
A MARSHALL CAVENDISH 15 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROG 	G - FOR FUN AND THR:'

Vol. 2 	 No 15

PERIPHERALS

TV VERSUS MONITOR 	 445

Is a monitor really worth the expense over
an old portable television?

BASIC PROGRAMMING 34

MAKE MORE OF YOUR UDGS 	 450

Find out how to expand your machine's UDG
capability—and what to use it for

BASIC PROGRAMMING 35
■Irmr===am.R F

PROTECT YOUR PROGRAMS 	 458 3
Conceal the secrets of your programming
techniques from prying eyes

GAMES PROGRAMMING 15

PROGRAMMING FOR JOYSTICKS 	464

How to put your games under outside control—
plus the start of a new shooting game

BASIC PROGRAMMING 36

HISTOGRAMS AND PIE CHARTS 	470

The techniques of creating more colourful
visual displays of data and statistics

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Kuo Kang Chen. Page 445, Malcom Harrison. Page 446, Kuo Kang
Chen. Page 448, Stan North. Pages 450, 452, 454, Artist Partners/Gary Keane.
Page 458, 461, Graeme Harris. Pages 464, 466, 469, Chris Lyon. Page 470, 472.
475, Digital Arts.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (145.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
'NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by L1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries–and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V WA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64. .

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and and + 1-mIc-- COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ 	DRAGON 32 and 64

D(81 	VIC 20 	TCOLODUYR COMPUTER

■ HOW TVS AND MONITORS WORK
■ TYPES OF SIGNAL INPUT
■ COLOUR VERSUS MONO
■ PICTURE SHARPNESS
■ MAKING A CHOICE

Making a choice between a quality
TV and monitor can be difficult, but
for anything but casual use there
can be only one option. Here we
look at some of the general
differences between the two types

The screen is a vital part of any computer
system, even if in many respects it is seen as
more of a workhorse than a sophisticated piece
of electronics. The screen is the main channel

through which the computer communicates
with us. Information flows the other way, from
user to computer, usually through the key-
board and the screen also displays a record of
the information that's been typed in.

Whether you are in the fortunate position
to be able to choose a new screen, or just want
to get the best out of what you have, it is
worthwhile—if not essential—to know some-
thing about how a screen works and how a
computer controls video output. This in
particular will affect your choice.

FIRST PRINCIPLES
Although there are several different ways in
which information is transferred from the
computer to the screen, there is one feature
common to all types of screening used in
business, industry and home—the cathode ray
tube, otherwise known as a CRT. Cathode ray
tubes work because certain phosphor com-
pounds glow when hit by a stream of electrons.

Fire a stream of electrons from a gun at a
sheet of glass coated with phosphor and

wherever the gun is aimed the phosphor will
glow. Sweep the gun back and forth across the
sheet of glass so that the whole screen is
bombarded by electrons and the whole screen
will glow. Wave the gun in a figure of eight
and a figure of eight will appear on the screen.

A cathode ray tube is a vacuum-filled glass
cone with an electron gun at one end and a
base coated with phosphor.

Imagine a piece of card with the shape of a
man cut out of it, held between the gun and
the screen. The screen would only glow where
the of electrons was not blocked by the
card. Consequently the area of phosphor
glowing on the screen would resemble the
shape of a man. The same effect could be
achieved by switching the electron gun on and
off at the right times—when it is pointing to
the desired spots on the screen.

This is exactly how a TV works and how all
but a few specially-built monitors work. An
electron gun sweeps back and forth across the
screen 625 times to create 625 lines. (In fact it
sweeps across 313 times first and then fills in
the 312 gaps between those lines.)

There are no mechanical parts, the aiming
of the stream of electrons is done by using
magnetic fields. That's why it's very unwise
to let any magnetic media—tapes or disks—
get anywhere near a TV set. An image is
formed by switching the electron gun on and
off. All that the signal received by the TV or
monitor does is tell the electron gun when to
switch on and off.

Rather than sweeping across the screen in
what is called a raster scan, a few monitors
produce a picture by guiding the electron
beam around the screen a little like a pencil,
following the lines of the image. Although
this produces excellent quality results it is
much too slow for general use. Even with the
electron beam moving across the screen at the
normal 25,000 or so miles per hour, the
human eye would find a picture of any
complexity produced by this method highly
unsatisfactory.

PERSISTENCE OF VISION
It is one of the characteristics of the human
eye which might, in other circumstances, be
considered a failing that enables us to use the
cathode ray tube to communicate visually.

The human eye retains any image that hits
the retina for about one twenty-fifth of a
second. The electron gun at the back of the
cathode ray tube inside the vast majority of
TV sets and monitors sweeps back and forth
across the screen 625 times every fiftieth of a
second. This means that a new picture or
`frame' appears on the screen fifty times a
second. A new image appears long before the

old one has faded from our eye. Therefore we
see an image that moves smoothly.

If our eyes retained an image for only one
hundredth of a second we would see an image
that flickered very badly.

COLOUR
The principle is the same for both monoch-
rome and colour sets. The only difference
between them is that only one electron gun
and one kind of phosphor coating is required
for mono sets while colour sets require three
different sorts of phosphor coating and usu-
ally three different electron guns (there are
sets with just one gun, but firing three streams
of electrons).

Colour is produced because one coating of
phosphor glows red, another green and the
other blue. One stream of electrons activates
the red phosphor, another the green phosphor
and the third the blue phosphor. By combin-
ing red, green and blue in different strengths
and combinations, all other colours and inten-
sities can be built up.

SIGNAL INPUT
Screens, whether TVs or monitors, colour or
black and white, can accept three kinds of
input. First of all, there is the standard
broadcast signal, the sort of signal accepted by
TV sets and which produces standard TV
pictures on the screen. Then there is the input
which is usually called composite video. This
signal is the one most commonly used for

Viewing conditions

With both a monitor and TV you can do
much to optimize viewing conditions:

You can reduce eyestrain by using light
coloured characters against a black back-
ground. To improve sharpness, play about
with the contrast and brightness controls.
You can usually eliminate colour fringeing
simply by turning the colour signal down or
off—after all, you don't require colour for
word processing.

Try to position your work desk—or
TV/monitor itself—so that the screen does
not reflect lamplight or window light.
Sometimes you may find wearing dark
clothing a help. You can further minimize
the effects of reflections by looking slightly
down at the screen rather than keep it
square and at eye level or higher.

monitors and there are now some TV sets
which have a facility for accepting these
signals. The signals contain picture inform-
ation plus synchronization pulses.

Finally there is RGB input. The letters
stand for Red, Green and Blue and it is the
most direct and, therefore, accurate, form of
colour input. Information about each colour
is fed from the computer to the monitor
separately.

The composite video input is a halfway
house between broadcast and RGB input. It
is, however, much better than the broadcast
TV signal. This signal must first of all be
translated inside the TV from an electrical
signal. Inside the TV the signal needs to go
through more processes involving modula-
tion and amplification before it becomes a
picture. Obviously the more stages a signal
needs to go through, the greater the chances
of noise and distortion.

BANDWIDTH
There are some interesting but complicated
technical reasons why a TV set cannot give
such good resolution as a monitor. A TV set,
for instance, cannot handle information which
requires a bandwidth more than 5.5 MHz. This
is fine for a 40 column display but for
satisfactory definition in 80 column displays, a
bandwidth in excess of 10 MHz is required.

