCend
120 MODE1
130 PRINTTAB(15,15)"SCORE ❑ ";SC
140 PRINTTAB(15,20)"PRESS RETURN"
150 PRINTTAB(15,21)"TO PLAY AGAIN"
160 *FX21
170 IF INKEY(— 74) THEN RUN
180 GOTO 170
190 END

Using procedures like this makes the struc-
ture of the game very easy to understand.
Unfortunately, it is not possible to change
MODE inside a procedure so Line 20
MODE(1 — D) has to stand separately. At the
end too, it would have been neater to include
Lines 120 to 180 in PROCend, but the need to
change MODE before printing out the instruc-
tions again meant this was impossible.

The first procedure—PROCinitialize—sets
up all the variables and defines the UDGs:

200 DEFPROCinitialize
210 *TV254,1
220 DIM S(3)
230 PRINT"DIFFICULTY 0— EASY 1 — NOT

SO EASY ?"
240 D = GET — 48
250 IF D < > 1 AND D < > 0 THEN 240
260 M = 2:SC = 0:MT = 3000
270 *FX11,10
280 *FX12,10

490 VDU23,255,255,255,255,255,255,
255,255,255

40 VDU23,224,255,255,255,255,255,
255,255,255

3110 VDU23,225,24,24,60,90,90,24,36,36
320 VDU23,226,0,255,129,189,165,173,

161,191
330 VDU23,227,24,24,255,255,24,24,

24,24
340 ENDPROC

The level of difficulty is sorted out in Lines
to 250. Line 240 GETS the ASCII code of

the number you type in. But the ASCII value
of 0 is 48 and the value of 1 is 49, so you have
to take away 48 to get back to 0 and 1 again. If
you type in anything other than 0 or 1, Line
250 sends you back for another go. Line
210 moves the TV display down one line,
Line 220 dimensions the array S which makes
sure there is always a wall separating parallel
paths. Line 260 gives you 3 lives (from 0 to 2),
a zero score and a maximum time of 30
seconds to find each treasure. Note that on the
Electron this time may be too short so change
it to MT = 5000. The *FX calls in Lines 270
and 280 speed up the auto repeat then the
next five lines define the UDGs.

Characters 224 and 255 are both solid
blocks. Character 224 is used for the main
part of the maze and 255 for the boundary
wall. Although they appear the same on the
screen, the computer can tell the difference
and can make sure that the pathway won't
cross the boundary. The other characters are
the man-225, the treasure-226 and a
cross-227 that appears when you lose a life.

DRAWING THE MAZE
The next procedure in the program con-
structs the maze in the computers memory:

350 DEFPROCconstructmaze
360 VDU23;8202;0;0;0;
370 A= &7000 + 41 + 40* D
380 S(0) = — 1:S(1) = — 40 — D*40:S(2) = 1:

S(3) = 40 + D*40
390 FOR Z = 0 TO (38 + D*40):?(&7000 + Z)

= 224:?(&7000 + Z + 960 + D*960)
= 224:NEXT

400 FOR F = 1 TO 23:?(F*(40 + D*40) +
&7000) = 224:?((F + 1)* (40 + D*40)
+ &7000 — 2) = 224

410 FOR T=1 TO 37 + D*40:?(F*(40 +
D*40) + &7000 + T) = 255:N EXT:N EXT

420 ?A = 4
430 J=RND(4)-1:G=J
440 B= A+ S(J)*2:IF ?B= 255 THEN ?B=J:

?(A + S(J)) = 32:A = B:GOTO 430
450 J=(J+1)*— (J<3):IF J< >G THEN

440
460 J = ?A:?A = 32:IF J < 4 THEN A=

A — S(J) *2:GOTO 430
470 ENDPROC

The area of memory chosen is part of the
memory used for the screen so you can
actually see the maze being built up.
(Although it doesn't look much like a maze
until later.) Line 370 sets the start address in
the memory and Line 380 calculates the
amount to step in each direction. Lines 390
and 400 fill the boundary of the maze with
character 224 and Line 440 fills the whole of
the centre area with 255.

The other lines create the pathway through
the maze. The path takes a random direction
checking memory locations all the time to
make sure no part of the maze is missed.
Wherever the path goes, the value 32—for a
space—is put in the memory location in place
of the block character 255.

PROCdisplaymaze then peeks all the loca-
tions to find the value, W, stored there and
prints out a white block if W equals 224 or 255
and a space if W equals 32; in other words, it
prints out the maze itself:

480 DEFPROCdisplaymaze
490 VDU19,1,2,0,0,0
500 VDU10,10,10
510 FOR Y = 0 TO 24
520 FOR X = 0 TO 38 + D*40
530 W = ?(&7000 + X + Y* (40 + D•40))
540 VDU W
550 NEXT
560 VDU32
570 NEXT
580 PR INTSTRI NG$ (40 + 40*D," ❑ ")
590 FOR T=1 TO 50 + D*50
600 X= RND(36 + D*40) + 1:Y = RND

(23) + 3
610 PRINTTAB(X,Y)" ❑ "
620 NEXT
630 COLOUR1
640 VDU31,X,Y,226
650 PR I NTTAB (6,0)"TI ME","SCORE",

"LIVES"
660 ENDPROC

The maze is printed out by Lines 510 to 580.
The next four lines print a few random spaces
to break up the walls and create a few islands
in the maze. Then Line 640 prints the
treasure and Line 650 prints the headings for
the time, score and number of lives.

Notice how D, the level of difficulty is
included in all the calculations so the maze
will fit either a 40 or 80 column screen.

PLAYING THE GAME
Now type in the next section which controls
how the game is played. DEFPROCpIay

moves the man and times how long it takes to
reach the treasure:

670 DEFPROCpIay
680 MOVE X,Y:GCOL0,0:VDU224,8:GCOL

0,1:VD U225
690 LY = X:LY = Y
700 * FX21
710 K$ =1NKEY$(1)
720 VDU4:PRINT'TAB(0,1)TIME,SC,M:

VDU5
730 IF TI M E > MT THEN PR 0Closelife
740 IF M <0 THEN ENDPROC
750 IF K$ = "" THEN 710
760 IF K$ = "Z" AND POINT(X— 32 + D*16,

Y)< >3—D*2 THEN X=X-32+D*16
770 IF K$ = "X" AND POINT(X + 32 — D*16,

Y)< >3—D*2 THEN X=X+32 —D*16
780 IF K$ = "L" AND POINT(X,Y — 32) < > 3

—D*2 THEN Y = Y-32
790 IF K$ = "P" AND POINT(X,Y + 32) < > 3

—D*2 THEN Y=Y+ 32
800 VDU4
810 VDU31,X/(32 —16* D),32 — Y/32
820 A% = &87:H = (USR(&FFF4) AND

&FF00)/&100 : H = H + 96
830 IF H = 226 THEN PRINTTAB(RND(36

+ D*40) + 1,RND(22) + 4)CHR$(226):
SC= SC + MT— TIME: TIME= 0

840 VDU5
850 MOVE IALY:GCOL0,0:VDU224
860 ENDPROC

Most of this is very similar to the routines
given in Games Programming 3 and a lot of
the lines should be quite familiar by now.
Line 680 moves to the start position of the
man, blanks out the background then prints a
green man. Lines 710 and 750 to 790 find out
what key you're pressing so they can calculate
the new position, then Line 810 moves the
cursor to that position. Line 820 uses an
operating system routine to find out what
character is in that square, storing the result
in H. If H = 226—that is, you've found the
treasure—then a new treasure is printed at a
new random position, your score is increased
and the time is reset. You then have another
30 seconds to find the new treasure and so on.

If your time ever runs out before you find the
treasure, then Line 730 comes into operation
and you lose a life.

870 DEFPROCloselife
880 M = M —1
890 VD U4: PRI NTTAB (X/(32 — 16*D),

32 — Y/32)CH R$ (227);
900 FOR DE=1 TO 2000:NEXT
910 VDU8,225
920 VDU5:TIME = 0
930 ENDPROC

This procedure reduces your lives by one.
Then, to show your man is dead, Line 890
prints a cross and there is a short delay before
Line 910 prints your next man.

When you've lost all three lives, PROCend is
called which blanks out the man and resets the
autorepeat and the cursor:

940 DEFPROCend
950 MOVE X,Y:GCOL0,0:VDU255
960 *FX12,0
970 VDU 4
980 FOR DE=1 TO 2000:NEXT
990 ENDPROC

Finally, the main program displays your final
score and gives you the choice of another go.

1
On the Dragon and Tandy, the easiest way to
draw the random mazes would be to use the
text screen. Unfortunately, because of the
large size and small number of the blocks
available, the mazes would be too simple.

Instead, the program draws the mazes on
the high resolution graphics screen. Although
the program is more complex than one de-
signed to draw on the text screen, it has the
added advantage that mazes of a range of
different complexities can be drawn, giving a
range of different levels of difficulty.

Imagine that the random path consists of a
series of square blocks. If you wanted to draw
a simple maze you would choose a large block
size, but if you wanted a more complex maze,
you would choose a small block size.

The first section of the program initializes
the variables and generally prepares the com-
puter for drawing random mazes. Type it in,
but don't RUN it yet because you'll get a UL—
Undefined Line—error when the program
tries to GOSUB 1000.

10 PMODE4,1
20 CLS:PRINT@193," LEVEL OF

DIFFICULTY (0-5) ";
30 L$= 1NKEY$:IFL$ < "0"ORL$ > "5"

TH EN30
40 BS = 12 — VAL(L$):NX = 2*INT(.5 +

128/BS): NY = 2*I NT(.5 + 96/BS)

50 SX = 250 — BS* NX:SY = 190 — BS* NY
60 DIMP(NX,NY),A(5),B(5)
70 PCLS5: DRAW"S" + STR$(1NT(8.5 —

4*VAL(L$) /5)) + "C0BMO,OBR2BD
NFNGD3NFG"

80 GET(0,0) (BS — 1,BS — 1),A,G
90 GET(10,10) — (BS + 9,BS + 9),B,G:

COLOR5,0
100 CLS:PRINT©228,"GENERATING

LEVEL111";M" ❑ MAZE"
110 GOSUB1000
120 GOTO 120

Line 10 tells the computer that you will want
to use PMODE 4 during the program. The high
resolution screen isn't switched on at this
stage, so you will still be looking at the text
screen. Line 20 then displays the message
LEVELS OF DIFFICULTY (0 — 5).

L$ is the level that the player has chosen.
The numeric value of L$—VAL(L$) in
Line 40—regulates the block size, and 	11;.‘,,

hence the width of the path and the complexity
of the maze. 1NKEY$ in Line 30 means that the
player cannot type more than a single digit
before the program continues and saves the
player from tapping ENTER .

In Line 40 BS is the block size in pixels—
the size can vary from 7 to 12 pixels. NX is the
number of blocks along the screen, and NY is
the number of blocks up the side.

Before the computer draws the maze on the
screen, it works out what it will look like and
feeds the information into array P, which is
DIMensioned in Line 60. Array A will contain
the shape of a man, and B a blank for
animating him.

The man is DRAWn by Line 70. On page
185 you saw how you can DRAW pictures in a

range of sizes. In this program the man is
DRAWn larger when the paths are wider, and
smaller when the paths are narrower.

Now that the man has been DRAWn Line
80 GETS him into array A, and Line 90 fills
array B with white. Previously, when you've
seen a blank used in a game you haven't had to
GET anything into the array—it was simply an
empty array. This time, though, you want a
blank that is white to match the path.

The COLOR command in Line 90 is there
so that the maze is drawn in the correct colour
later in the program—otherwise you'd be
drawing a black maze on a black background!

Line 100 tells the player that the maze is
being generated—it can take some time for
the maze to appear.

DRAWING THE MAZE
Now type in the maze-generating sub-
routine—called by Line 110—and you can
RUN the program:

1000 FORJ = OTO NX: P(J,NY) = 6: P(J,0)
= 6:NEXT

1010 FORJ =0T0 NY — 2:P(0,J) = 6:P(NX,
J) = 6:NEXT

1020 X= 2:Y= 2:LX= 2:LY= 2
1030 J= RND(4) —1:G =J
1040 Y = LY + 2*((J = 0) — (J = 2)):X=

LX + 2*((J = 3) — (J =1))
1050 IFP(X,Y) = 0 THENP(X,Y) =J + 1:

P((X + LX)/2,(Y + LY)/2) = 5: LX = X:
LY = Y:G0T01030

1060 J= (J +1)AND3:IF J< >G THEN1040
1070 J= P(LX,LY) —1:P(IALY) = 5:1F

J < 4 THEN LX = LX — 2*((J= 3) —
(J = 1)): LY = LY — 2* ((J = 0) —
(J = 2)):GOT01030

1080 FORJ = OT020: P(2 + 2* R ND
((NX— 3)/2), 1 + RND(NY — 3)) = 5:
P(1 + RND(NX— 3), 2 +2*RND
((NY — 3)/2)) = 5:NEXT

1090 SCREEN 1,1:PCLS
1100 FORJ = 2TO NX — 2:FORK = 2TO

NY — 2
1110 IFP(J,K) = 5 THEN LINE

(J*BS + SX,K*BS + SY) — ((J +1)*
BS + SX — 1,(K + 1)* BS + SY — 1),
PSET, BF

1120 NEXTK,J:RETURN

Lines 1000 to 1080 'draw' the maze
in the computer's memory, and store the shape
in the array P—each element in the array
corresponding to a block in the maze. The
subroutine stores the number 5 in P wherever
there's a path, and leaves a 0 if there's a wall.

Once the maze has been stored in P, Line
1090 switches on the high resolution screen
ready for the maze to be drawn.

Lines 1100 to 1120 display the maze on the
screen by examining the contents of P.
Whenever a 5 is found, a white square is
printed.

MOVEMENT, TREASURE, LIVES
You now need a game to go with your random
mazes. Type in the next section of program,
but again, don't RUN it because it calls a
subroutine which doesn't yet exist. On the
Tandy use 251 in Line 170 instead of 239; 253
instead of 247 in Line 180; 247 instead of 223
in Lines 190 and 200:

120 X = 2:Y = 2:LX = 2:LY = 2:TI = 800:LI = 3
130 TIMER = 0
140 X1 =1 + RND(NX— 3):Y1 =1 + RND

(NY — 3):IF P(X1,Y1) = 5 THENP(X1,Y1) = 7:
DRAW"S4C0BM" + STR$(SX + Xl* BS)
+ "," + STR$(SY + Yl*BS) + "BFR5D5
L3U3RD" ELSE140

150 X1 = X*BS + SX:Y1 = Y*BS + SY
160 PUT(X1,Y1) — (X1 + BS —1,Y1 + BS — 1),

A,PSET
170 IFPEEK(338) = 239 THEN Y = Y —1
180 IFPEEK(342) = 247 THEN Y = Y + 1
190 IFPEEK(340) = 223 THEN X = X —1
200 IFPEEK(338) = 223 THEN X = X+ 1
210 IFP(X,Y) = 7 THENF= 1:P(X,Y) = 5:

GOT0230
220 IFP(X,Y) < > 5 THEN X= LX:Y = LY:

GOT0170
230 IF X< > LX OR Y < > LY THENPUT

(X1,Y1) — (X1 + BS — 1,Y1 + BS — 1),B,
PSET:LX = X:LY = Y:FORP = 1T068:
NEXT

240 IFF = 1 THENF 0:SC SC +
(TI — TIMER):TI = TI — 10:GOT0130

250 IFTIMER > T1 THENGOSUB500:IFLI <1
THEN1 00

260 GOT0150

Line 120, which over-writes the previous
Line 120, contains variables from which the
man's position is calculated. X,Y is the current
position of the man, and LX, LY is the last
position, but because the path width varies, the
values have to be adjusted slightly before the
man appears on screen TI is the time limit for
recovering the treasure. The time limit is 16
seconds, and if the man hasn't found the
treasure when the time expires, he loses a life.
At the start of the game the player has three
lives—LI = 3.

The timer is set to zero in Line 130, before
Line 140 selects a position at random for the
treasure. The corresponding element in P is
examined to make sure that the place is on a
path. If it is on a path, the value in the array is
changed from 5 to 7. The last part of the line
DRAWS the treasure in the maze.

The man's position is calculated in Line
150, taking into account the width of the path
which is the block size, BS. Line 160 PUTS the
man on the screen at that position.

Lines 170 to 220 should need no explan-
ation by now—they are the keyboard PEEKS
which allow you to move the man through the
maze. He mustn't be allowed to walk through
the walls, though, so Line 220 makes sure that
he keeps to the paths. Line 210 checks if the
treasure has been found, by examining the
corresponding element in P for the number 7.
If the computer finds it, then the 'found
uiag'—F—is set to I.

Line 230 causes the man to move. The
blank is PUT on the man's last position and the
current position becomes the last position.

Line 240 calculates the score if the treasure
has been found. The time limit is decreased
by 10 seconds. F is reset to zero, and the
program jumps back to reset the timer. The
program continues, replotting the treasure,

hut leaving the man in the same place as he was
when the treasure was found.

If the player takes too long to find the
treasure, Line 250 calls the subroutine start-
ing at Line 500. If the man hasn't found the
treasure and he still has some time left, Line
260 sends the program back so that his new
position is calculated.

DISPLAYING THE SCORE
This is the final subroutine. It will display the
score and number of lives remaining after a
life has been lost:

500 CLS:SCREEN0,0:LI = LI —1
510 PRINT@106,"LEVEL = ";L$
520 IFLI > 0 THEN PRINT@202,"LIVES = ";LI
530 PRINT@298,"SCORE ";SC
540 IF LI > 0 TH EN FORJ = 1T06000:N EXT:

TIMER = 0:SCREEN1,1:RETURN
550 PRINT@358,"ANOTHER GAME (Y/N) ?"
560 A$ = I NKEY$:1FA$ < > "Y"ANDA$

< > "N" THEN560
570 1FA$ = "Y" THEN RUN
580 END

You can now RUN the program. If a life has
been lost the program switches back to the
text screen—SCREEN 0,0. Line 500 also de-
creases the number of lives remaining to the
player by 1.

Lines 510 to 530 display the level of
difficulty, the number of lives remaining—if
the game is continuing—and the score. If
some lives still remain, Line 540 inserts a
pause before resetting the timer, switching
back to the high resolution screen and
RETURNing from the subroutine.

Lines 550 to 580 ask if the player wants
another go, and then either stops the program
or reRUNs it. RUN has been used in Line 570
to clear P for the new maze.

The pirate searching the colourful Spectrum maze A pirate searches the Commodore maze for his booty

■ COMPARING AND SORTING
STRINGS

■ STRING SLICING
■ HOW LONG IS A STRING?
■ USING STRINGS FOR

WORDPROCESSING

Strings are used in all sorts of
programs, in fact whenever you
want to work with more than just
plain numbers. Here are a few ways
to make the most of them

A string is made up from a collection of
characters. They can be letters, numbers,
punctuation or any of the keyboard symbols.
And you can put them together in any order
you like.

Normally, of course, a string contains
useful information—sometimes more than
one piece of information in a single string. For
example, "PETER WHITE 241067 S" con-
sists of first name, second name, date of birth
and marital status—four pieces of information.
The date of birth can itself be broken down
into day, month, year so there are really six
pieces of information in all.

Lots of times you may need to split up (or
slice) a string to extract different bits of
information—such as the date, in the example
above. At other times it may be necessary to
add strings together. You may also want to
measure the length of a string and work out
the value of any numerical parts. All this is
possible using a few simple BASIC keywords.

Adding strings—called concatenation—is
the easiest of all. You just use the symbol +
If A$ equals "HI" and B$ equals " THERE",
then A$ + B$ equals "HI THERE". Con-
catenation simply glues strings together; it
does not add them. So "439" + "241" e ua
"439241", not 680.

COMPARING STRINGS
As well as adding strings together, the com-
puter can compare them to see if they are the
same, as in this simple guessing game:

10 G = 1: GOTO RND(6)1 0 +10
20 B$ = "APPLE": GOTO 80
30 B$="ORANGE": GOTO 80
40 B$="BANANA": GOTO 80
50 B$="LEMON": GOTO 80
60 B$="PASSION FRUIT": GOTO 80
70 B$="PINEAPPLE"
80 CLS: PRINT"I AM A FRUIT, WHAT

FRUIT AM I ❑ ";
90 INPUT A$
100 IF A$= B$ THEN GOTO 170
110 G=G+1
120 PRINT"WRONG!"
130 FOR J=1 TO 2000
140 NEXT J
150 CLS
160 GOTO 90
170 IF G=1 THEN PRINT "YOU WERE

RIGHT IN 1 GUESS" ELSE PRINT"YOU
WERE RIGHT IN III";G;" ❑ GUESSES"

S5
This program will work on the ZX81 if you
split all the multiple statement lines onto
separate lines:

10 LET G=1: GOTO INT (RND*6)*1 0+10
20 LET B$ = "APPLE": GOTO 80
30 LET B$ = "ORANGE": GOTO 80
40 LET B$ = "BANANA": GOTO 80
50 LET B$ = "LEMON": GOTO 80
60 LET B$ = "PASSION FRUIT": GOTO 80
70 LET B$ = "PINEAPPLE"
80 CLS : PRINT "I AM A FRUIT, WHAT

FRUIT AM I?"
90 INPUT A$
100 IF AS= B$ THEN GOTO 160
110 LET G=G+1
120 PRINT "WRONG"
130 FOR J =1 TO 200
140 NEXT J
150 GOTO 90
160 IF G=1 THEN PRINT "YOU WERE

RIGHT IN 1 GUESS": STOP
170 PRINT "YOU WERE RIGHT IN ❑ ";G;

" CI GUESSES"
180 STOP

10 G=1: ON RND(6) GOTO 20,30,40,50
60,70

20 B$ = "APPLE": GOTO 80
30 B$ = "ORANGE": GOTO 80
40 B$ = "BANANA": GOTO 80
50 B$ = "LEMON": GOTO 80
60 B$ = "PASSION FRUIT": GOTO 80
70 B$ = "PINEAPPLE"

80 CLS: PRINT"! AM A FRUIT, WHAT
FRUIT AM I?"

90 INPUT A$
100 IF A$ = B$ THEN GOTO 160
110 G=G+1
120 PRINT"WRONG!"
130 FOR J =1 T0 1000
140 NEXT J
150 GOTO 90
160 IF G=1 THEN PRINT"YOU WERE

RIGHT IN 1 GUESS" ELSE PRINT"YOU
WERE RIGHT IN";G;"GUESSES"

13X ECK'

10 G =1:0N INT(RND(1)1) +1 GOTO 20,
30,40,50,60,70

20 B$ = "APPLE":GOTO 80
30 B$ = "ORANGE":GOTO 80
40 B$ = "BANANA":GOTO 80
50 B$ = "LEMON":GOTO 80
60 B$ = "PASSION FRUIT":GOTO 80
70 B$ = "PINEAPPLE"
80 PRINT "01 AM A FRUIT, WHAT

FRUIT AM I?"
90 INPUT A$
100 IF A$ = B$ THEN GOTO 155
110 G=G+1
120 PRINT "WRONG!"
130 FOR J =1 TO 2000
140 NEXT J
150 GOTO 90
155 IF G=1 THEN PRINT "YOU WERE

RIGHT IN 1 GUESS":END
160 PRINT "YOU WERE RIGHT IN";G;

"GUESSES"
170 END

Here Line 10 sets the guess counter at 1, then
throws an electronic dice to pick a fruit. The
options are stored in Lines 20 to 70. Which-
ever Line the computer goes to, it stores the
name of the fruit as a string in B$, then goes
on to Line 80. You then have to guess which
fruit it has picked and INPUT your guess as
A$. This is compared to B$ and if they are the
same in all respects the computer prints out
"YOU WERE RIGHT IN 1 GUESS" or
"YOU WERE RIGHT IN" however many
"GUESSES" you've had. If A$ is not equal
to B$ the computer prints "WRONG", and
you are given another guess. The program
keeps going until your guess is correct.

Notice that even if you guess the right
fruit, the condition A$ = B$ is not fulfilled if
you spell your guess incorrectly. To be
correct, everything in the two strings must be
identical—the letters, spaces and punctuation
(and any numerals).

One use of this technique for comparing
strings is to check input from the keyboard,
with a line like:

IF A$ = "YES" THEN PRINT "ARE YOU SURE?"

Note that the condition is not fulfilled if the
word "yes" is typed in in small letters.

SORTING STRINGS
Strings can also be compared using the
inequality signs < and > . They would be
used in a Line like this:

IF A$ < B$ THEN PRINT "THE FIRST
IS ";A$

Here the condition A$ < B$ asks whether the
string contained in A$ comes before the string
in B$ when they are put in alphabetical order.
But watch out! The computer puts things in
alphabetical order by looking at the ASCII
code of each letter in turn—A has an ASCII
code of 65, and Z is 90. The problem is that
small letters have ASCII codes too—a is 97, z
is 122. So all the strings that begin with
capital letters are put first.

Worse, numerals, punctuation marks,
spaces and other signs also have ASCII codes
so the ranking of strings could be thrown all
over the place. Still, with care, < ' and > '
can be used to sort strings into alphabetical
order. In fact an alphabetic sort routine,
called a 'bubble-sort' is given in the Structur-
ing a Program article on page 216.

SLICING STRINGS
It is possible to pick out a character or
sequence of characters from inside a string.
On the Dragon, Tandy, Vic, Commodore and
Acorn this is done using the functions LEFT$,
RIGHT$ and MID$. The Spectrum uses a
different technique, explained below.

LEFT$(A$,number) starts at the beginning,
or left-hand end of string A$ and gives
you the number of characters you
specify. If A$ is "MR JOHN
SMITH" and you specify two
characters—LEFT$(A$,2)—the
result is "MR".

Similarly, RIGHT$ counts
from the other end of the
string—the right-hand
end. So RIGHT$(A$,5)
will produce "SMITH".

With MID$ you can
specify two numbers,
the starting position
and the number of
characters to slice off.

For example, MID$(A$,4,6) will start at the
fourth character J and pick out 6 characters,
giving "JOHN S". If you only specify one
number, such as MID$(A$,4), then you'll get
all characters from 4 onwards.

On the Spectrum the method of slicing
strings is simpler. There is only one function
A$(number TO number). A$ identifies the string
to be sliced and the two numbers are the
beginning and end of the slice.

With the same string A$ = "MR JOHN
SMITH", A$(1 TO 2) gives you "MR", A$(4
TO 7) gives "JOHN" and A$(9 TO 13) gives
"SMITH". You don't have to specify both
numbers. If you miss out the first one then
the Spectrum assumes you are starting at the
beginning. And if you miss out the last one it
assumes you want to carry on to the end.

Here's a program that uses LEFT$, MID$,
and LEN (see below). It's an anagram game for
two people. One person inputs a word which
the computer then scrambles and prints out as
an anagram for the second person to solve.

MI !HI
10 CLS
20 PRI NT@65, "ANAGRAM PROGRAM"
30 PRINT@161,"ENTER WORD TO BE

SCRAMBLED ?"
40 A$ =1NKEY$:IF A$ = "" THEN 40
43 IF A$ =CHR$(13) THEN 55
46 IF As <" ❑ " THEN 40
49 W$ = W$ + A$:GOTO 40
55 WORD$ = W$
70 CLS
80 FOR N = LEN(W$) TO 1 STEP —1
90 M=RND(N)
100 A$=A$+ MID$(W$,M,1)
110 W$ = LEFTVW$,M —1) + M1D$

(W$,M + 1)
120 NEXT N

Put your strings in order
When the computer magically picks out the
addresses from hundreds of separate en-
tries and displays them on the screen, it's
easy to imagine that the machine is more
intelligent than it actually is. It's almost as
if the computer is actually reading the
entries and then deciding what to do.

Don't be fooled. All the computer is
doing is picking out a certain section of the
string as it has been instructed. If that part
of one of the strings happens to contain
rubbish, then that is what you will get.

To ensure that you get the same inform-
ation out of every string, you must ensure
that the information is put into it in exactly
the same place each time. Professional
researchers often make use of standard-
format entry cards, and they are one of the
most useful aids you can make for yourself.
All you need is a series of boxes to contain
the characters, labelled for where each
piece of information must start and finish.
An example of such a card is shown on page
201, but obviously will depend on the
information you are collecting.