Monitors are specifically designed to accept
such a bandwidth. The input for most moni-
tors available for the home computer market is
a composite video signal and a monitor does
not require the tuner and modulator necessary
in a TV set. Because it needs much less
processing, the composite video signal from a
computer is usually much 'cleaner'.

When people talk about a 'good' picture on
a screen they are usually referring to reso-
lution and colour. Unfortunately the two
aren't always compatible. A monochrome
screen will always give higher picture defi-
nition than a colour screen. Only one dot of
phosphor is required to define a point on a
monochrome screen, while three similarly
sized dots would be required to define the
same point on a colour screen.

On a normal screen of any kind there are
something like 360,000 dots of phosphor. In
the case of a colour screen 120,000 of these
dots will need to be red, 120,000 will need to
be green and 120,000 will need to be blue.
This means that there are only 120,000 units
consisting of three dots available to make a
picture on a colour screen. But a mono screen
has 360,000 dots available to create an image.

Anyone who has worked both with a mono-
chrome monitor and a colour TV will know the
difference. The monochrome monitor is much

sharfflr and clearer wWe the colour TV gives
what is a comparatively blurred picture.

For many specialist applications a monoch-
rome monitor will be the natural choice. The
usual colour chosen for such applications—
computer aided design or wordprocessing, for
instance—is green. This is reckoned to be the
colour that's easiest on the eyes.

On a health note, the vast majority of reports
that have every been published pass the
cathode ray tube as completely safe for the eyes.
It's usually found that complaints arise from
other working conditions or are caused by
unsuitable screen colours, glare from the
screen, distraction from other light sources,
and sometimes psychological factors. But a TV
screen does flicker slightly and the screen of a
TV is usually made of reflective material which

!Often shows unwanted and distracting images.
This is one of the reasons why using a TV for
serious work requiring concentration over
long periods may cause headaches.

In order to produce a picture with the
resolution of ordinary TV or video pictures,
our computers would need to be able to control
every single dot of phosphor on the screen.
And if each pixel requires a byte of memory,
half a megabyte of memory would be necessary
to control the screen. This is obviously out of
the question as far as home computers are
concerned and would be a tremendous waste in
most applications of bigger, business and
research computers.

Most home micros allocate about 1K of
memory by dividing the screen into between
800 and 1000 squares—typically 24 lines by

40 columns. Others give you a choice between
low resolution and high resolution depending
on the chosen display modes. Note, however,
that this has nothing to do with the screen you
are using. Limitations in picture definition
and resolution are imposed by the computer
and not by the CRT.

Each one of these 900-odd squares is an
individual character cell. The computer starts
off with a character set in ROM which uses an
ASCII number to store each character. When
they are printed on the screen each character
takes up one square. In this way each charac-
ter can be stored in a single byte, representing
a huge saving in memory.

MAKING A CHOICE
The two most important factors to consider
when buying a screen are the type of com-
puter, and future applications. Although the
screen is an important element in the system it
always remains dependent on the computer.
If the graphics capabilities of the computer
are poor, then they will remain poor no matter
how good the screen. The computer is always
in control of the screen and it's important that
the screen is bought to suit the computer.

It's also important to consider what the
computer will be used for. For the best results

in applications where colour is never nece-
ssary, a monochrome monitor is a must. If
high quality colour is essential then a monitor
with RGB input is ideal although even most
professional users of micros would usually
only require composite video input. For
owners of all but the most expensive micros
the choice between RGB and composite video
monitors will remain academic for some time
to come since few micros are built with RGB
output, the Acorns being one exception.

Games, general 'fun' programming at
home and other less serious uses of computers
in the home only demand an ordinary TV set.
Though many games would look much better
on higher definition screens others are written
in the full knowledge that their graphics will
never be challenged by anything other than an
ordinary TV set. Remember, too, that
because monitors are manufactured mainly
for the business market they often don't
include such facilities as sound!

Even though they are often electronically
simpler, monitors aren't necessarily cheaper
than television sets of similar size. As far as
screens are concerned, bigger is not necessari-
ly better. In many cases it might be a lot
worse. All that happens as the size of the
screen increases and decreases is that the size

of the individual pixels increases and de-
creases. If the computer produces 960 pixels
then that's how many pixels there will be on
the screen no matter how big or small. There
isn't usually any increase in the amount of
information available on the screen and all
that happens in some cases is that a bigger
screen makes the rough edges even more
noticeable. Incidentally, remember that
screen sizes are taken across the diagonal and
do not represent the width of the screen.

Old or very cheap TV sets are not re-
commended. Often the problems which don't
seem at all serious when a picture produced
from an ordinary broadcast TV signal is
displayed on the screen can be disastrous when
the set is used in conjunction with a computer.

Overscanning, for instance, which cuts off
the sides or the top and bottom of the picture,
may not seem too serious when pictures are
displayed, but could mean that valuable in-
formation from the computer does not appear
on the screen. Another fault of old TVs is
`blooming', when one colour becomes much
stronger than the others producing a blurred
effect which can make type on the screen very
difficult to read. Usually repairs to these
faults prove expensive—it's often cheaper to
buy a better TV . . . or a monitor!

Versatile, varied—UDGs are what
you make them and are limited only
by your imagination. But to get the
most out of them, you may need to
use special techniques

UDGs have other uses far more varied than
creating just another alien. For instance, you
might want to use them to create a set of
special symbols or letters, with accents for
such as e, (page 43 shows you how to do this for
to do this for the Commodore 64). Later on in
this article you'll find how to create a variety
of new UDGs. But first you may need to get
around the limitations of your computer.

LIMITS ON UDGS
Creating UDGs is all quite simple and easy to
do, but unfortunately, some computers limit
the number of user-defined graphics charac-
ters. The Acorn machines limit you to 32
characters, the Spectrum to 21, while the
Commodore machines are less likely to pose
problems, with 256 available. The Dragon and
Tandy have no actual UDGs, but let you use
variable arrays to store details of your
characters—and so the only limit is the
number of variables, which is as good as
limitless. The ZX81 has no UDG facility at all.

If you have a Spectrum or Acorn com-
puter, there are lots of occasions when you
might want to use more than just 21 or 32
UDGs, and so these limits seem rather
inhibiting.

For example, you might want to draw a
screen display using large numbers of
UDGs—maybe a Frogger-type game, with
several different cars and lorries, motorbikes,
logs, alligators, and, of course, a frog. By the
time that you have designed all of these, you
will almost certainly have used more than 32
UDGs; and you still have to produce some
background such as river banks, or a road
side.

Or suppose that you wanted to draw a
picture of a city street. You would need
UDGs for the buildings, for the people, for
the cars and other vehicles, and for any other
details that you might want to include. The
next article will show you how to create a
complete picture.

Finally, you might well want to create an
extended range of characters,—the Greek
alphabet, for example—which would exceed
the standard number.

In other words, there are numerous occa-
sions when you might like to have more than

■ HOW MANY UDGS CAN YOU
DEFINE?