130 PRINT@65,"THE ANAGRAM IS "A$
140 PRINT@129,"WHAT DO YOU THINK

THE WORD IS ?"
160 INPUT GUESS$
170 G=G+1
180 IF GUESS$< >WORD$ THEN PRINT

"IIIWRONG, TRY AGAIN":GOTO 160
190 PRINT:PRINT" ❑ WELL DONE"
200 IF G=1 THEN PRINT"O YOU TOOK

1 TRY" ELSE PRINT" ❑ YOU TOOK";G;
"TRIES"

210 PRINT@480," ❑ DO YOU WANT
ANOTHER GO (Y/N)?"

220 A$ =1NKEY$: IF A$< >"Y" AND
A$ < >"N" THEN 220

230 IF A$="Y" THEN RUN
240 END

10 CLS
20 PRINT ''ANAGRAM PROGRAM"
30 PRINT ""ENTER WORD TO BE

SCRAMBLED"
40 VDU 21
50 INPUT W$
55 WORD$=W$
60 VDU6
70 CLS
80 FOR N= LEN(W$) TO 1 STEP —1
90 M= RND(N)
100 A$=A$+ M1D$(W$,M,1)
110 W$ = LEFT$(W$,M —1) + M1D$

(W$, M +1)
120 NEXT N
130 PRINT "'THE ANAGRAM 1S ❑ ";A$
140 PRINT "'WHAT DO YOU THINK THE

WORD IS?"
160 INPUT GUESS$
170 G=G+1
180 IF GUESS$ < >WORD$PR1NT "WRONG,

TRY AGAIN":GOTO 160
190 PRINT "'WELL DONE"
200 IF G=1 PRINT "YOU TOOK 1 TRY"

ELSE PRINT "YOU TOOK ❑ ";G;" ❑ TRIES"
210 PRINT ""DO YOU WANT ANOTHER

GO (Y/N)?' ,

220 A$=GET$:1F A$< >"Y" AND
A$ < >"N" THEN 220

230 IF A$="Y" THEN RUN
240 END

a
For the ZX81, you'll need to change all
variables to upper case, delete Lines 40 and
60, leave out the apostrophes (') after PRINT
statements and split multistatement lines:

10 CLS : LET a$="": LET g= 0
20 PRINT "'ANAGRAM PROGRAM"
30 PRINT 'ENTER WORD TO BE

SCRAMBLED"
40 POKE 23609,20: POKE 23658,8:

POKE 23624,63
50 INPUT w$
55 LET s$ = w$
60 POKE 23624,56
70 CLS
80 FOR n= LEN w$ TO 1 STEP —1
90 LET m= INT (RND*n) + 1
100 LET a$=a$+w$(m)
110 LET w$=w$(TO m-1) +

w$(m +1 TO)
120 NEXT n
130 PRINT "'THE ANAGRAM IS

111";a$
140 PRINT "'WHAT DO YOU

THINK THE WORD IS?"
160 INPUT LINE g$
170 LETg=g+1
180 IF g$< >s$ THEN PRINT

"WRONG, TRY AGAIN": GOTO 160
190 PRINT "'WELL DONE"
195 IF g=1 THEN PRINT "YOU TOOK ONE

TRY!": GOTO 210
200 PRINT "YOU TOOK ❑ ";g;" ❑ TRIES"
210 PRINT "'DO YOU WANT ANOTHER

GO (Y/N)?' ,

220 LET a$=1NKEY$: IF a$< >"Y" AND
a$< >"N" THEN GOTO 220

230 IF a$="Y" THEN RUN

10 PRINT "0"
20 PRINT "ANAGRAM PROGRAM"
30 PRINT "ENTER WORD TO BE

SCRAMBLED"
50 INPUT "> M";W$
55 WO$=W$
70 PRINT "Do"
80 FOR N = LEN(W$) TO 1 STEP —1
90 M= INT(RND(1)*N)+ 1
100 A$= A$ + M1D$(W$,M,1)
110 W$= LEFT$(W$,M 	+ R1GHT$

(W$,LEN(W$) — M)
120 NEXT N
130 PRINT "THE ANAGRAM 1S ❑ ";A$
140 PRINT "WHAT DO YOU THINK

THE WORD IS?"
160 INPUT GUESS$
170 G=G+1
180 IF GUESS$ < > WO$ THEN PRINT

"WRONG, TRY AGAIN":GOTO 160
190 PRINT "WELL DONE"
195 IF G=1 THEN PRINT "YOU TOOK

1 TRY": GOTO 210
200 PRINT "YOU TOOK";G;"TRIES"
210 PRINT "DO YOU WANT ANOTHER

GO. (Y/N)?"
220 GET A$:1F A$< >"Y" AND A$< >

"N" THEN 220
230 IF A$="Y" THEN RUN

• Because of a fault on BBC micros with
operating system 1.0, INSTR doesn't work
exactly as it should. The problem arises if
the string you are searching for is longer
than the first string. You won't get an error
message but in some circumstances it may
cause your program to crash.

It's the sort of thing that can easily
happen by mistake. Say a program asks
someone to input a compass direction
which is then stored in As. If you use
INSTR ("NESW",AS) to check their input
and they type "NORTH" in full then you're
in trouble. The way round this is to check
the length of the input using the LEN
function before searching for it with INSTR
and then ensure that you reject entries that
are too long.

Change Lines 50 and 70 of the last program
for the Commodore 64 to:

50 INPUT ">";W$
70 PRINT "OM"

When you RUN this game you'll see that the
word you type in first doesn't appear on the
screen. This is so your opponent cannot see
what it is. Each computer uses a different
method to do this. The Acorn uses VDU 21 to
turn off output to the screen while you type in
the word, and then it uses VDU 6 to turn the
output back on again. The Commodore, Vic
and Spectrum computers print the word in the
background colour so that it's invisible, and
the Dragon and Tandy build up the word
using INKEY$ which grabs a character one at a
time without printing it on the screen.

The scrambling routine is in Lines 80 to
120. What happens is that the characters are
picked out at random from the word then
added one at a time to A$ which gradually
builds up into the anagram.

Line 90 chooses a random number M
which is between 1 and the length of the
word, then Line 100 picks out the Mth letter
and adds it to A$. Line 110 removes this
character from the original word by taking the
Iefthand part of the word up to M and adding
on the rest of the word that comes after M.
The word is now one character shorter, but

the next time round the loop the variable N is
also one less so the random number M is again
restricted to the length of the word.

Eventually, all the characters are picked
out so the anagram is printed on the screen
and your opponent is asked to guess what the
original word was. When they INPUT the
correct word they are told how many goes
they've had and you are offered another go.

It would be very easy to alter this program
so that the words are read in from a DATA list
rather than INPUT separately each time. You
could also work out a scoring system so you
give, say, ten points for guessing right first
time, nine points for guessing right after two
goes and so on.

Another use of this slicing method is to
manipulate dates. Even when dates are keyed
in figures—such as 27/03/51, meaning the
27th of March 1951—they form a string.
After all you can't manipulate a date ex-
pressed that way by the normal laws of
mathematics. But you may want to work with
different parts of a date using arithmetic. You
can, for example, work out how old someone
is on a particular day if you are given their
date of birth, or you can work out how many
days have elapsed between two particular
dates—so long as you handle the year part, the
month part and the day part separately.

LEFT$, RIGHT$ and MID$—or Spectrum's
equivalent method—easily separate out the
day, month and year parts of a date. Then if
you use the VAL functions (see later) you will
turn the resulting string slice into a number
which you can add, subtract, multiply or
divide.

STRING LENGTHS
It is sometimes useful to know the length of a
string. If, for example, you have only a
limited amount of memory set aside for a
piece of information typed in on the key-
board,

 or only a limited space on

the screen to display it, it may
be helpful to check the length
of the entry before proceeding ,
with the program

LEN(A$) gives the numbe
of characters in the string
A$. It is a numeric
function, not a string,
and can be manipulated
according to the
laws of algebra. For
example, if A$ = 	1

"Mr John Smith",
LEN (A$) = 13. But say you

have been asked to enter a name into a file and
there is only enough space in the tabulated
format of the file's display for 11 letters you
could ask the user to cut down his entry in the
following way:
10 PRINT "ENTER SUBJECT NAME"
20 INPUT A$
30 IF LEN(A$) >11 THEN PRINT "SORRY,

ONLY 11 CHARACTERS AVAILABLE":
GOTO 10

The user could then pare down his entry and
just key in 'JOHN SMITH' instead.

In other cases, it might be easier to truncate
an entry automatically. This is done with a
line like the following:

IF LEN(A$)> 15 THEN LET A$= LEFT$(A$,15)
or on the Spectrum

IF LEN (A$) > 15 THEN LET A$=AVTO 15)

STRINGS TO NUMBERS
One use of string variables is to get idiot-
proof input from the keyboard. For example,
if you write a program which includes the
lines:

100 PRINT "ENTER A NUMBER"
110 INPUT A
then the computer waits for you to key in a
number. If by mistake you key in a non-
numeric character, then most computers,
except the Acorn, will break the screen dis-
play and print out a standard error message.
This will tell you that something is wrong,
but it won't tell you what.

But if you used:

110 INPUT A$

instead, the user can type in almost anything
and the computer will accept it. The next step

is to convert the string into a number. To do
this you use VAL(A$).

Unfortunately this will not work on the
Spectrum. If you try to work out the value of
a string of characters you'll get an error
message. You can only use VAL on the Spec-
trum if the string consists entirely of num-
bers. So VAL("1984") gives 1984 which is
correct, but VAL ("26/10/84") gives 0.03095
... because the Spectrum uses VAL to evaluate
the expression 26 =10 84. Spectrum users
should therefore skip the rest of this section
and go straight to 'Numbers to strings'.

The VAL function on the Dragon, Tandy,
Acorn, Vic and Commodore computers ex-
tracts the numerical part of the string. So if
A$ is a numeral then VAL(A$) will be a
number that can be used in the rest of the
program. If A$ is not a numeral then VAL(A$)
returns the value 0. You can then write a little
subroutine that explains in detail what the
user has done wrong and gives him or her
another go without coming out of the
program and destroying the screen display.

One important point to note about VAL is
that it only extracts numbers at the beginning
of the string. So VAL("25 JULY") equals 25,
but VAL ("JULY 25") equals 0. So beware!

The VAL function is useful for sorting
numbers out of a string in several different
ways. If for some reason you have the names
and marks of a class of pupils as strings:
A$ = "32 COLIN" B$ = "45 MARK"
C$ = "41 JENNY" and so on, and then want
a class average, you can extract individual
marks using VAL. VAL(A$) gives 32, VAL(B$)
gives 45 and VAL(C$) gives 41.

In the same way, VAL can be used to ignore
the units that may have been entered with
such things as weights and measure. The next
program shows you the difference:

tOIHI
100 LET A$= "32 KG"
110 LET B$="110 KG"
120 PRINT "A$+B$="; A$+ B$
130 PRINT "VAL(A$) +VAL(B$) = ";

VAL(A$) + VAL(B$)
140 END

NUMBERS TO STRINGS
The function STR$ does almost the exact
opposite of VAL. It changes a number into a
string. The advantage of this is that strings
can be manipulated in different ways to
numbers—by slicing and concatenating for
example—so STR$ has a number of
applications.

The next program converts an ordinary
decimal number into binary. Although com-
puters do all their arithmetic in binary num-
bers inside the machine, the BASIC language
can only handle decimal or, in some cases,
hexadecimal numbers. So when a binary
number appears in a BASIC program it has to
be handled as a string:

MOIAXIME11MIHI
10 PRINT "DECIMAL TO BINARY"
20 PRINT "ENTER A DECIMAL INTEGER"
30 INPUT D
40 LET B$ =""
50 LET B$=STR$(D—INT(D/2) .2)+B$
60 LET D=INT(D/2)
70 IF D < > 0 THEN GOTO 50
80 PRINT "THE BINARY NUMBER IS ❑ ";B$

When you input a positive decimal number,
Line 40 sets B$ equal to an empty or null
string, which is then progressively filled up
with digits as the computation is carried out by
the loop in Lines 50 and 80.

Line 50 is the line that actually builds up
the binary number. It subtracts twice the
integer value of half the decimal number,
from the decimal number itself. This is
simply a way of testing whether the number is
odd or even. If it is odd the result is 1, and if it
is even then the result is 0. These, of course,
are the binary digits.

On the Acorn computers this part can be
done more elegantly using the MOD function
as in:

50 B$ = STR$(D MOD 2) + B$

The binary digits are turned into a string
using STR$ and the binary number is built up
by concatenating each new digit with the rest
of the string.

STRING$ AND INSTR
The Acorn, Dragon and Tandy
computers have two string
functions more than the others]

STR1NG$ (N,A$) produces
a string of the character
or characters defined by
A$, N times. N must /1
be a number or numeri
variable while A$ must
be a string variable, a
character or a string
of characters between
double quotes.
PRINT STR1NG$(6,"*")
prints out ******.

On the Acorn computers, if A$ is "X — X",
say, and N is 3 then STRING$(3,A$) gives
X — XX — XX — X. This function is used to
give repetitive patterns for decorative lines
and borders and can be used whenever a long
string can be generated from a sequence of
shorter ones.

On the Dragon and Tandy, though,
STRING$(3,A$) will give you XXX. It only
repeats the first character of the string the rest
is ignored.

Here are two programs (one for the Dragon
and Tandy and one for the Acorn computers)
which use STRING$ to print out a decorative
border round the screen. You can use it to
brighten up the title page of a game:

MI !HI
10 CLSO
20 A$ = CHR$(158) + STRING$(30,CHR$

(156)) + CHR$(157)
30 B$ = CHR$(154)+ CHR$(174)+ STR1NG$

(28,CHR$ (172)) + CHR$(173) +
CHR$(149)

40 C$ = CHR$(154)+ CHR$(171)+ STRING$
(28,CHR$(163)) + CH R$(167) +
CHR$(149)

50 D$ = CHR$(155) + STRING$(30,CHR$
(147)) + CHR$(151)

60 F$ = CHR$(154) + CHR$(170) +
STRING$(28," ❑ ") + CHR$(165) +
CHR$(149)

70 PRINT*
80 PRI NIBS;
90 FOR K = 1 TO 11
100 PRINTF$;
110 NEXT K
120 PRINTC$;
130 PRINTD$;
140 PRINT@233,"HELLO THERE !":
150 GOTO 150

10 MODE1
20 VDU23;8202;0;0;0;
30 VDU19,0,4,0,0,0,19,2,2,0,0,0
40 COLOUR2
50 PRINTTAB(4,4)STRING$(8,"xoox")
60 FOR T=1 TO 11
70 PRINTTAB(4)"o"TAB(35)"o"
80 PRINTTAB(4)"x"TAB(35)"x"
90 NEXT
100 PRINTTAB(4)STRING$(8,"xoox")
110 COLOUR1
120 FOR T=1 TO 11 STEP 2
130 PRINTTAB(9,9 + T)"o"TAB(21)"o"
140 PRINTTAB(9,10 + T)"x"TAB(21)"x"
150 NEXT
160 PRINTTAB(10,10)STRINGS(5,"xoox")
170 PRINTTAB(10,21)STR1NG$(5,"xoox")
180 COLOUR3
190 PRINTTAB(15,15)"HI THERE !"
200 GOTO 200

The Dragon and Tandy program uses several
graphics characters to print the border. The
blocks are printed in two different colour
schemes—yellow/black and blue/black. To
make a symmetrical border the colours are
reversed from top to bottom and side to side.
Five strings are used, A$ and B$ make the top
of the border, F$ does the sides and C$ and D$
make the bottom section. Line 150 simply
prevents the OK prompt breaking up the
screen display.

The Acorn program uses ordinary key-
board characters "XOOX" to make its border.
STR1NG$ is used to make the top and bottom
section but the side borders are printed much
more easily with TAB. Line 200 prevents the
prompt reappearing and breaking up the
picture.

SEARCHING FOR A STRING
INSTR is a search function. It looks through a
long string for a shorter one so you can use it
to find a word in a sentence, say, or a letter in a
word.

You specify INSTR(A$,B$) and the com-
puter searches A$ for the string B$ and
returns the position down the string where it
made its first appearance. PRINT INSTR
("HELLO","L") will display 3. If the com-
puter cannot find the string it has been told
to look for it will return 0 as shown be this
next program:

10 A$ = "HELLO"
20 B$="W"
30 PRINT INSTR(A$,B$)

INSTR works slightly differently on the Acorn
from the way it works on the Dragon and
Tandy. Although the computers allow you to
include a number in the brackets along with
the two strings, the number appears first on
the Dragon and Tandy-1NSTR(P,A$,BG)—
and last on the Acorn—INSTR(A$,B$,P). In
both cases, P specifies the position down A$
that you want to start looking. Sometimes it is
useful to search further down the string for a
character or set of characters rather than
always starting at the beginning.

Say you are playing a game of hangman
and you've found the first T in
NOTWITHSTANDING at position 3, you
find the next one by putting P = 3 + 1—that
is, 4—in INSTR(P,"NOTWITHSTANDING","T")
or 1NSTR("NOTWITHSTANDING","T",P). And
when you've found the second one at position
6, you put P = 7 for the last one. With either
computer, if you omit P it assumes it is 1 and
starts searching at the beginning.

If you search a string with a null string-
"", both computers will give the answer 1.

Another use for INSTR is in checking input
from the keyboard. Say you have to choose
one option from a menu by typing in its initial
letter. The options might be:

10 PRINT "(P)rint text"
20 PRINT "(S)ave text"
30 PRINT "(L)oad new text"
40 PRINT "(E)dit text"
50 PRINT "PLEASE SELECT OPTION"
60 INPUT A$

A handy way of checking whether the letter
entered is valid is to add this line:

70 IF INSTR("PSLE",A$) = 0 THEN
GOTO 50

This prevents any error messages breaking up
the screen display if a mistake
is made.

WORD PROCESSING
The string functions have a whole range of
uses, especially in word processing. A com-
mon requirement is to replace one word with
another throughout the whole document
(perhaps when you discover a spelling mis-
take). INSTR will quickly pick out every
occurrence of the word and you can easily
substitute the new word. Other methods will
work if your computer doesn't have INSTR,
but they are much slower. Of course, if the
new word is a different length then you must
move the rest of the text to leave just the right
amount of room. The next program shows
how to do it:

10 INPUTLINE "ENTER TEXT",T$
20 INPUTLINE "WORD TO BE.REPLACED",W$
30 INPUTLINE "NEW WORD",NW$
40 P=1
50 pos=1NSTR(T$,W$,P)
60 IF pos= 0 THEN GOTO 100
70 T$ = LEFT$(T$,pos-1)+ NW$ + R1GHT$

(T$,LEN(T$) — pos— LEN(W$) + 1)
80 P= pos+ LEN(NW$)
90 GOTO 50
100 PRINT T$
110 GOTO 20

10 LINEINPUT "ENTER TEXT ?";T$
20 LINEINPUT "WORD TO BE REPLACED ?";

W$
30 LINEINPUT "NEW WORD ?";NW$
40 P=1
50 PO =1NSTR(P,T$,W$)
60 IF P0=0 THEN GOTO 100
70 T$= LEFTS(TS,P0 —1) + NW$ + RIGHT$

(T$,LEN(T$) — PO— LEN(W$) + 1)
80 P= PO+ LEN(NW$)

90 GOTO 50
100 PRINT T$
110 GOTO 20

10 INPUT "ENTER TEXT";T$
20 INPUT "WORD TO BE REPLACED";W$
30 INPUT "NEW WORD";NW$
35 P=0
40 P=P+1
50 A$ = MID$(T$,P,LEN(W$))
60 IF A$< >W$ THEN 90
70 TS= LEFT$(T$,P —1) + NW$+ R1GHT$

(T$,LEN(T$) — P— LEN(W$) + 1)
80 P= P+ LEN(NW$) —1
90 IF P<LEN(T$) THEN GOTO 40
100 PRINT T$
110 GOTO 20

a
10 INPUT "ENTER TEXT ❑ "; LINE t$:

PRINT t$
20 INPUT "WORD TO BE REPLACED ❑ ";

LINE w$: LET w= LEN w$
30 INPUT "NEW WORD ❑ "; LINE n$:

LET n= LEN n$
35 LET p= 0
40 LET p= p+1
50 IF p + w — 1 > LEN t$ THEN GOTO 100
60 IF t$(p TO p+ w —1) < >w$ THEN

GOTO 40
70 LET t$=t$(TO p— 1) + n$ +t$(p+ w

TO): GOTO 40
100 PRINT*
110 GOTO 20

Start by inputting a fairly simple sentence
then try the effect of substituting some of the
letters or words. With short words like 'to' or
`an', it's best to type them in with a space
before and after the word, or every occurrence
of 'to' and 'an' inside other words—like 'toad'
and `banana'—will also be changed. On the
Commodores, enter in quotes—"an".

Here's how it works. Line 40 sets P to start
the search process at the beginning of the text.
Lines 50 and 60 find the first occurrence of
the word or letter you want replaced, then
Line 70 substitutes in the new word. It
simply takes the original text up as far as the
old word, adds on the new word then adds on
the remaining text. The process is repeated
until all occurrences of the word have been
replaced, and is then printed by Line 100.

This is a very simple example—real word
processors are much more complicated—but
it gives you an idea of some practical applic-
ations of the string functions.

The computer's memory has to keep
track of everything that's going on
inside the machine as well as storing
your programs. But how does it
work and how does it all fit in?

When you enter the world of machine code
progranuning you are approaching your home
computer on its most fundamental level. Not
only do you have to understand something
about the hexadecimal numbers you key in—
and the binary numbers the computer converts
them into (see page 156>-you also have to
understand how the computer itself works.

This doesn't mean that you have to under-
stand how the chips are etched or how they are
wired up. But you do have to understand a
little of the overall architecture of the
machine—how the major parts and systems are
related and what each one does.

WHAT MEMORIES ARE MADE OF
Home computers store their memory on a
series of silicon chips. Each memory chip
carries thousands of tiny circuits which can be
either switched on, or switched off. Each of
these circuits represents a single digit in
binary—a bit. When the circuit is switched on
it represents 1, when it is switched off it
represents 0.

Within the chip, these tiny circuits are
organized in groups of eight. Each group
represents a byte—that is an eight-bit binary
number, or two digits in hex.

But there would be no point in storing
numbers in these circuits without being able to
find them again. So each eight-bit memory
location is given an address. In a machine with
a total memory space of 64K, for example, you
need 64K addresses—one for each location.

HOW MUCH MEMORY?
A 'K' in computing is roughly analogous to the
`k' which stands for kuo—a thousand—in the
metric system. But 1,000 is not very conve-
nient when converted into binary or hex.

The nearest convenient hex number is 400,
which is 1,024 in decimal and represented by 1

with ten zeros after it in binary. This number
is defined as 1K.

So if you need to identify 64K memory
locations, you could number them from 1 to
65,536 in decimal. But as these numbers
themselves will be used by the computer it is
much more convenient to number them in hex
from 0000 to FFFF. This uses every possible
four digit—or two byte—hex number. The
four-digit hex number allocated to a memory
location is known as its address. And each
location can be addressed—that is written into
or read out of—by quoting its unique four-
digit hex number.

Of the computers covered here, only one
claims a 64K memory—the Commodore. But
the 32K BBC Micro, the 32K Electron, the
48K Spectrum, the 32K Tandy and the 32K
Dragon all have 64K of memory space in all.
The `1(' figure refers to the amount of memory
space you can use—the other 32K or 16K is
reserved for the machine's use. The
Commodore's memory is rather more flexible
and the 64K claim is based on the fact that it is
possible for the user to intrude onto the
machine's own memory space.

In each of the above machines, the makers
number their memory locations from 0000 to
FFFF. The smaller 16K Spectrum—which
has 32K of memory in all—numbers its mem-
ory locations from 0000 to 7FFF.

■ WHAT THE MEMORY IS MADE OF
■ HOW MUCH MEMORY DOES YOUR

COMPUTER HAVE?
■ ROM AND RAM
■ HOW THE MEMORY IS DIVIDED UP

■ WHAT'S IN THE MEMORY
■ WHERE BASIC PROGRAMS ARE

STORED
■ HOW THE COMPUTER STORES

LARGE NUMBERS

TURNING THE PAG
Memory space is further organized into pages.
(These are not to be confused with the larger
high-resolution pages used by the Dragon and
Tandy.) Each page holds 100 memory loc-
ations in hex—that's 256 in decimal.

The so-called 'zero page' runs from 0000 to
00FF, the 'one' page runs from 0100 to 01FF
and so on.

ROM AND RAM
There are two different types of memory—
ROM and RAM. ROM stands for Read-Only
Memory. That means you can read out of
ROM memory locations, but you cannot write
into them. The information they contain is
fixed permanently when the ROM chips are
manufactured and they are protected against
tampering. No matter what you do to your
machine—short of physical damage—the
ROM will restore its functions to working
order if you switch it off and then back on
again.

The ROM contains the computer's operat-
ing instructions and the interpreter that trans-
lates your BASIC programs into machine
code. It also imposes a structure on the rest of
memory which can be seen in the memory
maps below.

RAM stands for Random Access Memory.

This is the memory which is open to the user,
but is not quite as wide open as its name
implies. The ROM takes over some of it for
screen displays and other specific functions
and if you try and write something in these
memory locations the ROM will change it back
for you. But fundamentally it is an empty slate
on which you can write whatever you want,
then read back at your leisure.

KEEPING TRACK
The memory maps shown below are a pictorial
representation of where things are in the
memory. These are not their exact physical
positions, as the memory space is divided up
onto a number of different chips inside the
computer. But the map does show you
schematically how various parts of the memory
are used for different things.

Some of the fixed frontiers between sections
of memory—like the one between ROM and
RAM—do coincide with the change from one
chip to the next. Other frontiers are flexible
and their position is indicated by a pointer in
the system variables area.

A pointer is a memory location—or rather a
pair of memory locations—which stores the
address of another location, in this case the
start of a particular section of memory. The
address of any byte of memory is two bytes
long, so it has to be stored in two adjacent

memory locations. The pointers are so called
because, when the computer looks at them, it is
directed to the location it should move to.

The Spectrum's 16K ROM runs from 0000 to
3FFF. It contains the BASIC interpreter, the
editor, various input and output routines and
the character set which contains all the data for
the letters of the alphabet, figures and the
other graphics symbols available on the Spec-
trum. The other 48K—from 4000 to FFFF-
on the 48K model, and the other 16K—from
4000 to 7FFF—on the 16K, are RAM.

The RAM is divided up into areas, each of
which has a specific job to do.

The display area controls what is shown on
your TV screen. Each memory location corre-
sponds to a line of eight pixels.

The attributes area controls the PAPER and
INK colours of each of the screen's 768 charac-
ter areas and whether the display is FLASHing
or steady, BRIGHT or normal.

The printer buffer holds the next line of text
that is going to be fed out to the printer.

The system variables are the locations which
hold the addresses—or pointers—of the
beginnings of the specific areas above them in
memory.

The microdrives map area only exists if you
have a microdrive attached to your Spectrum.

hex ...4 1.07 • • • y

User-defined 	UDG
graphics area 	RAM

TOP

GO SUB stack 0 stack
Machine stack 	pointer

spare bytes

STKEND

Calculator stack 0 STKBOT

Work space 	/WORKS'
Editing area 	OE LINE

Variables area 0 VARS

BASIC program area 0 PROG

Channel 	 CHANS
information area

Microdrive maps
5CB6

System

5C00 	variables area

Printer buffer
5B00

Attribute area
5800

Display area
4000

ROM area 0
0000

Otherwise CHANS, whose address is stored at
locations 23,631 and 23,632 (5C4F and 5C50),
moves down to 5BC6.

It's the channel information area which
carries input and output data. It transmits
input from the keyboard to the lower part of
the TV screen and controls program output to
the rest of the screen, to the workspace higher
up in memory and to a printer.

The BASIC program area holds the current
lines of any BASIC program you've keyed in,
and its size depends on the length of the
program. It starts at the address given by the
systems variable PROG, which is held in
locations 23,635 and 23,636 (5C53 and 5C84)
in the system variables area. This points to
23,755 (5CCB in hex) if no microdrive is
attached.

The following program looks at this area
and PRINTs out the number in each memory
location. Alongside that it PRINTs the ASCII
symbol corresponding to the number, which
shows you what you typed in. Note that the
keywords are not stored character by character
as ASCII strings but are encoded as a single-
byte—or in some cases a double-byte number.
These are known as tokens and are translated
back to the keywords automatically by the
Spectrum.

10 FOR n = 23755 TO 23848
20 PRINT n;TAB 10;PEEK n;
30 IF PEEK n > 31 THEN PRINT TAB 20;

CHR$ PEEK n;
40 PRINT : NEXT n

The variables area stores the values of the
variables being used in the current BASIC
program. It starts at VARS, whose location is
held in locations 23,627 and 23,628 (5C4B and
5C4C hex) of the system variables area. When
a program is RUN, the start of the variables area
stays where it is—nothing below it in memory
needs to expand—but the variables area itself
grows as new variables are defined.

The editing area is where the editing of
BASIC lines is done. As a line can be edited
while it is being keyed in, BASIC program
lines always appear in the .editing area first.
When 'ENTER' is pushed, they are copied into
the BASIC program area. The editing area
starts at the E-LINE whose address is held in
locations 23,641 and 23,642 (5C59 and 5C5A
in hex) in the system variables area.

The workspace is used for general tasks like
storing input data and concatenating (running
together) strings. WORKSP is stored in
23,649 and 23,650 (5C61 and 5C62 in hex) in
the system variables area. When it is not being
used the workspace collapses to nothing.

The calculator stack is used to hold floating
point numbers, five-byte integers and five-
byte sets of parameters when dealing with
strings. It starts at STKBOT, whose address
occupies locations 23,651 and 23,652 (5C63
and 5C64 in' hex) and ends at STKEND,
which is found in 23,653 and 23,654 (5C65 and
5C66 in hex).

Beyond that lies an area of spare memory.

Spectrum memory map

This allows the memory areas either side of it
room to grow, until STKEND meets stack
pointer and the Spectrum will tell you it is out
of memory.

Above the spare bytes is the machine stack.
This is used by the machine itself when a
BASIC program is RUN. But when you write
machine code you get a chance to manipulate it
yourself. Its workings will be explained in a
later issue.

The GOSUB stack stores the number of the
line the computer has to return to when it has
completed the subroutine.

RAMTOP is to all intents and purposes the
end of the RAM available for you to write
programs in. Its address is held in 23,730 and
23,731 (5CB4 and 5CB5 hex) in the system
variables area.

Above it are 168 memory locations which
hold the representations of 21 user defined
graphics. However, as RAMTOP is a system
variable, it can be moved down in memory,
pushing the GOSUB and machine stacks down
into the spare bytes. This is done when you are
writing machine code. Usually, a machine
code program is tucked in above the lowered
RAMTOP so that it cannot be overwritten by
a BASIC program.