■CREATING SPACE FOR CHARACTERS
■ FINDING A SAFE PLACE IN

MEMORY FOR THE DATA

■ RESETTING CHARACTER SET ON
THE COMMODORE

AND SPECTRUM
■ CREATING NEW CHARACTERS
■ REDEFINING THE NUMBER SET

your computer's limit of UDGs. Luckily,
there are ways to increase the number pos-
sible. Each computer allows this differently.

The Spectrum has space for 21 UDGs already
reserved when you turn it on, but you can
have more by clearing an extra area in RAM
specially for them. What you do once the
extra UDGs are present in memory is to have
several 'banks' of 21 UDGs, which you use as
and when you want.

HOLDING THE DATA
The first step in the process is to find a secure
place in memory for the DATA, which can't be
corrupted by a BASIC program. You must
then decide how many UDGs you want to
store in RAM so that you know how much
memory to reserve.

Suppose that you wanted 21 extra UDGs.
You can find out the length of the block of
memory you need by multiplying 21 (the
number of extra user defined graphics) by 8.
The 8 is used since 8 bytes of memory define
every character. The result of this sum gives
you the number of bytes you need to reserve.

The next thing to do is to work out the best
place to store the DATA. The higher up in

memory you store it, the more space you will
have left over for your BASIC programs. It's
best to put it as high as possible, immediately
beneath the UDG area already there, as this is
as high as a BASIC program can go.

This address is known as RAMTOP.
RAMTOP is 1 less than the first byte of the
UDG area when you turn your Spectrum on.
You will see later that this may not always stay
the same, so you can find out where
RAMTOP is by entering the following
command:

PRINT USR "A" — 1

As you can see, this PRINTS the address of the
first byte in the user defined graphics charac-
ter "A" less 1. If you haven't altered
RAMTOP this address should be 65367 for
48K Spectrum and 32599 for 16K machines.

Now that you know where RAMTOP is,
you can work out the start address for your
UDG banks. RAMTOP is the last address
that you can use for a BASIC program: all the
memory above it is out of bounds to BASIC
programs.

Next you must work backwards. Suppose
that you want to have one extra bank of UDGs.
As a bank of UDG DATA is 21*8 or 168 bytes
long you must start your DATA 168 bytes

before RAMTOP. This is at location:

USR "A" —169

which is at location 65199, or 32431 on 16K
Spectrums.

PROTECTING THE DATA
Putting your DATA here is not much help if a
BASIC program strays into the same area to
change it, which could happen if you wrote a
very long program. But if you type in (or have a
line in your program which says):

CLEAR USR "A" —169

then RAMTOP is lowered by 168 bytes and
the area from 65199 upwards (or from 32431
on a 16K Spectrum) will be reserved, and
protected from being overwritten by BASIC.

Now you have to tell the Spectrum where to
find the DATA, and then actually store the bytes
of your characters in memory.

USING THE POINTERS
To tell the computer where the DATA for the
extra UDGs is you need to change a pointer.
There are a number of pointers in your
Spectrum's memory, and one is used to point
to the address of the first byte of your UDGs.
When the computer wants to use the DATA
stored away, it PEEKS the pointer, which
points it to the correct address. This is
normally set at 65368, but you'll need to alter
this to point to your new bank of UDGs.

One feature of pointers is that you can
POKE new values into them, so that the
computer will look at a different address, and
it is this that makes them so useful for extra
UDGs. In fact, you need two POKES to change
the address of a pointer, because one byte on
its own can only hold a number as large as
255, while most address numbers are larger
than this. So, the Spectrum splits the number
into two parts, the equivalent of the tens part
and the units part of a normal number.

To find the different parts of a number,
you divide by 10 if it is a two digit (and
decimal) number. For instance, take the num-
ber 56. To find out how many tens there are,
you divide 56 by 10, to get the answer 5. The
remainder, in this case 6, becomes the second
part of the number.

When you POKE an address into the poin-
ter, you can split the address into two parts in
a very similar way. The difference is that
instead of dividing by 10, you divide by 256.
For the 21 extra UDGs this means starting
your extra DATA at address 65200. So you
need to POKE 65200 into the pointer in two
separate parts. Using the method described
above, you divide by 256. This gives 254 with
a remainder of 176.

The Spectrum's system takes the first
number of any two-part numbers as being the
low (rather than the high, which the human
brain is used to) part. So the first number that
you work out actually goes into the second
part of the pointer, and the remainder goes
into the first part.

The two parts of the pointer have two
addresses. For the UDG pointer, these ad-
dresses are 23675, and 23676. So the POKES
you need are:

POKE 23675, 176
POKE 23676, 254

All that's left now is to define and input the
DATA for your extra characters.

Once you've changed the UDG pointer,
you do exactly the same as you would for
normal UDGs: you POKE USR "A" with the
first byte of your first character, USR "A" +1
with the second byte, and so on.

If you like, you can POKE the DATA in
before you change the pointers. In this case
you would POKE each byte directly into the
memory, so the first byte goes into location
65200 and so on. So as not to get confused
with addresses just add 1 to the address for
every extra POKE.

However, you will need to change the
UDG pointer to be able to use the DATA for
UDGs, anyway, so it's usually easier to
change the pointer at the start.

Using the UDG facility of your Spectrum
like this is all very well if you can make do
with printing the characters from within a
program. If you need to have the characters
accessible from the keyboard this method is
less suitable. You may not want to keep
changing the pointer, or using graphics
mode—and it is certainly very fiddly to use
CHR$ all the time.

A NEW CHARACTER SET
You can get around this by redefining the
Spectrum's character set. This means that
pressing a key will print your UDG rather
than the normal letters or numbers.

You might want to redefine the character set
for a number of reasons. For example, you
might want to print messages on the screen in a
foreign language: Russian or Greek, perhaps.
Or you might just want to 'personalize' your
programs with your own specially designed
typeface.

Redefining your Spectrum's character set is
actually very similar to getting extra banks of
UDGs: you reserve an area of memory in the
same way, and POKE in the DATA in a similar
way as well.

There is one problem with changing the
character set: if you just want to change some
of the characters, you still have to transfer the
DATA for the rest of the set into RAM for the
Spectrum to use.

The reason for this is that you need to
change the character set's pointer, in a similar
way to the pointer for the UDGs. Once the
pointer has been altered the computer looks
for the character DATA at the address you have
given it, it cannot return to ROM for the
characters you want to leave unchanged.

You can overcome this by placing the
whole of the DATA for the ROM character set
in RAM before you start putting in your own
DATA for the characters you want to change.

First type RANDOMIZE USR 0 to reset the
memory then enter the next program:

10 CLEAR USR "A"-769
20 LET d= PEEK 23730 + 256*PEEK 23731 +1
30 FOR n =15616 TO 15616 + 767
40 POKE d,PEEK n
50 LET d=d+1: NEXT n
60 POKE 23606, PEEK 23675
70 POKE 23607,PEEK 23676 — 4
80 LET p= PEEK 23606 + 256*PEEK

23607 +48'8
90 FOR n = p TO p + 79: READ a: POKE n,a:

NEXT n
110 DATA 0,124,76,84,86,102,126,0
130 DATA 0,8,8,8,24,24,24,0
150 DATA 0,126,2,126,96,96,126,0
170 DATA 0,124,4,126,6,6,126,0
190 DATA 0,96,98,98,126,2,2,0
210 DATA 0,124,64,126,6,6,126,0
230 DATA 0,62,32,126,98,98,126,0
250 DATA 0,124,4,4,6,6,6,0
270 DATA 0,60,36,60,102,102,126,0
290 DATA 0,124,68,126,6,6,126,0

The first eight lines protect an area of RAM
from being overwritten by BASIC, and place
the DATA from ROM into the reserved area of
RAM. The remaining lines redefine the num-
bers. RUN the program, wait until the message
`OK' appears on the screen then press any of
the number keys.