P-RAMT is the physical top of the RAM—
in other words there are no more memory
locations on the Spectrum's chips after this
point. Although P-RAMT is fixed, as far as the
Spectrum is concerned it is a system variable
with its address stored in locations 23,732 and
23,733 (5CB5 and 5CB6 in hex). And you can
POKE values into these and other locations to
make a 48K Spectrum think it is a 16K
machine.

To check the value of P-RAMT switch on
the machine then enter the line:

PRINT PEEK 23732 + 256*PEEK 23733

This should return 65535 if you have a 48K
Spectrum and 32767 if you have a 16K model.
If it doesn't and you haven't POKEd anything
into these locations then there is something
wrong with your computer's memory and you
should have your Spectrum looked at by a
dealer.

You can look at any of the system variable
pointers using the same PRINT line, by sub-
stituting the variable's two memory locations.
The BASIC keyword PEEK looks at the cont-
ents of any byte of memory and returns the
decimal equivalent of the number it finds
there.

As mentioned above, the address is two
bytes long and requires two memory locations
to store it. The Spectrum breaks the four-digit
hex address—say the normal RAMTOPcili

 dress FF57—into two parts, FF and 57.

The lower byte, 57, goes into the lower address
and the higher byte, FF, goes into the higher
address. This may look like an odd way round,
but the Spectrum fmds it easier to cope with
this way.

That's why the second of the two memory
locations in the program above is multiplied by
256—otherwise the Spectrum would return
the decimal equivalent of FF, rather than
FF00.

The ZX81 his 8K of ROM which runs from
0000 to 1 FFF in hex, or 0 to 8,190 in decimal.
The next 8K of memory—from 2000 to
3FFF—are not used.

The memory map here shows the ZX81
with a 16K RAM pack. That, naturally, gives
you 16K of RAM, from 4000 to 7FFF in hex
or 16,384 to 32,767 in decimal. If you only
have an 8K or a 4K RAM pack all the different
areas of memory shown are simply squeezed

ZX81 memory map

0

ROM

8192

NOT USED

16384
SYSTEM VARIABLES

16509
PROGRAM

D_FILE
DISPLAY FILE

VARS
VARIABLES

Byte containing 80h 0
E _LINE

LINE BEING TYPED
+WORK SPACE

STKBOT

CALCULATOR STACK

STKEND

Machine 	SPARE
stack

pointer
sp

MACHINE STACK

ERR_SP

GOSUB
STACK

-3AM
TOP

USR
ROUTINES

32767

down into 8K or 4K, making the physical top
of RAM 5FFF-24,575 in decimal—or
4FFF-20,479 decimal—respectively.

If you are using your ZX81 without a RAM
pack, everything is compressed into 1K—from
4000 to 43FF hex, 16,384 to 17,407 decimal.

In all these cases, the system variables
occupy the area from 4000 to 4087 hex, 16,384
to 16,509 decimal. None of the other areas are
fixed and the details of their boundaries—D-
boundaries—D-FILE, VARS, E-LINE,
STKBOT, STKEND, ERR-SP and
RAMTOP—are stored as pointers in this
system variables area.

The first of these flexible areas, from 16,509
to D-FILE, contains any BASIC program you
key in. It is possible to write a BASIC program
which looks at itself in the BASIC program
area. The following program looks at this area
and PRINTs out the number in each memory
location. Alongside that it PRINTs the ASCII
symbol corresponding to the number, which
shows you what you have typed in. Note that
keywords are not stored character by character
as ASCII strings but are encoded as a single
byte in the ZX81's memory. These are known
as tokens and are translated back into the
keywords by a complex routine in the ZX81's
ROM. This simple program cannot do that.

10 FOR n=16509 TO 16704
20 PRINT n;TAB 10;PEEK n;
30 IF PEEK n> 31 THEN PRINT TAB 20;

CHR$ PEEK n
40 PRINT
50 NEXT n

From D-FILE to VARS, is the display file
which controls what is shown on the TV
screen.

The variables area expands as your BASIC
program is RUN and new variables are defined.
It ends with a memory location containing 80
in hex.

Between E-LINE and STKBOT is the
editing area and workspace. The line you are
currently entering goes in here so that it can be
edited before you add it to the rest of the
program. When you press NEW LINE the
line is transferred into the program area. This
area doubles as the workspace which is used
for general tasks like storing input data and
concatenating (running together) strings.

When calculations are being done in
BASIC the numbers used are held on the
calculator stack, which lies between STKBOT
and STKEND.

From STKEND to the machine stack
pointer is a spare area of memory which the
areas either side of can expand into. The
machine stack is used by the machine itself

when a BASIC program is RUN and the
GOSUB stack is used to store the line number
the ZX81 should return to after it has executed
a subroutine. How stacks work will be ex-
plained in a later chapter.

Normally RAMTOP is at the physical top
of memory—that is 32,767, 24,575, 20,479 or
17,407 depending on the RAM pack you have.
You can check this by PEEKing at the appropri-
ate pointer in the system variables area. To do
that key in the following line:

PRINT PEEK 16388 + 256*PEEK 16389

This should return the value of the end of
memory for your machine.

It is also possible to POKE a value into these
pointers and shift RAMTOP down memory,
away from the physical top of memory. This
leaves a protected area where you can write
machine code routines and they can't be
overwritten. The problem with using this area
of memory for machine code routines is that
they can't be SAVEd, though.

With the ZX81 the only area of memory
that you can SAVE is the BASIC area. How to
put your machine code programs in the
BASIC area and still protect them will be
covered in a later chapter.

The Commodore's memory is a different
creature from those of other home computers.
To start with, there is no firm distinction
between ROM and RAM. Some parts of the
Commodore's memory can be either ROM or
RAM!

The Commodore's memory chips actually
have 64K of RAM. But as the computer's
microprocessor could only cope with 65,535—
or FFFF in hex—addresses, there were no
extra addresses to assign to the ROM chips.
The way round this was to give the ROM
locations the same addresses as some of the
RAM. At any one time the computer knows
whether it is supposed to be looking at the
ROM or the RAM address by looking at the
bits of memory location one. Various areas of
memory are ROM when their corresponding
bits are 1. But if they are set to 0 the ROM is
said to be 'flipped out' to reveal the RAM
beneath.

In previous chapters you will have come
across the BASIC statement POKE. This is
always followed by two numbers, usually in
decimal. The first is less than 65,535 and is the
address of a memory location. The second is
less than 255, the largest decimal number then
can be held in one memory location. POKE
writes the second number into the memory
location given by the first.

But you can write only into RAM

locations—ROM means Read-Only Memory,
remember. So if you POKE a number into a
memory address that's shared between ROM
and RAM locations, the Commodore will have
to POKE it into RAM. It has no alternative.

The BASIC statement complementary to
POKE is PEEK. This reads the address of any
given memory location. But both ROM and
RAM memory locations can be read, so the
computer has to look at byte one of the
memory to see whether the bit for that part of
memory is 0 for RAM or 1 for ROM.

When the machine is switched on the
appropriate bits are all set to 1 so that all the
ROM is switched in.

The top 8,192 (2000 in hex) memory
locations—from E000 to FFFF—contain
Kernal ROM. These are the instructions that
tell the machine how to work. Even so you can
flip this bit of ROM out if you want to, leaving
8K of virgin RAM. The Commodore won't
operate, of course, unless you fill this section of
RAM with another operating system, or copy
out the one in the Kernal ROM and modify it.

The block beneath that—D000 to DFFF-
is even more complicated. Here there is a
choice between the input/output devices
ROM, the character set ROM and 4K of
RAM. Normally the input/output devices are
switched in, but when the character set is
needed, the part required is copied out into the
BASIC user RAM in the area from 1000 to
1 FFF. The position each byte of the copy
takes corresponds exactly to its position in the
character set ROM.

Both the character set and the input/output
ROMs can be switched out, leaving 4K of
RAM, but you wouldn't be able to output
anything to the screen or input anything from
the keyboard.

The next 4K of memory—from C000 to
CFFF—is pure RAM and is the area usually
used for machine code programs.

From A000 to BFFF is the BASIC inter-
preter ROM, but again this can be switched
out so that you can use another language or
modify BASIC by copying it into the RAM.

Below that is 26K of BASIC user RAM,
though some of it is used for specialized
purposes. The 8K from 8000 to 9FFF takes
input from cartridges and the 8K from 2000 to
4000 maps the high resolution screen.

The screen area below that maps the text
screen from 0400 to 07E7 and 07F8 to 07FF
contains the sprite data pointers. In high
resolution mode, this screen area doubles as
the colour table. You can look at this BASIC
user RAM with the following program.

10 FOR N = 2048 TO 2143
20 PRINT N;TAB(10);PEEK(N);

30 IF PEEK(N) > 31 THEN PRINT TAB(20);
CHR$(PEEK(N)):NEXT N:END

40 PRINT:NEXT N

It actually looks at itself and returns the
decimal equivalents of the numbers stored in
each memory location. Alongside that, it
PRINTs their associated ASCII characters. So
the computer will PRINT out the variables,
numerical values, arithmetic signs and punctu-
ation in the program, but it won't PRINT out
the keywords. These are not stored as ASCII
strings but as single-byte—or in some cases
double-byte—numbers known as tokens.

The memory from 0400 to 0000 contains
the systems workspace and system variables. One
of them—memory location one—contains the
bits which control whether the ROMs are
flipped in or out.

You can look at this byte with:

PEEK(1)

and see what is flipped in. Normally the
decimal value returned is 55. And if you take
the decimal value given and convert it into
binary you can see what is happening in the
ROM:

Bit zero—that is, the one at the right-hand
end because everything is numbered from zero
in computers—controls the BASIC ROM. If it
is 0 the BASIC ROM is switched out. If the
next bit to the left, bit one, is 0 the Kemal
ROM is switched out and the character set is
switched in. To switch both the input/output
devices and the character set out to reveal the
extra 4K of RAM, you switch out both the
Kemal ROM and the BASIC ROM.

Bits three to five control a cassette machine
and bits six and seven are not used.

Decimal 55 is 00110111 in binary, so bits
zero, one and two are all 1, and all the ROMS
are switched in.

Commodore 64 memory map

ECK!
The Vic 20's 6502 chip can access up to 64K
memory locations. But the basic Vic only uses
29K of memory in all. That means that you can
expand the Vic's memory by up to 35K with
ROM and RAM packs plugged into the
computer's memory expansion port.

The memory map given here shows where
the expansion packs fit in and how the Vic's
memory is structured.

The system variables occupy the first 1,024
memory locations, from 0000 to 03FF in hex
or 0 to 1,023 decimal. This area stores the
pointers which mark the various boundaries in
the rest of RAM and give the Vic's memory an
overall structure. The memory configuration
can be changed by POKEing different values
into the memory locations here.

The user memory extends from 0400 to
7FFF-1,024 to 32,767 decimals. That's 31K
of memory in all, though much of it won't be
present if you don't have add-on RAM packs.
The first 7K—from 0400 to 1FFF hex, 1,024
to 8,191 decimal—is exclusively RAM, made
up from a 3K expansion pack—from 0400 to
OFFF hex, 1,024 to 4,095 decimal—and 4K of
the Vic's built-in user memory—from 1000 to
1FFF hex, 4,096 to 8,191 decimal.

Most of this area—from OFFF to 1DFF
hex, 4,096 to 7,679 decimal—is used to store
the BASIC programs you key in. It is possible
to write a BASIC program which looks at itself
in this area. The following program PRINTs out
the number it finds in each memory location in
this area. Alongside it, it PRINTs the ASCII
character associated with that number.

This will give you the variable names,
numbers, arithmetic signs and punctuation.
But the Vic will not PRINT out the keywords
because these are not stored as ASCII strings.
Instead they are stored in single—or somet-
imes double—bytes as tokens.

10 FOR N=4096 TO 4191
20 PRINT N;TAB(10);PEEK(N)
30 IF PEEK(N) > 31 THEN PRINT

TAB(20);CHR$(PEEK(N)):NEXT N
40 PRINT:NEXT N

If there is no other expansion pack present,
the last 512 memory locations—from 1E00 to
1FFF hex, 7,680 to 8,191 decimal—is screen
RAM which controls what you see on your TV
or monitor. Otherwise the screen memory is
moved to start at 1000 hex, 4,096 decimal.

The remaining three 8K sections that fill
out the user memory can be RAM or ROM
depending on the plug-in packs used and are
completely free for your use, except for the IK
screen memory area.

The character generator occupies 8000 to

SFFI-F.
8K HI RAM

KERNAL ROM 	
(bit 1 of $0001)

CHARACTER SET 	 0 — RAM
1 = KERNAL ROM

SE000

(bit 2 of $0001) OISDC00 C IA1,C IA2 (S Bus PUP)/ 	4K RAM

0—CHAR ROM 	SD800 Colour Screen, Mem 	maps to $D000 when
1—I/0 ROM/RAM 	SD000 	VICII SID 	bits 0 & 1 of S0001 0

4K RAM

SC000 	...111111111011.1.
-

8K LO RAM
BASIC 	 (bit 0 of 80001)

INTEPPRETER 	 0 = RAM
ROM 	 1 ------ BASIC ROM

SA000 	I_ 	 ,

EXROM
8K ROM Cartridge

maps here
58000

BASIC
User RAM

(38912 Bytes)
54000

HI-RES Screen maps here

82000
VIC II chip sees
this 16K block
on power-up

$0800 	
HI-RES Colour TablP

80400 	
Screen (1K)

Workspace (1K)

$0000 Processor Kee ($0/1)

8FFF hex, 32,768 to 36,863 decimal. This is
4K of ROM which contains the pixel patterns
used to make up each of the 255 ASCII
characters on the screen.

The system inputloutput and control inter-
faces occupy 9000 to 912F hex, 36,864 to
37,167. This area communicates directly with
the three I/O chips—two 6522 VIA chips and
the 5621 VIC chip—and they can be con-
trolled by specific POKES in this area.

The memory locations from 9400 to 95FF
hex, 37,888 to 38,399, deal with the colour
memory, if the Vic has not been expanded.
Each of the 506 bytes in this block fixes the
foreground and background colour of the
corresponding byte in the video memory. If
there is more than 7K of user RAM in the
system the start of the colour memory is moved

Vic 20 memory map

$FFFF
8K

KERNAL
ROM

$DFFF
8K

BASIC ROM

$BFFF
8K

EXPANSION
ROM/RAM

$9FFF
EXPANSION I/0 2

$9C00
EXPANSION I/O 1

$9800
Colour RAM

$9600
6522 No 1 No 2 6561

$9000
4K CHARACTER

GENERATOR
ROM

$7FFF
8K

EXPANSION
RAM/ROM

$5FFF
8K

EXPANSION
RAM/ROM

$3FFF
8K

EXPANSION
RAM/ROM

$1FFF
Screen RAM 	0

$1DFF

4K RAM

$OFFF
3K

EXPANSION RAM

$03FF

NUM 1K RAM

up to 9600 hex, 38,400 decimal.
The 8K expansion from A000 to BFFF

hex, 40,960 to 49,151 decimal, can be used by
programs stored in ROM. The operating
system will power up any machine code
program in this area when the machine is
switched on instead of BASIC.

The BASIC interpreter in C000 to DFFF
hex, 49,152 to 57,343 decimal, translates your
BASIC programs into machine code when
they are RUN. And the Kemal ROM—from
E000 to FFFF hex, 57,344 to 65,535
decimal—contains the operating system which
controls how the machine works.

It is the operating system that imposes the
overall organization on RAM when the com-
puter is switched on. Otherwise none of the
boundaries between areas of RAM would
exist. They are only specified by this spec-
ialized part of ROM.

In the BBC Micro and the Electron, the ROM
occupies the memory locations from &FFFF
to &8000. This area contains details of the
computer's operating system, the BASIC in-
terpreter and an area which deals with input
and output to peripherals such as printers,
cassette recorders and the like.

The area from &7FFF to HIMEM is
reserved for the screen memory. This expands
and contracts according to the mode being
used. HIMEM drops to &3000 for Modes 0, 1
and 2. It's &4000 for Mode 3, &5800 for
Modes 4 & 5, &6000 for Mode 6 and &7C00
for Mode 7 on the BBC.

The area between HIMEM and LOMEM
is the workspace used by the BASIC program
when it is RUN. LOMEM and TOP—which
are pointers in the system variables area—
usually point to the same spot, the first free
address after the end of the BASIC program.
They can be separated, though, by writing
another address into the system variable loc-
ation occupied by LOMEM. Once they've
been split you can use the area between to
house a machine code program.

Your BASIC programs occupy the area
between TOP and PAGE. And normally the
system variable PAGE will be &E00. Again
you can move it by writing another address
into the location occupied by the pointer
PAGE to give yourself free space to house a
machine code program.

You can take a look at what's happening in
the BASIC program area with the following
program.

10 FOR N= PAGE TO TOP
20 PRINT; — N;TAB(15);?N;
30 IF ?N >31 THEN PRINT TAB(30);

CHR$(?N);
40 PRINT
50 NEXT

It PRINTs out the address you are looking at,
the hex number contained in that address and
the character it represents. Note that none of
the keywords appear in the listing. These are
not stored the way you key them in, as a string
of characters, but are encoded as a number
which fits into a single—or sometimes a
double—byte. These numerical represent-

Acorn memory map

. FEFf
&FFO

OP SYSTEM ROM 010&FCOU
MEM MAPPED IN/OUT

OPERATING
SYSTEM ROM

&C000

PAGED
ROM'S eg BASIC

&8000

SCREEN
MEMORY 	 MOVABLE

HIMEM 	-- — BOUNDARY

1 	 '0
32K 	BASIC STACK
RAM

IN
MODEL

B TO
& 8000

DYNAMIC &4000 VARIABLE STORAGE

'0' MOVABLE
OMEM

TOP 	
'8... BOUNDAR

& 2000

USER'S BASIC
PROGRAM AREA

&E00
&DOC

o/s routines 	&COO
user defined chars 00 &B00
user defined keys

various buffers 	•• &900

0
&800

sound & envelopes ••• &400 lang. ROM workspace
&300

VDU workspace 	&200
op system workspace 	&100

6502 stack 	/I& 00
zero page

ations of keywords are known as tokens.
Page 13, between &DOO and &DFF, can be

used for short machine code programs if you
are not using a disk system. If you are, the disk
will overwrite this page.

Page 12—&COO to &CFF—is reserved for
user defined graphics, and page 11—&BOO to
&BFF—stores the definitions you have given
to the user-programmable keys.

Page 10--8zA00 to &AFF—is the input
buffer. That is, it takes information a block at a
time from a cassette (for some cassette oper-
ations), or through an interface from another
computer, before it is consigned to the correct
part of memory.

Page 9—&900 to &9FF—is the output
buffer. It acts as a temporary store for inform-
ation being fed out of the computer.

Page 8—&800 to &8FF—contains the
sound work space, where the various sounds the
computer can make are synthesized. It also
contains the sound buffer and the printer buffer
which store sound and print data immediately
before it is output.

Pages 7, 6, 5 and 4 are used by the BASIC
interpreter in ROM to translate your programs
into language the computer can understand.

Page 3—&300 to &3FF—contains the key-
board buffer, details of the text cursor and a
large number of graphics parameters.

Page 2—&200 to &2FF—contains the
operating parameters that change while the
machine is running, and so cannot be stored
with the rest of the operating system in ROM
which is fixed.

Page 1—&100 to &1FF—is the machine
stack. This is a specialized area of memory that
is used by the machine when BASIC programs
are being RUN. But you can manipulate this
area when you write machine code programs.

The zero page—&O to &FF—is used for
many special functions in the BBC and
Electron home computers. This is because it
can be accessed quickly as its addresses only
occupy one byte—the other byte, the higher
one, is zero (00) so any one-byte address must
be on the zero page.

The Dragon and Tandy have a 32K ROM and
input output area, &H8000 to &HFFFF. This
area controls the input to, and output from, the
computer and any plug-in cartridge—plus the
machine's operating instructions and the
BASIC interpreter.

Between &H3600 and &H7FFF, BASIC
programs and their variables are stored. When
the program is RUN, it is performed here too.
And the stack (a specialized area of memory
whose function will be explained later),
occupies the uppermost part of the RAM,

usually nestling immediately under the ROM
at &H7FFF downwards. But the stack can be
moved down to make room for a machine code
program. This is done by altering the value of
the system variable which points to the base of
the stack. The procedure for doing this will be
explained in a later chapter.

The following program looks at itself in the
BASIC program area, reads the hex values in
the memory locations which store the program
and PRINTs them out on the screen along with
their associated ASCII characters. So the
computer will PRINT out the variables, numer-
ical values, arithmetic signs and the punctu-
ation that appear in the program, but it won't
PRINT out the keywords. These are stored as
single-byte—or in some cases two-byte-
numbers known as tokens. This simple
program cannot convert these tokens back into
the keywords—a special routine stored in
ROM and part of the system variables is
needed to do this—so it PRINTS graphics
blocks instead.

10 PCLEAR4
20 FOR N = 7681 TO 7744
30 PRINT N,PEEK(N);" 1E1 ";CHRS(PEEK(N))
40 NEXT

Both computers have eight high resolution
graphics pages—which are not the same as the
memory pages mentioned on page 209. Those
contained 256 locations, or K. The graphic
pages are liK long and each contain enough
graphics information to fill the screen in the
lowest resolution mode—PMODEO—whilst the
highest resolution mode—PMODE4--needs
four of these per screenful. The computer
automatically reserves four pages, but PCLEAR
will reserve more. You can, therefore, store
anything from one to eight screenfuls of
graphics in the memory.

When not in use, these pages are left empty.
But if extra memory is required they can be
cleared down to page one in BASIC. This
gives access to an extra 10IK memory for your
programs.

The text screen occupies the 1K between
&H400 and &H600. This gives one memory
location for each character space on the 16-line
32-character-per-line screen. The characters,
which are made up of 96 pixels (eight pixels by
twelve pixels), are generated in a separate video
generator chip which is not part of the memory.

From &H000 to &H400 are the system
variables. These are a collection of pointers
which give the addresses of the start of various
areas in memory and other system variables.

The first group of 256 bytes—from &H00
to &HFF—is known as the direct page on the
Dragon and Tandy. But the direct page is
different from the zero page as you can specify

any page you want to be the direct page—that
is the page whose locations can be addressed
using a one-byte address rather than the
normal, extended, two-byte address. This is
done by setting the direct page register in the
microprocessor. How this is done will be
explained in a later chapter.

As you can see from the above there is not
any spare room left for your machine code
programs when the computer is left to its own
devices. Again, how you make room for your
machine code programs will be explained later.

Dragon and Tandy memory map

0 3)5535 AIIMIIIMP
I/O devices + vectors

Cartridge memory.

C000

49152

BASIC ROMS 	 A000

16k

8000

32768

RAM
32k

Program + Variable 	
3400 Storage

	

13824 	 3000

	

12288 	Page 8 11/2k 	 2C00
2800 Page 7 1 1/2 k

	

10752 	 2400

	

9216 	
Page 6 11/2k 	 2000

Page 5 11/2k 	 1C00

	

7680 	 1800

	

6144 	
Page 4 11/2k 	 1400

1000 Page 3 1 1/2k

	

4608 	 COO
Page 2 11/2k

	

3072 	p 480000

1536
Page 1 11/2k

	

1024 	Text screen 1/2k 	000

	

0 	System user 1k 4111

Once the general design of the prograrillir
been worked out, and the individual modules
have been written you can start thinking about
how you are going to test the modules. Then
you can think about how you are going to fit
them all together.

Most subroutines or modules need to be
joined onto the rest of the program in some
way. This is normally done using variables.
Some variables, specified at the start, will be
passed to the routine—these are the input
parameters. Other variables will be returned to
the program by the routine—these are the
output parameters. It is very important that the
variables are specified in a precise way and
cannot be confused.

When you start to write a program you
should make a list of all the variables you need
to use, together with a description of their use
and their possible values, if known. Otherwise,
while you may know at the start what all the
letters stand for, you are sure to forget if you
return to the program later. It helps to use long
variable names if your computer allows it (see

rage 95 for a chart of what is permissible)
unless you are very short of memory space.

Here's an example of how you might specify
the variables for a bubble sort routine:

Bubble Sort routine:
Sort specified portion of an array into
alphabetical order.
Input variables:
A$(N) one-dimensional array to be sorted

(size of N> = 1)
Ni 	1st item in array to be sorted

(1 < =N1 < =N2)
N2 	last item in array to be sorted

(N1 < = N2 < = size of A)
Output variables:
A$(N) sorted array
Temporary variables:
Z, Z$, I

A note of temporary variables used within a
subroutine is useful to avoid conflicts between
modules or with the rest of the program. It is
also useful to reserve some letters specially for

temporary variables. For example ZO to Z9
could be used. This also avoids wastage of
variable space.

If you get this sorted out early on in the
design of a program then you will save yourself
a great deal of trouble later. Many program
errors or bugs are caused by variables being
corrupted— that is, changed in value—when
you were not expecting it. But if you follow the
method above you shouldn't have any trouble.

Writing down the list of variables is also
useful if you ever change the program later as
you will have a record of how the variables
were used. This will make it quicker to alter
the variables and also stops you introducing
extra errors into the program by corrupting
variables which are already being used for
some other purpose. Remember to make a note
of the changes along with the date.

Here, then, is the program for the bubble
sort routine. There is an explanation of how it
works and a flow chart on page 219.

1000 REM BUBBLE SORT (A$(N), N1, N2)
1010 LET Z=0
1020 FOR 1=N1 TO N2-1
1030 IF A$(1) < =A$(1+1) THEN

GOTO 1080
1040 LET Z$ = A$(1)
1050 LET A$(1) = A$(1+ 1)
1060 LET A$(1+1) =Z$

Take your structured programming a
stage further by looking at the build-
up of a bubble-sort program that
will sort anything from pool balls to
entries in a dictionary

■ KEEPING TRACK OF THE
VARIABLES

■ WRITING THE SUBROUTINES
■ HOW TO TEST THE MODULES
■ PUTTING IT ALL TOGETHER

1070 LET Z =1
1080 NEXT I
1090 IF Z=1 THEN GOTO 1010
1100 RETURN

This is a subroutine and would need to be
called from the main program. For example, to
sort items 5 to 20 the routine could he called
like this:

100 LET N1 = 5: LET N2 =20:GOSUB
1000:REM bubble sort

There will also have to be a section of program
that allows you to input the items to be sorted,
and another section that prints out the sorted
list. At this stage you should decide how you
want the screen display to look, even drawing
it out on some graph paper if that helps.

LI
PROCEDURES AND FUNCTIONS
BBC BASIC has a far better method of calling
and defining routines than most other versions
of BASIC. It does this using PROCedures and
functions that are called by name rather than
by their I.ine numbers. Indeed, you need
never use a GOSUB statement on the Acorn
computers, although it is available for compat-
ibility with other BASICS. The Bubble Sort
subroutine could be written like this:

1000 DEF PROCbubblesort(N1,N2)
1002 LOCAL NOSWAP, Z$, I
1004 REPEAT
1010 NOSWAP= TRUE
1020 FOR I= N1 TO N2 —1
1030 IF A$(1) < = A$(1+1) THEN GOTO

1080
1040 Z$ =A$(1)
1050 A$(1) = A$(1+1)
1060 A$(1+ 1) =Z$
1070 NOSWAP = FALSE
1080 NEXT I
1090 UNTIL NOSWAP
1100 ENDPROC

Again, to sort items 5 to 20 this could be called
as follows:

100 PROCbubblesort(5,20)

Notice how the input parameters—in this case
5 and 20—can be specified in the PROC
statement.

Notice also how the temporary variables
were declared as LOCAL inside the procedure.
This is a way of defining a new variable that
limits it to use within the routine itself. It
ceases to exist once the routine has been left.

The use of local variables avoids the possi-
bility of corrupting global variables—that is,
the variables used in the main program. It
doesn't matter if a local variable has the same

name as a global
variable, because they
are kept quite separate.

Procedures can be used in
place of any subroutine
that can be called using the GOSUB state-
ment. However, if only one output variable is
needed then a function can he used instead. In
the Bubble Sort there were many output
variables—in fact, the entire sorted list. But
the next example returns only one variable. It
tells you the day of the week (from 1 to 7) for a
particular date:

1000 DEF FNdayofweek(DAY,MONTH,YEAR)
1010 LOCAL KY
1020 IF MONTH > 2 THEN GOTO 1060
1030 M = MONTH + 10
1040 Y= YEAR —1
1050 GOTO 1080
1060 M = MONTH — 2
1070 Y = YEAR
1080 = (((26* M — 2) DIV10) + DAY + 6 + Y

+(Y DIV4) +1)MOD7 +1

To use this function you will need some extra
lines to let you input a particular date and to
print out the result:

100 INPUT DAY,MONTH,YEAR
200 PRINT FNdayofweek(DAY,MONTH,YEAR)
300 END

Note that the year must be input as, for
example, 84 not 1984. Of course, you'll want to
make a better screen display than this. But
Lines like this are useful for testing—
which is what you must do next in any case.