You can NEW the program at any time, and
the computer will revert to the ROM charac-
ter set. The defined set is still in RAM,
however, and can be 'switched in' by
entering:

POKE 23606, PEEK 23675:
POKE 23607, PEEK 23676-4
It does not matter whether you have a 16K
or a 48K Spectrum—the program checks to
see, and POKEs the relevant addresses. It does
this by PEEKing the RAMTOP pointer (this is
at addresses 23730 and 23731), and combin-
ing the two PEEKs together in such a way as to
produce the address of RAMTOP.

The ROM character set is stored at ad-
dresses 15616 to 15616 + 767 (at least, these
addresses hold the DATA for that part of the
character set that you can redefine). So using
a FOR ... NEXT loop the program POKEs in the
contents of each byte in this area of ROM to
the corresponding byte in your newly re-
served area of RAM.

The loop automatically updates the ad-
dress in ROM that it PEEKs (since the control
variable of the loop is also the address that is
being PEEKed) and the address that is being
POKEd (variable d) is updated in Line 50. As
you can see from Line 30, there is no need to
add up all the addresses and byte numbers
yourself, since the Spectrum can do it for you.
Lines 60 and 70 update the pointer for the
character set so that it now points to the start

address of the DATA in RAM. The address is
found by PEEKing the address of the start of
the UDG area. (This works even if you
reserve extra banks of UDGs.) The character
set in RAM is stored immediately beneath the
UDGs, and so the calculation in Line 70
simply deducts the length of the character set
from the address of the UDG area. The
length is 4, but this is the high byte of the
address, so you have to multiply by 256, and
4*256 = 1024 bytes.

Now that the character set has been copied
into RAM, you are ready to replace some of
the old characters with your new ones.

Unless you are careful, you might replace
the wrong characters, which could produce
some unwelcome results. You can prevent this
by working out which of the characters
already there you want to change, and by
PO KEing your new DATA into the right places.

If you look at Appendix 1 in the Spectrum
manual you will find a listing of the character
set. You can only redefine the ASCII charac-
ters with codes from 32 to 127 (the left hand
column in the appendix gives the code for
each character).

To find out which bytes you need to
change multiply the code of the character by
8. This gives you the number of the first byte
of the first character that you want to rede-
fine. For the space character (ASCII code 32),
this is 32 x 8 = 256.

Now that you know how far into the
character set the byte is, you can simply add
this number to the address held by the
character set pointer. This works out as
PEEK 23606 + 256*PEEK 23607 + 32'8. And if
you've just turned on your 48K Spectrum,
the address is 64600.

Giving the Spectrum the DATA for the
character is straightforward after this. You
just POKE eight bytes, starting with the one
whose address you have just found, with the
numbers that represent your character. These
few lines redefine the space so it looks like one
of INPUT's space boxes. It POKEs in new
DATA using a FOR ... NEXT loop:

10 FOR X =64600 TO 64600 + 7
20 READ A
30 POKE X,A
40 NEXT X
50 DATA 0, 126, 66, 66, 66, 66, 126, 0

If you own a 16K Spectrum, change the
64600 to 31832. You can see that it is a good
idea to use a FOR ... NEXT loop to POKE in the
different bytes, as the loop changes the ad-
dress for you, and saves you having to do
eight separate POKEs.

Try to work out what address the number
characters begin at: you can see whether or not

you are correct by looking back at the program
that redefined them. The program works even
if you have moved the UDG area around, and
the address is given by P in Line 80.

131.K
The Commodore lets you define your own
characters using several POKE commands, as
the article on pages 38 to 45 showed.

The program on page 43 and the one below
disengage the Commodore's own character
set and tell the computer to look for the
character set in RAM, at a place where the
program has stored some replacement DATA.
This example redefines the numbers from 0
to 9 but note that it takes two minutes before
you can see any result:

10 POKE 52,48:POKE 56,48:CLR
20 POKE 56334,0:POKE 1,35
30 FOR Z=0 TO 4095:POKE

12288 + Z,PEEK(53248 + Z): NEXT Z

40 POKE 1,39:POKE 56334,1
50 FOR Z=0 TO 79:READ X:

POKE 12672 + Z,X:NEXT Z:
POKE 53272,28

100 DATA 0,124,76,84,86,102,126,0
110 DATA 0,8,8,8,24,24,24,0
120 DATA 0,126,2,126,96,96,126,0
130 DATA 0,124,4,126,6,6,126,0
140 DATA 0,96,98,98,126,2,2,0
150 DATA 0,124,64,126,6,6,126,0
160 DATA 0,62,32,126,98,98,126,0
170 DATA 0,124,4,4,6,6,6,0
180 DATA 0,60,36,60,102,102,126,0
190 DATA 0,124,68,126,6,6,126,0

The snag with this method is that you can
only define your own characters at the ex-
pense of characters already in the computer.
So if you are replacing them completely, the
trick is to change some of the less useful
characters.

This is quite straightforward. If you look at

Appendix E of your Commodore manual, you
can see a list of all the characters that are
stored in ROM. There are two sets of charac-
ters, upper and lower case. Each of the sets is
actually stored twice in ROM: once for
normal characters, and once for reverse
characters.

If you look at set two, you will see that
there are a number of gaps. These indicate
that the character is the same for both upper
and lower case; but the DATA is stored twice.
So, by choosing characters which are the same
in both sets, you can define some characters of
your own without losing any of the standard
characters.

WHERE TO PUT THE DATA
Once you have chosen the characters you
must calculate the addresses of its bytes in
RAM. Suppose that you want to redefine the
lower case @ character (this is the first

character that is the same in both upper and
lower case). Take the POKE code of the
character (in this case 0) and multiply it by 8.
The result, here 0, is the position of the first
byte in the character set.

Since this character is a lower case one,
(that is, it is in set 2) you add the length (in
bytes) of the first character set (256*8, or
2048) to the number you already have. This
gives you the number of the first byte that you
want in the whole character DATA. In this case
2048 + 0 = 2048.

The start address of the character set in
RAM can be one of 6 positions when used
with BASIC program, but it is usually 12288.

Now add these two numbers to give the
address of the byte you want to change.

All you do now is POKE the address with
the DATA for the new character—you can see
how to work out the DATA values by looking at
the article on pages 38 to 45.

After you have POKEd the first byte of the
character, you find out the address of the next
by adding one to the first address; you do this
for each of the other seven bytes (there are
eight bytes in every characters).

- If you want to redefine more than one
character choose one which is the first of
several that are the same in upper and lower
case, you can save yourself having to calculate
all the different addresses.