LI
TESTING THE MODULES
Each of the modules in your original design
should eventually become a subroutine in your
program. This method of breaking up the
program helps during the testing stage, as each
of the modules may then be tested or debugged
individually. The idea is to set up the input
variables, call the subroutine and then examine
the results. Taking the Bubble Sort routine
again, you can test it like this:

8 INPUT "NUMBER OF ITEMSLI";N
10 DIM A$(N)
12 PRINT "INPUT ARRAY ITEMS"
14 FOR 1=1 TO N: INPUT A$(I): NEXT I
16 INPUT "RANGE TO BE SORTED ";N1,N2
18 GOSUB 1000
20 PRINT "SORTED LIST:"
22 FOR 1=1 TO N: PRINT A$(I) : NEXT I
24 GOTO 16

The above program will work on the Dragon
but you need an extra command to clear
enough memory space:

6 CLEAR 1000

On the Spectrum change Line 10 to:

10 DIM A$(N,10)

And on the ZX81 you'll also have to split up
the multiple statement Lines and change Line
8 to:

8 PRINT "NUMBER OF ITEMS"
9 INPUT N

On the Acorn computers change the semi-
colons in Lines 8 and 16 to a comma and
change Line 18 to:

18 PROCbubblesort(N1,N2)

In a complex program it would be impossible
to test every case of input and output. It would
literally take thousands of years to run. How-
ever, borderline cases should be checked to
make sure that the program detects them
correctly. For example, the following routine
should be checked for input values of 0, 1, 99
and 100.

1010 INPUT "ENTER A NUMBER (1 — 99)",N
1020 IF N < 1 OR N > 99 THEN GOTO 1010
1030 RETURN

(On the Acorn computers, use a comma in
Line 1010 instead of the semicolon.)

It is a good idea to make sure that you have
run every line of your program at least once
during the debugging stage. So all conditional
branches such as IF statements should be
checked with the condition both true and false.

PUTTING IT ALL TOGETHER
Finally all the modules should be linked
together and the program tested as a whole.
This is known as program integration. If time
and care have been taken in the earlier stages
then this process should be relatively painless.
However, if problems do occur, any suspect
modules should be rechecked and altered as
necessary. At last, then, you should have a
perfectly structured program that does exactly
what you want.

So, to refresh your memory, the rules for
writing a structured program are:
1. Write a general description of the program.
2. Break this down into modules for as many
levels as necessary.
3. For each module draw a flow chart and
define the input and output variables and any
other effects such as the screen display.
4. Write the programs for each of the modules
using the structures described in part 1.
5. Test each of the modules by supplying
inputs and checking the results and outputs.
6. Combine all the modules together and test
the entire program—it should work!

And in case you'd forgotten, the reasons for
going to all this trouble are: readability, testa-
bility, changeability, reliability and
portability—a lot of ability!

Structured programs are easier for yourself
and others to follow. They are easier to debug
and modify. They are more likely to work and
they are also easier to convert to run on other
computers. If you are aiming for any of these
then you should use structured techniques.

HOW THE BUBBLE SORT WORKS
The bubble sort program was used to show
how a module can be built up, and then tested,
before linking it into the main program. Sort
routines are very useful in all types of program.
This one sorts words into alphabetical order,
but it could equally well be used to sort
numbers into numerical order. Simply change
the string variables Z$ to Z, and the string
array A$() to A().

The computer reads through the list com-
paring pairs of items at a time. If they are in the
correct order it leaves them alone. If they are in
the wrong order it swaps them round. It keeps
going through the list making more swaps until
all the items are in the correct order.

To see how the program works in detail it's
best to compare it with the flow chart. The first
part of the program (not on the chart) finds out
the number of items in the list—N—and sets
up an array called A$() with enough space for
N items. Lines 12 and 14 get you to input the
words—which are then stored in the array—
and Line 16 asks which ones you want sorted.
If you want to sort the whole list, type 1, then a
comma, then whatever N is. The subroutine
itself is called at Line 18.

The routine starts by setting Z equal to
zero. Z is known as a flag and it records if any
swaps have been made. Line 1020 creates a
loop to run through the list. The numbers
make sure each pair is compared once. Line
1030 compares the first two words, and if they
are in the right order the program jumps over
the swap routine and goes on to the next pair.

Lines 1040 to 1070 are only reached if the
words were in the wrong order. The first
word is put in a temporary variable Z$. The
second word is moved up one position, then
the first word is moved back into the array—
down one position. Z is then set equal to
one to show that a swap has been made.
Line 1080 sends the computer back to com-
pare the next pair of words.

Once all pairs have been com-
pared the program gets to Line 1090.
If Z =1 it means at least one swap
was made so it goes through
the list again. If no swaps
were made then the list is
in the correct order,
the subroutine ends
and Lines 20
and 22 print out the sorted t.

Bubble sorts are slow but they are useful
for small amount of data. Any words or
numbers that are in the wrong order are
swapped over and gradually bubble up to
their right place

A joystick is one of the cheapest and
most versatile alternative control
systems you can buy—whether you
just want to enhance your games
playing or put it to more serious use.

Although home computers have rapidly grown
in sophistication, one thing they still cannot do
is to give themselves instructions on what to do
next. Telling the computer what to do will
always be the responsibility of the user. And
learning how to communicate with the
computer—or how to write programs that
make it easy to do so—is part of what makes
using a computer so interesting and so
instructive.

Although computer designers are hard at
work on alternatives, the main method of
communicating with the computer is still one
that dates back to a time when computing was
in its infancy—the keyboard. There are many
reasons why this is less than ideal—not least
the fact that it is a rather slow and laborious
system, and that you have to learn typing skills
along with learning to use the computer.

For the moment, if you want to write
programs, then there is no real alternative to
the keyboard. But this is not the only thing that
the keyboard is used for. You have already
seen how to write programs that ask the user to
communicate instructions to the computer
(pages 129 to 135). Getting the computer to act
on user responses is a feature of everything
from arcade games to business programs. And
once again, the way it receives
these responses is through
the keys.

But there are two types of response here. On
the one hand there is the verbal or numerical
response, where the computer asks you to
INPUT something like 'Name and date of birth',
and expects a reply like 'Harold Smith 9.7.53'.
The second type of response is an analogue,
where given keypresses do not produce the
letter that they are normally assigned, but have
been given some other quite different
function—such as pressing an X to move a
cursor to the right and a Z to move it to the left..
You have seen how to program your computer
for both of these kinds of response in the
articles on page 129 and on page 54.

The first kind of response is obviously tied
very closely to the keyboard and the need to be
able to give the computer precisely different
letters and numbers. But the second type has
no such obvious link, and it is hardly very
user-friendly programming to expect someone
unfamiliar with the keyboard to tie their
fingers in knots trying to remember where the
P that they need to press to move up is, at the
same time as hitting F to fire the gun!

Fortunately, there is an alternative. Joyst-
icks for popular home computers are an
inexpensive peripheral that open up whole

new areas of control and communication.
They are perhaps unfairly associated with
games playing only—and while this is their
most familiar use, it need not be their sole
function.

With proper programming, even the hum-
blest of arcade-game type joysticks can take
over many of the roles traditionally reserved
for the keyboard, and so point the way to the
future, with real user-friendliness.

For example, in a graphics program, it is
perfectly possible to use a joystick or similar
control to guide a cursor that draws on the
screen—a program to do this under keyboard
control is on page 132—or even selects a colour
from a 'paintbox' displayed on the screen. A
joystick could even be used to take over some
of the functions of the keyboard in giving
verbal responses, with a little bit of rethinking
on the part of the programmer. An example of
this is a feature of many arcade games, which
have a 'hall of fame' displaying players names
and their high scores. The names—a verbal
response—are actually INPUT by using the
joystick to scan across the letters of the
alphabet, then 'firing' to select the correct
ones. With a little imagination on the part of
the programmer, it would be easy to incorpo-
rate this into that 'Name and date of birth'
routine, or at another level, offer the choice
between a menu of program options, say.

So much for the potential of one of the
cheapest and most versatile peripherals. In a
future article, you will see how to program
your computer to operate under joystick con-
trol, ready to push back the boundaries of
user-friendly programming—or to add to the
enjoyment of arcade games! But first, a look at
the hardware that's available to you.

TYPES OF JOYSTICK
Not all joysticks are suitable for every com-
puter. You will need to ensure that whatever
you buy is compatible for your machine—as
covered later in this article. There is a further
rctriction, and that is that if you buy commer-
cial software, on some machines you need to
ensure that it is written for the joystick you
buy. But within these basic limitations, there is
a number of choices.

■ COMMUNICATING WITH THE
COMPUTER

■ USING A JOYSTICK
■ JOYSTICK, TRACKER BALLS

AND MICE

■ HOW JOYSTICKS WORK
■ ANALOGUE OR DIGITAL
■ CONTROLLING THE COMPUTER
■ CHOOSING THE RIGHT JOYSTICK

FOR YOUR COMPUTER

The simplest type of joystick has a case with
a stick which you can move to left and right, up
and down and diagonally, plus a button—the
`fire' button, although it can actually be used
for anything from making a games character
jump, to selecting a letter or dropping a bomb.

For a price, there is plenty of elaboration on
this basic theme. For example, some joysticks
have multiple fire buttons. These can simply
allow more comfortable play, or aid left-
handed players. With suitably-written
programs, they might also be given different
functions—such as one to shoot and one to
drop a bomb, or one to file and one to edit, for
example. Some models are specially (`ergo-
nomically') shaped to fit the hand, giving a
firmer, more comfortable grip, and more pre-
cise control. One style is shaped as a pistol
grip, complete with trigger in some cases.

But the joystick family includes some de-
vices where the latest designs do not even look
like joy sticks. For example, there are pointers
that use gravit to detect small movements in

the user's hand as he or she indicates a.screen
location. These pointers use mercury switches.
As the stick is tilted- the mercury tips to one
end of the switch and so makes or breaks
contact. They are extremely sensitive—often
too sensitive for games unless the software is
specially written. There are also touch-
sensitive pads that analyze the finger pressure
of the user to indicate a direction.

Yet another type is the tracker ball. Origin-
ally developed for military and avionics applic-
ations, these were soon adopted for commer-
cial arcade games machines, and are now -
finding their way into the home computer
market. Control is by means of a ball which
protrudes above the surface of the case, which
can be rolled in any direction with the
fingertips.

At their most sophisticated, such control

devices lead on to systems designed for pro-
fessional and business use. A feature of many
of the latest business computers is a 'mouse'.
This is very like an upside-down tracker ball in
some cases, although there are also versions
that work on other systems. The mouse works
by rolling the device over the surface of the
desk or a pad. Movements of the mouse are
translated into movements on the screen. It is
the text cursor that's moved and the mouse
really takes over operation of the cursor keys.
They allow quick movement around the screen
to alter data, say, or to select items from a
menu. Selections can be made with buttons on

the top of the case. Unlike normal joysticks
they are not generally used for drawing on the
screen or for controlling movement in games.

Graphics tablets are for drawing. Sensors
built into the 'pen', or the pad itself allow
realistic direct 'drawing' for commercial
graphics applications, although they are also
becoming available for domestic use. Light
pens allow direct 'drawing' on the screen, and
are also popular for home computers.

HOW THEY WORK
Although they may seem widely different at
first sight, all of these devices in fact work in a
similar way. In all of them, movement is
translated into a changing pattern of electrical
signals that can be 'read' by the computer.

As with all electronic devices, joysticks can
be either digital or analogue—although your
computer will only be compatible with one or
the other—see below. In the digital type, there
are a number of electronic 'switches' which are
opened or closed to form a unique pattern of
binary digits that is dependent on the position
of the control. Analogue types contain potent-
iometers (variable resistors). Movement
changes the voltage passing through these to
give a unique combination for each position of
the control.

In appearance, the two types of simple
joystick are usually easy to differentiate. In the
analogue type, there are two potentiometers
set at right-angles and operated through a
mechanical linkage. The stick itself, as a result,
is not centre-balanced, but remains in whate-
ver position it is left by the user. Conversely,
digital types are usually centre-balanced, and
when released, spring back automatically to
the central, or neutral, position. This is not an
absolutely fool-proof test, however, since there
are a few centre-balanced potentiometer types.

Although you have little choice in the
matter of which type you buy, because of the
compatibility problem, there is a distinct
difference between the feel of these two sy-
stems. Centre-balanced types are stiff and
usually only move a small distance. This adds a
certain realism, because greater effort is met by
greater resistance, but it does have the disad-
vantage of tiring your hands. However, the
effect of either type on the computer is
controlled more by the program than the
joystick itself. Generally, a well-written
program can make the joystick responsive and
easy to control. For example, the program
determines whether a slight movement of the
stick away from the neutral position causes a
slow, slight movement on the screen, or a fast,
continuous one.

Touch pads consist of a pair of plastic
sheets, held a slight distance away from one

another. On these sheets are laid down a fine
grid of resistances or conductive paths, and
these are , oriented at right angles to one
another between the two sheets. Touching the
pad at any point lays down a unique voltage
pattern that can be scanned by the computer.
Some graphics tablets also work like this on a
larger scale although there are several different
systems. However, it can prove difficult to
manufacture a uniformly-sensitive touch pad.
A disadvantage in use is that if the surface gets
soiled—finger patches are common—
movement may become erratic due to skidding
across the pad.

Tracker balls offer the advantages of being

extremely light to operate, because the ball has
no direct mechanical connection to the sensing
system. It is supported on rollers which are
free to turn in two directions at right angles to
one another. As the ball is spun, in whatever
direction, it turns one or both of these rollers
by a certain amount. The rollers are then
either connected to potentiometers or to a
digital sensor—one system uses a rotating disc
to...interrupt the beam of light from an LED
falling on a phototransistor, then counts the
pulses. Whichever system is used, once again,
the computer is able to interpret the electrical
signals in terms of a particular pattern of
movement on the screen.

Joysticks can sometimes be the cause of
annoying 'crashes' or LOADing problems
that are all too easily blamed on the
software or on the cassette recorder.
Make sure that your joystick is securely
plugged in before you try to LOAD the
tape—and on the Spectrum check the
security of both the interface and the
joystick connections. Also on the Spec-
trum, check for compatibility with the
joystick that you are using—see main
text.

OPERATING THE COMPUTER
On page 132, you saw how a program can be
written to allow control through pressing
certain keys for certain functions. This is very
simple to do, using the BASIC commands
GET$ or INKEY$, which scan the keyboard,
looking for a particular signal which indicates
that one or other of the keys has been pressed.
If the computer finds a particular keypres€,
then it will carry out a further operation as
instructed by the program—such as moving a
missile base to the right if an X is pressed.

Essentially, the operation of the joystick is
similar to this. However, the keyboard is an

integral part of the computer, while the joy-
stick is not. So the joystick has first to be
connected to the computer through a suitable
port, or series of terminals, by which the
computer can communicate with the outside
world. Then the computer has to be pro-
grammed to scan those terminals, looking for a
particular signal which means that the joystick
has been moved to the right, say.

This is relatively straightforward, and in a
later article in the series you will see how to
write a program which will do this, transferr-
ing control completely to the joystick. But you
can see why this raises problems of compati-
bility. Firstly, the joystick itself must be able to

connect to the computer's port—either direct-
ly or through some type of interface. Then, the
programmer must know what signals the
joystick will present at which terminals, or it
will not be possible to program the computer
to look for these.