You should always check your calculations
very carefully: if you get even one wrong you
will corrupt other characters and you might
be faced with a strange assortment of charac-
ters when something is PRINTed on the screen.

If this does happen, you needn't turn the
computer off and start again. All you need to
do is POKE the character set pointer back to its
usual address:

POKE 53272, 21

Alternatively, you can press I RUN/STON and
RESET', which resets the pointer to its usual
value. (If you press I RUN/STOP and 'RESET' at
any time, whether you want to return to the
original character set or not, the Commodore
automatically re-engages its own set of
characters.)

If you use both upper and lower case
character sets you can have up to 512 of your
own characters available at any one time.
Should you want more than this for any
reason, you can store several sets of characters
at different places in memory, and then all
you have to do is change the character pointer
to the relevant address when you want to use a
different set.

The 7 possible places you can store the
UDG DATA are:

2048 4096 6144 8192
10240 12288 and 14336

The Spectrum's numbers are on the
top line, the newly designed
computer-style numbers
underneath. You could redesign the
whole alphabet in a similar way.

If you really want to use a lot of your own
graphics characters, you can use up to four of
the addresses, and have four separate banks of
UDGs. The main problem with this is that
you then have very little space left for a.
BASIC program.

As each bank of character DATA takes up
4K of memory, you cannot use every address.
(if you intend to fill up each area), as the
addresses are only 2K apart, and you can only
have the maximum of 4 if you start with first
address, 2048.

When you use the first area to store the
bytes which make up your characters, you
must move the start of BASIC up in RAM.
BASIC normally starts at 2048, and so it
would be in the way of your characters.

You quite easily can work out how far you
need to move the BASIC area. Each character
requires eight bytes. So if you have a hundred
characters to define you will need to clear
100*8 = 800 bytes of memory. Add this to
the start address (2048) to get the address of
the end of the UDGs-2848 in this case.

Moving BASIC around in RAM is an easy
matter on the Commodore 64. All you need to
do is to POKE three locations, then type NEW
and hit I RETURN I. Locations 43 and 44 hold the
start address of BASIC and these have to be
POKEd with the new address. Each location
can only hold a single byte, that is any number
up to 255 and since most addresses are larger
than this, the address has to be divided into
two parts. Say you want BASIC to start at
19000. All you do is divide by 256 to give 74

-with a remainder of 56. The,n POKE the high
",byte (74) into location 44 and the low byte
Ihplus 1 (57) into location 43. 	• • 	•

You also POKE the start adcss of BASIL
here_19000, with 0:

POKE 44, 74
POKE 43, 57
POKE 19000, 0

Now type NEW, and a series of other pointers
will be changed to match the new start address
of BASIC.

You are now able to type in a BASIC
program again, and have up to four sets of
characters in memory.

To bring one of the various banks of UDGs
into use you just change the character pointer
to point to the address of the character set that
you want to use. The character pointer is at
address 53272.

Unfortunately, you cannot just POKE in the
actual address of your character set: you must
change it into a form that your Commodore
can understand.

You can work out the number you have to
POKE into the pointer by entering a direct
command like this:

PRINT (PEEK (53272) AND 240) + 14

This is for the last bank of characters at
address 14336. Don't worry about the first
part of the Line, it is the last number, 14,
which is the important part, and changes
according to what address you want to con-
vert. Its value can be worked out easily—you
just divide the address by 1024 and use the
result. For example, suppose you want to
engage the set of characters at address 6144.
You replace the number 14 above with 6.
Similarly, if you want to 'switch in' the
characters stored from address 10240, you
replace the 14 with 10.

When you have entered the command it
will print out a number—in this case it gives
30. Once you have found the answer, you
simply POKE 53272 with 30. Once the com-
puter has executed this command, it uses your
new characters, and even characters already
on the screen are changed into the new ones.

This updating of the screen is a mixed
blessing. It can be used to produce interesting
effects, but it also means that you cannot
increase the number of UDGs available on
the screen by PRINTing something in one set,
changing sets, and then PRINTing again.

You can define your own characters on the
Vic by changing the standard ROM character
set, as on the Commodore 64.

Type and RUN this short program which
shows just one way that you can use the
UDGs: 	• • 	•

•10 POKE 52,20:POKE 56eLe
I0 FOR Z = 0 TO 2047:

 5120 + Z,PEEK(32768 +IN

40 FOR Z=0 TO 79:R EAD X:
POKE 5504 +Z,X:NEXT Z

50 POKE 36869,253
100 DATA 0,124,76,84,86,102,126,0
110 DATA 0,8,8,8,24,24,24,0
120 DATA 0;126,2,126,96,96,126,0
130 DATA 0,124,4,126,6,6,126,0
140 DATA 0,96,98,98,126,2,2,0
150 DATA 0,124,64,126,6,6,126,0
160 DATA 0,62,32,126,98,98,126,0
170 DATA 0,124,4,4,6,6,6,0
180 DATA 0,60,36,60,102,102,126,0
190 DATA 0,124,68,126,6,6,126,0

The program redefines the number keys—try
pressing any of the numbers from 0 to 9 to see
what they look like. To produce effects like
this yourself, the first step is to work out
where you want to store the DATA for your
new characters, as this affects how many of
the characters you can define.

There are two standard sets of characters
on the Vic: upper and lower case. Each of
these can be split into further two parts,
normal and reverse characters.

Both the upper and the lower case charac-
ter sets consist of 256 characters, and each
takes 8 bytes of DATA in memory. This means
that a whole set of characters takes up 2K of
memory, which is rather a lot when you only
have 3IK RAM to start off with, as on the
unexpanded Vic.

Luckily, you do not need to define a whole
character set; you can just define a part of it,
although you normally loose the other charac-
ters. (There is one special case where you
don't lose all the other characters; it is
described below.) Of course, you can redefine
a complete set of characters if you want to—
unless you have an unexpanded Vic, which
does not have enough memory for both sets.

There are several possible places where
you can store your character set. If you have
an unexpanded Vic the possible addresses are
4096, 5120, 6144 and 7168. The first of the
set is usually the start of BASIC, and so you
should not use this. If you want to have a
whole redefined character set, you have to use
address 5120 on the unexpanded machine, as
the set takes up 2K of memory:

A usual set to use is address 7168, which
gives up to 64 user-definable characters, and
leaves a reasonable amount of memory left for
your BASIC programs. Another advantage of
this address is that reverse characters give
normal characters—A, B, C, and so on, so you
can have user defined characters and a stan-
dard alphabet.• •

ThefjOKENItich you ustkPredire

glater • to thilis
s:

4096: POKE 36869, 252
5120: POKE 36869, 253
6144: POKE 36869, 254
7168: POKE 36869, 255

If you type in any of these POKES, and hit
RETURN, you can see the characters on the
screen turn into garbage: there are random
numbers stored in every address that is not
used in RAM, and so the characters you see
are composed of these random bytes.

If you hit IRUN/STOP and 'RESET, the
characters will be restored to normal. Whene-
ver these two keys are pressed, the character
set pointer is always put back to its standard
value.

Now that you know how to tell the Vic
where to look for your own characters, you
can go on to put your DATA in memory and
protect it from being overwritten.

The article on pages 38 to 45 explains how
to work out the numbers for your characters.
Once you have these, you simply POKE them
into the memory above BASIC.

After this, it is wise to protect them by
moving BASIC's highest possible address
down to below the start address of your
characters in memory. For example, to pro-
tect the memory above 7168, first split the
number minus 1 into two parts by dividing by
256. This gives 27 with remainder 255, and
these are the numbers you have to POKE into
locations 51, 52, 55 and 56 as follows:

POKE 51,255: POKE 52,27: POKE 55,255:
POKE 56,27:CLR

The Acorn computers have space for up to 32
user-defined graphics characters when first
turned on. While this may be enough for
normal use, there are numerous occasions
when you might want more.

There is a very useful set of commands in
BBC BASIC—the • FX commands. They all
control some sort of special effect, and there is
one—*FX 20—that literally explodes the
memory for user definable characters, letting
you create more than 32 and letting you
redefine characters from the keyboard.

This particular special effects call is only
available on machines with either 1.0 or 1.2
operating systems. Unfortunately, if you have
operating system 0.1 you cannot use this call.
If you do not know which operating system
your computer has, enter * HELP

A NEW CHARACTER SET
Here is a program 	ich illifltrates just one of <

the possible uses of the *FX command, by
redefining some of the keyboard characters,
the numbers 0 to 9. First type in this line

PAGE = PAGE + &400

and hit 'RETURNS followed by NEW and
'RETURN . Now type in and RUN the program:

10 MODE 1
20 *FX20,1
100 REM 0
110 VDU 23,48,0,124,76,84,86,102,126,0
120 REM 1
130 VDU 23,49,0,8,8,8,24,24,24,0
140 REM 2
150 VDU 23,50,0,126,2,126,96,96,126,0
160 REM 3
170 VDU 23,51,0,124,4,126,6,6,126,0
180 REM 4
190 VDU 23,52,0,96,98,98,126,2,2,0
200 REM 5
210 VDU 23,53,0,124,64,126,6,6,126,0
220 REM 6
230 VDU 23,54,0,62,32,126,98,98,126,0
240 REM 7
250 VDU 23,55,0,124,4,4,6,6,6,0
260 REM 8
270 VDU 23,56,0,60,36,60,102,102,126,0
280 REM 9
290 VDU 23,57,0,124,68,126,6,6,126,0

Try pressing any of the number keys to see
what they look like.

Although some editions of the BBC User
Guide don't say so, the *FX, 20 call has seven
possible forms; the difference between each is
the last number, which can be anything
between 0 and 6.

When you turn the computer on the call is
set at 0, and the character definitions are said
to be imploded. What this means is that you
can normally only redefine 32 characters.
After a *FX 20,A where A is a number between
one and six, the number of characters that you
can redefine is increased by A blocks of 32
characters.

This means that the maximum number of
characters you can define is 6*32 plus the
original set of 32, or 224 characters in
all. Even though the computer has ASCII
codes for this number of defined characters, it
only leaves aside enough memory for 32. So,
if you are going to use the *FX command to
expand the number of UDGs available, you
need to alter PAGE.

PAGE is a variable which contains the
address of the start of the BASIC area. So, by
changing PAGE you move BASIC's position
in RAM. To change it, you simply type

PAGE = X
where X is the neddress of PAGE.

For most prossams, you can simply set
PAGE to PAGE + &600. The &600 is a hexa-
decimal number equivalent to 1536 in deci-
mal. So this leaves you 1536 bytes free to

redefine all 192 characters. Sometimes,
though, you might want to use some of this
memory for a very long BASIC program, and
you should set PAGE to a lower address.

Every time that you increase PAGE by &100
the start address of BASIC moves up by 256.
This is very convenient, since each block of
UDGs also takes up 256 bytes. So, if you use a
*FX command, you simply need to press
'BREAK' and then set PAGE like this:

PAGE= PAGE + A*8(100

The &' tells the computer that the number is a
hexadecimal number—the article on pages
156 to 160 explains what hexadecimal is. It is
much easier to use hexadecimal here, since it
enables you to add 'A* &100' to the value of
PAGE, instead of `A*256', which is the
alternative.

For example, to use just two extra blocks of
UDGs, press BREAK then enter:

*FX 20,2
PAGE= PAG E + &200

Once you have reserved memory for the extra
graphics characters in this way, you can go on
to define and enter the DATA for your new
UDGs. You do this in the same way as you
would for normal UDGs (see pages 38 to 45).

MI IA
The Dragon and Tandy have two
commands—GET and PUT—which allow you
to create and control your own user-defined
characters. The article on pages 38 to 45 and
pages 350 to 352 explains how to use them.

Since the computers store the DATA for
each graphic character in an array, the only
limit on how many UDGs you can have is the
maximum number of arrays. And, as you
probably know, the Dragon and Tandy have
just one limit on the number of arrays you can
have: the size of the memory.

This means that you can have as many
UDGs as you can fit into 32K, if you want to.

Unlike the other computers, the Dragon
and Tandy do not allow their users to redefine
the ROM characters—the keyboard charac-
ters, ROM graphics and so on. While you
cannot therefore change the characters that
appear in listings and the computer's own
messages, you can RUN a program which lets
you type with a set of UDG characters.

Such a program in BASIC would consist of
one 'IF INKEY$ = "X" THEN ...' line for every
redefinedletter, and would be very, very slow
if anythiriglike a proper character set Alas
used. You might like to try it for jus
number characters, though, using PM
and the DATA in the Spectrum program.

Want to protect your special
techniques from prying eyes? Or
simply add some professional
touches to your program? Here's
what you can do in BASIC

■ WHAT YOU CAN AND CANNOT DO
TO PROTECT BASIC PROGRAMS

■ BOOTSTRAPS—WHAT THEY ARE
—WHAT THEY CAN DO

■ PROGRAM INTERDEPENDENCY

■ MAKING A PROGRAM AUTORUN
■ DISABLING THE NORMAL

SAVE AND LIST COMMANDS
■ TRICKS TO TRY ON YOUR

OWN COMPUTER

It's always a good thing to give a program a
professional look once the nuts and bolts
programming has been done. At this stage,
you can improve program presentation—and
you can also provide reasonable protection so
that your special techniques remain at least
obscured from public inspection.

Some degree of finishing off is essential i
you're thinking of marketing your program in
any way—particularly if your efforts are to be
successful in negotiating the tricky first stages
of acceptance by a publishing house.

Cosmetic improvements to displays have
been discussed elsewhere (see pages 433 to
439 for example) so here we can concentrate
on giving your work some protection. Even a
BASIC program can benefit—and it's
programs of this level that we'll look at first.

Protection of BASIC programs relies on
built-in deterrents—programs written wholly
or mostly in machine code can make use of far
more sophisticated protection methods. But
the techniques employed for BASIC
programs (and these need not be simple
affairs in spite of the implication) can never-
theless be applied to machine code programs.

All sorts of tricks can be employed to
prevent copying by 'pirates', or LISTing by the

curious. How many of these you decide
to incorporate within your own

programs is, of course, up to you.
On some programs it simply

isn't worth the bother.

The one thing you can be absolutely
certain about is that there is no way of
protecting a program which makes it com-
pletely safe from copying. Many people simp-
ly regard program protection as yet another of
life's challenges. Others will attempt to break
into a program to examine, learn or simply
modify a routine for their own purposes.