The results of such a system could be
impossibly confusing, but thankfully there are
some standards which different makers follow
to a greater or lesser extent, and for each micro,
there is a definite set of rules. The commonest
standard, which has become virtually univer-
sal, is the Atari joystick, which is a centre-
balanced type. Many manufacturers offer an
Atari-compatible joystick, and many com-
puters are designed to accept these joysticks.

To begin with, the Commodore 64, Vic 20
and the Spectrum work with centre-balanced
(digital) type controls. The BBC, Dragon and
Tandy use non-centre-balanced (potent-
iometer) types—although some centre-
balanced potentiometer type sticks are avail-
able. But within this, there are still important
individual differences between the machines in
any group. The most important of these
concern the interfacing.

INTERFACING
As with any computer peripheral, joysticks
need to be interfaced with the machine. The
interface may be part of the computer's hard-
ware, or it may be a separate device.

Where you are able to plug a joystick
straight in, manufacturers commonly incorpo-
rate an Atari-type interface into the computer,
which will then accept any joystick which is an
Atari-compatible model.

The other choice is to provide one or more
analogue ports, which are compatible with
potentiometer-type sticks. This is a little less
common, because it means that two analogue-
to-digital converters have to be built in for
each joystick that is to be used.

Choosing a joystick for a Spectrum micro is far
more difficult than for the other machines, as
the choice is the widest of all. There are so
many very popular Spectrum joysticks, that
some commercial software even has a menu
before you start, allowing you to choose which
of maybe four or more models of joystick you
wish to use with the game.

The differences in fact lie not so much with
the joysticks themselves as with the
interfaces—because Sinclair do not provide a
joystick interface with these computers. Before
a joystick can be used, an interface has to he
connected to the edge connector that prot-
rudes from the back of the machine. Spectrum
owners have to purchase the interface as well,
which approximately doubles the cost.

The interface is usually housed in a separate
box which sits at the back of the machine in
direct contact with the terminals of the edge
connector in the user port. There is also a type
which is built into the case of the joystick itself,
with a separate connector on the lead, but
these are far less common.

Some of the Spectrum joysticks are Atari-
compatible, but different joystick standards
address different terminals in the user port.
The software looks at particular terminals for
the incoming information from the joystick
interface, so unless the correct standards are
used, the Spectrum will be looking in the
wrong place for the joystick information.

This leaves a problem for Spectrum owners
with a big collection of commercial software—
in that not all of it may be written to suit a
particular joystick standard. It's a good idea to
check all the software you own, or want to buy,
before you purchase a joystick, and make a list
of the standards that are compatible with your
software. If you are lucky, there may be a
universally compatible type in the list, but it is
just as likely that there will not be. If there is
no common type, you have four choices.

The first is to forget about using some of
your software with a joystick at all, which is
clearly a very poor choice, but the only way in
which you will avoid having to spend more
money than you perhaps bargained for. There
is an alternative, though it is not a conventional
joystick—a mechanical stick which fits over
the keys and operates them directly.

Secondly, you can buy two or more inter-
faces. This can prove to be very expensive.

Thirdly, you can buy a programmable
interface. This is much more expensive than
the ordinary type—at least the price of a data
cassette recorder, say. But for the money you
do at least get a device that allows you to use
your joystick with any software—even with

Why are there so many different
types of alternative control
system?
Different designers and makers have tried
out a large number of alternatives to
keyboard control, systems which allow
the user to 'point' in some way or
another to give the computer its
instructions. But as yet, many of these
devices are not widely available and too
few people have tried enough different
types for there to be any long-term
evaluation of the merits of one design
over another.

Also, most of the devices were
developed for specific applications and to
meet particular needs, such as the
graphics tablet of the computer graphics
industry, or the joystick and cursor disk
on some word-processors, for example.
The use of the equipment has then often
diversified into other areas where it is
more of an unknown quantity.

Generally, for home use, the simple
joystick has so far proved to have the best
balance of performance against cost 111
although the balance is shifting, to se
some of the other types becoming
much cheaper and more freely
available.

games that do not offer a joystick option.
These devices work by addressing the ports
used by the keyboard and allow you to define
which keys will be activated by the joystick.
This gives the user the capability to fool the
Spectrum into believing that the joystick
movements are, in fact, keypresses. The main
disadvantage of the programmable interface is
that you need to reprogram it every time you
use it with a different standard.

The fourth option is to purchase compati-
bility cassettes which allow the use of different
joystick standards. These are about the price of
a game, and effectively allow you to add a
joystick option to any commercial software.
Their greatest disadvantage is that you have to
load two cassettes every time you want to use
your software.

Sinclair's own interface, the Interface 2,
allows you to connect two joysticks at once, so
letting two players play against each other
when the software is written to include this
option. It also allows the use of ROM-based
software cartridges, which have recently

become available to Spectrum users. Unfortu-
nately, there is currently very little software
that is compatible with this interface, so you
may find your favourite game is unsuitable.

The ZX81 is far from the ideal games machine.
However, like the Spectrum, it can be inter-
faced for a joystick—and the operation of the
interfaces is similar to those described above.
But the cost of these may well be almost as high
as the cost of the computer itself.

KK
The Commodore 64 and the Vic 20 both have
a pair of digital joystick sockets. This allows
two players to compete with each other when
the program is written to make use of this
facility. Since the sockets are both connected
through an Atari-compatible interface, this
means that Commodore users have plenty of
choice between the joysticks of this type on
offer from various makers.

El MI
I he BBC computer uses non-centre-balanced

potentiometer-type joysticks which plug dir-
ectly into the analogue port. The Dragon and
Tandy are similar, but the joysticks which fit
these machines are not suitable for the BBC
computers, as the manufacturers have chosen
different plugs to go with their joysticks.
There is little choice for Dragon owners,
although Dragon Data do make their own
stick. Electron owners can buy special inter-
faces compatible with Atari-type sticks.

BUYING A JOYSTICK
The first, and most important, thing is to make
sure that whatever you buy is compatible with
your computer—and, for Spectrum users, with
your software as well.

Then think about how much you want to
spend—and again if you are a Spectrum
owner, bear in mind that the interface may well
cost as much as the joystick, or even more. The
simplest sort of joystick costs about the same as
a game, while the more elaborate types can cost
twice and three times as much. At the opposite
end of the scale, for about six times the cost of
the cheapest joystick, you can afford the
cheapest tracker ball—although the most ex-
pensive can cost as much as the computer!

Where possible, if you are buying from a
dealer and not by mail order, ask for a
demonstration. Comfort and convenience are
very subjective things, and what might be one
person's ideal joystick might not suit someone
else at all. Remember that if you are keen on
games the joystick might well be subjected to
hours of gruelling use.

TAB
Tables, multiplication
Tank, controlling and

creating a
Teletext graphics, BBC
TesCainating numbers
Timing
Twos complement

U
UDG, definition of

grids for
DATA for
creating your own

117-122
5-7

10-15
28
34

97, 101-103
179-183

8-15, 40-44
8-11

45
38-45

V
VAL, Commodore 64 	 101
Variables 	 3-5, 92-96, 104-108
VDU command, Acorn 	28-29, 70, 99
Verifying saved programs 	24-25
VIC chip memory locations

Commodore 64 	 172

H
Helicopter, building a

Commodore 64
Hexadecimal
HIRES, Commodore 64
Hobbies file
House, drawing a

Acorn
Commodore 64

31
38, 42, 45, 156-160

87
46-53, 75-79

107-108
108-109

IF ...THEN
	

3, 33-37
INK, Spectrum
	

86
INKEY, Acorn
	

28-29, 103, 134-135
INKEYS
	

54-55, 132-135
INPUT
	

3-5, 117-122, 129-135
INPUT prompts 	 130-131
INSTR
	

206
INT, Commodore 64, Spectrum 	2-3

J
Joysticks 	 220-224

K
Keypress, detection of

	
54-55

Keywords, spelling of
	

19

66
113-116

80-83
38-45

156-160
65-67

208-215
179-183
111-112
110-116
208-215

8-15
68-75, 193-200

208-215
202-207

97-99
71, 88-90
26-32, 59

180-183

19
10-15, 23

111
96

110-116

64
62
67
35

35-36

64
133

88
101, 108

59, 101
22-25

220-224
84

88-89
90
71

15, 99, 108-109
13, 40, 101

101
117-123

26-32, 117-123

26-27
8-9, 31-32

11, 28
30

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Anagram program
AND
Animation
Applications

family finance
hobbies' files
letter writer

Assembly language
Assignment statement
ATTR, Spectrum

B

C
Cassette recorders, choice of
Castle, drawing a

Dragon, Tandy
Christmas program

Acorn
CHRS, Dragon, Tandy
CIRCLE
Clock, internal
COLOUR
Control variables
Craps program
Cursor, definition of

control codes, Commodores

D
DATA

for arrays
for graphics
machine code
statements

Decimal
conversions from binary
converting fractions into binary

Decision making
Delays in programs
DIMensioning an array
DRAW
DraWing letters, Dragon, Tandy

E
Egg-timer program
ENDPROC, Acorn
Error, causes of

F
Family finance program
File, saving and loading a
Filing system program

Flow charts
	

173-178
Flying bird sprite, Commodore 64 168-172
FOR ...NEXT loop
	

16-21

G
Games

aliens and missiles
	

144-151
animation
	

26-32
arrays for games
	

155
bombing run program
	

161-167
controlling movement
	

54-59
firing missiles
	

55-58
fruit machine
	

36
guessing
	

3-5
levels of difficulty
	

193-200
maze game
	

68-74
minefield
	

97-103
moving characters
	

54-59
random mazes
	

193-200
routines
	

8-15
scoring and timing
	

69-73
space station game
	

144-151
visual explosions
	

161-167
GET, Commodore 64
	

55, 132-134
GETS, Acorn 	55, 57, 58, 103, 132-134
GETZ, Commodore 64, Vic 20 	135
Golf-course, drawing a

Acorn, Spectrum 	 184-191
GOSUB 	 62-64
GOTO 	 18-21, 60-62
Graphics

characters 	 38-45
creating and moving UDGs 	8-15
drawing on the screen 	 132-133
drawing pictures 	 107-109
explosions for games 	 161-167
fire-breathing dragon 	 80-83
frog UDG 	 10-15
instant embroidery 	 21

	

24 	low-resolution 	 26-32
painting by numbers 	 19

	

108 	refining your graphics 	 184-192
sunset pattern 	 20

	

64
	

tank UDG 	 10-15

	

26-27
	

using PLOT, DRAW,
86-91
	

CIRCLE, LINE, PAINT 	85-90

	

69-73
	

also see animation;

	

87-90
	

movement; ROM graphics;

	

94
	

teletext; UDG.
63

7
123

154-155
107-109

67
8-14, 40-45

38, 42
114

33-37
17

152-153
85-91

191-192

176-177
64
36

L
Languages, computer

see Assembly language;
BASIC; Machine code

LEFTS
LEN
Letter writing program
LINE, Dragon, Tandy
Line numbers, in programs
Logical operators
Lower case letters,

Dragon, Tandy

M
Machine code

advantages of
binary numbers
drawing dragon with
games graphics
hexadecimal
low level languages
memory maps
negative numbers
nonary numbers
number bases
ROM and RAM
speeding up games routines

Maze programs
Memory
MIDS
Minefield game
MOVE, Acorn
Movement

N
Negative binary numbers,

conversion program
Nested loop, definition

and use of
NEW
Nonary numbers
Null strings
Number bases

0
ON... GOSUB
ON ... GOTO
Opcodes
Operators
OR

P
Parameters
Password program
PAUSE

Commodore 64
Spectrum

PEEK
Peripherals, cassettes

Joysticks
Pixel
PLOT
PMODE, Dragon, Tandy
POINT, Acorn
POKE

Commodore 64
Dragon, Tandy
Spectrum

Positioning text
PRINT
PRINT AT

Dragon, Tandy
Spectrum, ZX81

PRINT TAB, Acorn
Commodore 64, Vic 20

PROCedures, Acorn
	

64

Program

	

65 	BASIC 	 8
BREAKing into 	 4, 7, 11
line numbers 	 7

	

202-207
	

punctuation of 	 4

	

202-207
	

slowing down 	 17

	

124-128
	

PSET, Dragon, Tandy 	 13, 90-91
88-91
	

Punctuation, in PRINT statements 119-123
7

	

35-37
	

R

	

142 	RAM 	 25, 44, 46, 208-215
Random numbers 	 2-7
Random mazes 	 193-200
READ 	 40-44, 104-109
REPEAT...UNTIL, Acorn 	 36
Resolution, high and low 	 84
RESTORE 	 106-107
RETURN 	 62
RIGHTS 	 202-207
RND function 	 2-7
ROM 	 208-215
ROM graphics 	 26-32, 107-109
Running man, building a,

Acorn 	 28-29
RUN/STOP, Commodore 64, Vic 20 	7

S
Satellite, building a

Dragon, Tandy 	 26-27

SAVE 	 22-25

Scoring 	 97, 100-101

SCREEN, Dragon, Tandy 	40, 90

Screen drawing program 	132-133

Screen formatting 	 117-123

Shell, firing a 	 10-15

Ship, drawing a
Dragon, Tandy 	 191

Simons' BASIC, Commodore 64 	87-88

Snow scene, Commodore 64 	186-188

Spaces, using
Commodore 64, Vic 20 	 122

Sprite, Commodore 64 	14, 15, 168-172

STEP 	 17, 21

STOP, Spectrum, ZX81 	 4, 64

String functions 	 201-207

String variables 	 4-5, 95-96

STRINGS 	 98, 205

Structured programming
173-178, 216-219

Subroutines 	 62-63

203
35-36
26-32

136-143
46-53, 75-79

124-128
66-67

66-67, 92
68-69

BASIC 	 65
BASIC programming

arrays 	 152-155
decision making 	 33-37
how to PLOT, DRAW,
LINE, PAINT 	 84-91
inputting information 	 129-135
programmer's road signs 	 60-64
READ and DATA 	 104-109
random numbers 	 2-7
refining your graphics 	 184-192
screen displays 	 117-123
strings 	 201-207
structured programming 173-178, 216-219
the FOR ...NEXT loop 	 16-21
variables 	 92-96

Binary 	 38, 41, 44, 45, 113-116
negative numbers 	 179-183

Breaking out of a program 	 4
Bridge, drawing a

Spectrum 	 108
Bubble sort program 	 216-219
Byte, definition of 	 114

136-143
77

46-53, 75-79

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

The MICROPROCESSOR controls
your computer, but how does it work?

Brighten up your Dragon or Tandy
with some COLOUR UDGs

USee how SIN and COS can improve
your drawings

4—i Learn how to get the most from your
computer with PEEK and POKE

/-1 Add some SOUND EFFECTS and
liven up your games routines

Find out all about PRINTERS and
what each type can do

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