FIRST STEPS
One method of protecting computer programs
is to provide a lot of simple traps. These won't
defeat someone who has some knowledge of
the machine but would prove a laborious task to
evade. Unfortunately, something like this can
also be rather tedious for the program writer
who has to worry about protection while
writing the program. And the program would
be very difficult to debug once the protection
methods were in place and possibly active.

Simple locks of this type do little more than
introduce changes which make it impossible
for the normal SAVE, LIST and other editing
commands to work.

Their one advantage is that a program has
usually got to be RUN before they become
active—hence the problems of debugging
mentioned previously.

BOOTSTRAP
Somewhat better protection is therefore pro-
vided by getting a program to autoRUN as
soon as it has LOADed. Now, with the Spec-
trum and Acorns, this is done simply enough
by using suitable LOAD and SAVE commands
as you will see later. With the Commodores,
pressing a ISHIFTled I RUN/STOPI will autoRUN
the first program on tape.

These commands are usually entered in.
direct mode in the normal process of LOADing
a program. But they can just as easily be called
up by a separate program LOADed before the
main program. Such a program is called a
bootstrap and it can be written in BASIC or
in machine code depending on the specific
tasks it has to carry out. At its very simplest it
can take the form:

10 LOAD "NEXT PROGRAM'S NAME HERE"

RUNning this one-liner would LOAD the
program whose name was stipulated.

Under what circumstances and in
what areas of memory is it possible
for me to store routines or calls
specifically to implement protection
routines?

Each machine allows you to use an area of
memory reserved for another device—so
long as this is not present.

B
An unexpected and 'safe' area on the
Spectrum is the printer buffer. This is
located at 23296 to 23551. This gives you
256 bytes of memory, ample for many
routines. You cannot of course use the
printer buffer when the program in main
memory itself has to access the printer.

The most obvious place to locate machine
code routines is in the 'hidden' area of
RAM located at 49152-53247 but this is a
commonly used location for all sorts of
commercial routines.

However there are a number of little
nooks and crannies, including free Zero
Page space at 251-255, which could be
used as a jump location. A slightly larger
area occurs at 679-767 (as used in the
bootstrap program—see main text). There
are also a number of locations both before
and after the tape I/O buffer which, too,
may be used if the program need not access
this device.

n
`Spare' areas of memory are restricted to
Page 9 and 10, also 11 if you're not using
the function keys, 12 if you're not using
UDGs, and 13 if you're not using disk or
Econet systems which access the NMI
routines.

MI hi
The tape buffer at 300-3FF is the one
readily accessible location which may be
used. There are a few other locations (all in
hex) not used by the Dragon 32; 76-77,
E6-77, E6–FF, 114 and 11A-11F

Additional space can be created by
clearing more memory for graphics than
you actually need. Occasionally,
additional RAM may become
available when a cartridge is
fitted to the computer.

Obviously, a single line such as this is
pointless. In reality, bootstraps can be used to
do much, much more. They are frequently
used to carry supplementary programming,
responsible for things like the title page screen
displays, copyright notices, loading and
playing instructions, setting up variables, and
any number of devious protection tricks!

These include some of the most powerful
ways of protecting a BASIC program,
achieved by playing about with the system
commands themselves. But the major use of
bootstraps here is as a 'loader' or 'starter'
program which allows machine code to be
RUN from BASIC.

Bootstraps are used in many types of
commercial program: many of these are re-
corded in the form of multipart programs
where each part is called up and LOADed in
turn at the command of one or more boots-
traps. Remember that BASIC cannot norm-
ally be called in without overwriting the
bootstrap LOAD command—or, in other
words, the bootstrap program itself. So if
you're ever tempted to use this technique
your self, make sure the machine code
modules are called in and LOADed first.

With multipart programs, the protection
methods may even rely on a certain level of
interdependence between one file (program
part) and another. What happens is that one
file checks a location value set up by another.
Or you could get a program to check a special
data file recorded after the main program. In
either case, anything missing causes a system
crash or program RUN failure.

In most instances, a multipart program will
contain one or more modules wholly in
machine code and special techniques for
protecting these will be covered later.

One final advantage of bootstraps is that
faster LOADing times are possible because
machine code, screen data and character data
can be deposited directly into memory, in-
stead of using BASIC data statements which
can do the job only after RUNning.

All this creates the impression of a pro-
fessionally finished program which, even if
written in BASIC, may RUN without ever
seeming to do so.

AUTORUN
So how can a bootstrap be used to autoRUN a
subsequent program? Sadly this is not too
easy on the Dragon and Tandy models, as
special calls have to be made to system
routines and this is not possible from BASIC.

But on the Spectrum (and the Acorn, as
you'll see later), it's simply a case of using the
appropriate command at some point within
your bootstrap program:

990 LOAD "NEXT PROGRAM'S NAME"

But remember that this second program will
have to have been SAVEd using the autoRUN
command SAVE "NEXT PROGRAM'S NAME"
LINE 1—or whatever line number represented
the start of the program. If a higher start line
was chosen, you could even include some
copyright notices or code data which could be
PEEKed for a security check within REM lines
beforehand.

The only way to get a Commodore program
to autoRUN is somehow to put LOAD and RUN
instructions into the keyboard buffer to simu-
late pressing 'SHIFT' and IRUN/STOPI keys, and
then pass control back to BASIC from the
bootstrap.

This program does just that by playing
around with one of the Commodore system
routines, called a vector—a pair of bytes which
tell the operating system which bit of its own
code to use for a particular command. More
on this shortly. (The Vic version is for the
unexpanded Vic.)

10 N$ = "NAM E"
20 POKE 49189, LEN(N$)
30 FOR Z = 1 TO LEN(N$)
40 POKE 49189 + Z, ASC

(MID$(N$,Z,1))
50 NEXT Z
60 FOR Z = 679 TO 736
70 READ X
80 POKE Z,X
90 NEXT Z
100 FOR Z = 49152 TO 49188
110 READ X
120 POKE Z,X
130 NEXT Z
200 POKE 770,167: POKE 771,2:

SYS49152
210 PRINT "OKAY": GOT0210
220 DATA 169,47,133,0,169,55,133,1,32,

138,255,169,1,141,32,208
230 DATA 169,48,141,119,2,169,76,141,

120,2,169,207,141,121,2
240 DATA 169,13,141,122,2,169,82,141,

123,2,169,213,141,124,2
250 DATA 169,13,141,125,2,169,7,133,

198,108,0,160
260 DATA 162,1,160,1,169,1,32,186,255,

162,38,160,192,173,37,192
270 DATA 32,189,255,169,167,133, 251,

169,2,133,252,162,5,160,3,
169,251

280 DATA 32,216,255,96

10 N$ = "NAME"
20 POKE 7205, LEN(N$)
30 FOR Z=1 TO LEN(N$)
40 POKE 7205 + Z, ASC

(MID$(N$,Z,1))
50 NEXT Z
60 FOR Z=679 TO 723
70 READ X
80 POKE Z,X
90 NEXT Z
100 FOR Z = 7168 TO 7204
110 READ X
120 POKE Z,X
130 NEXT Z
200 POKE 770,167: POKE 771,2: SYS7168
210 PRINT "OKAY": GOT0210
220 DATA 32,135,255
230 DATA 169,48,141,119,2,169,76,141,

120,2,169,207,141,121,2
240 DATA 169,13,141,122,2,169,82,141,

123,2,169,213,141,124,2
250 DATA 169,13,141,125,2,169,7,133,

198,108,0,192
260 DATA 162,1,160,1,169,1,32,186,255,

162,38,160,28,173,37,28
270 DATA 32,189,255,169,167,133,251,

169,2,133,252,162,5,160,3,169,251
280 DATA 32,216,255,96

SAVE this program so you can call it up for use
when required. When you do, reLOAD it and
enter the name of the program you wish to
autoRUN in Line 10. This second program
must subsequently be SAVEd after the boots-
trap if you're using tape. RUN the bootstrap
program to place it in memory. Position your
tape and then SAVE the bootstrap, which
should now carry the name of the program to
be autoRUN. When the OKAY message is
displayed press the IRUN/STOPI and IRESTOREI
keys to break out of the program. LOAD in the
second program, and PEEK locations 45 and 46
(locations for the start of variables). Now
enter the following line at the start of the
second program:

0 POKE 45, X : POKE 46, Y

Where X and Y are the values you've just
obtained by PEEKing those two locations.
RETURN' the line and immediately repeat the
PEEK, in direct mode, to see if the values have
changed. Amend line 0 to the new figures.
Repeat the cycle again until the value remains
constant.

The second program can now be SAVEd.
But first you may wish to incorporate other
security checks, such as disabling POKES (see
page 379).

The Acorn machines have a specific com-
mand for LOADing and RUNning, and it is
used within a bootstrap in the form:

990 CHAIN "NEXT PROGRAM NAME"

And that's all there is to it! As suggested by
the command, other programs may be
CHAINed by an appropriate program line
within the first program (and this is in fact
how the 'Welcome' tape goes from one
program to the next).

USING SYSTEM VARIABLES
But autoRUNning is not enough on its own.
You also have to provide some means of
ensuring that the program cannot be stopped,
LISTed, or amended.

The way to do this is to make adjustments
to the way the system reacts when a particular
call is made to, for instance, the LIST
subroutine.

Every computer comes complete with an
operating system and, as far as we are con-
cerned, a BASIC interpreter. Most of the
system information is held in read only
memory, ROM, but some of this is transfer-
red to random access memory, RAM, when
the computer is switched on. And it is this
information that can be changed by the
programmer to alter the way the system
operates—which enables pretty sophisticated
security measures to be incorporated within
programs as we'll see in later articles.

As you are going to be playing around with
the workings of the computer, you will need a
documented list of system variables and sub-
routines. And if you wish to delve further into
the system, a good memory map is also
essential. See your reference manual.

When the computer is switched on, some
of the system information is down-loaded
from ROM into RAM to allow the operating
system to alter the value of some of its
variables. As this information is in RAM it is
vulnerable to any changes the programmer
may care to make.

A special type of system variable is the
system RAM pointer or vector. This is norm-
ally two adjacent locations which hold the
address of a specific system subroutine. If the
address is changed, then the operating system
is redirected whenever that subroutine is
called. All these system subroutines are of
course in machine code and that is why
protection by adjustment of these is better left
to your programs which are also in machine
code.

Those pointers or vectors of particular
interest as far as we are concerned include the
equivalents of the LIST vector, SAVE vector,
INTERRUPT vectors and the WARM
START or RESET vector. The last two types
are really beyond the scope of this article and
the exact vectors used vary on different
machines.

CASE STUDIES
It is difficult if not impossible to provide
complete protection from piracy—especially
if you are trying to avoid getting heavily
involved in machine code. The methods you
can use on any particular machine vary
immensely because the operating systems
differ so much. But have a look at some of the
following ideas:

One of the simplest checks is to insert an
untouchable copyright statement within your
program. This could even be linked to a
routine which PEEKs to check its presence,
doing a system reset if it has been tampered
with in any way.

First find the address of the BASIC
program area. This address (the system vari-
able PROG) is held at locations 23635 and
23636, and can be determined by PRINTing
PEEK 23635 + 256 * PEEK 23636. Once you
know the value of PROG, you can poke any
number N into (PROG + 1) and the first line
of your program will change to Line N.

The secret is to make N equal to zero
because it is not possible to get rid of Line 0 in
a program. Suppose the first line is:

10 REM (c) BLOGGS 1984

Enter the direct command:

POKE (PEEK 23635 + 256*PEEK 23636) + 1,0

And you're there: Line 10 then becomes Line
0. Obviously this could be done from within a
bootstrap program.

As far as an autoRUN program is con-
cerned, the obvious way of stopping this is to
press 'BREAK'. This puts a 'BREAK' message in

/How do I load a machine code
routine from BASIC so that it
remains transparent to the user?
You can use a bootstrap as below.
N is the start location of the machine
code routine in hex on the Acorns.

10 CLEAR N —1
20 LOAD "m/c file" CODE

SAVE this program, using SAVE "loader
name" LINE 10 so it autoRUNs. Then
after it on the tape, SAVE the machine
code routine (SAVEd using SAVE "m/c
file" CODE N,B where B is the number o
bytes required).

101
* LOAD""N

10 CLEAR 200,N-1
20 CLOADM "M/C FILE"

the lower part of the screen and then allows
the program to be LISTed.

But suppose the lower part of the screen
will not accept the message? If you look at the
list of system variables given in the Spectrum
handbook, you can see that DF SZ (at location
23659) holds the number of lines in the lower
part of the screen (the figure is normally 2). If
you POKE 0 into 23659, the computer will
crash as soon as a message tries to appear in
the lower part of the screen.

You cannot enter this as a direct command
but must include it in a program. For
example, try this short demonstration:

10 POKE 23659, 0
20 PRINT AT 5,5; RND
30 GOTO 20

And then RUN the program. Pressing the
[BREAK key causes an inescapable crash.

If you use this method, be careful that your
program does not actually need to display
messages such as INPUT? or scroll? or it will
crash as well. Therefore, use I N KEY$ for input
sequences.

But from the pirate's point of view the
favourite way of preventing a program from
autoRUNning is to MERGE it rather than LOAD
it. Again the handbook gives you a clue how to
get round this hiccup: you cannot MERGE
`bytes'. So if you SAVE your program as CODE
(in other words, as `bytes'), the would-be
pirate is foiled. You have to SAVE everything—
all the system variables, all the BASIC vari-
ables, the program and all the spare memory,
the lot—above the printer buffer.

Thus the CODE at which SAVEing starts is
23552, which is the start of the system
variables. The number of bytes is N — 23552
where N is any large number greater than
STKEND (the address of the start of spare
space). The handbook gives this address as
PEEK 23653 + 256*PEEK 23654. If you want to
SAVE all of the user RAM memory, then make
N equal to 65535. This is the maximum
number of bytes you can save to tape. So put
the following line at the start of your program:

1 SAVE "PROGNAME" CODE 23552,
N — 23552

Then add a second line with the POKE to make
the program crash on I BREAKI:

2 POKE 23659, 0

Now type GOTO 1 and so SAVE the program.
The command LOAD "PROGRAM NAME"
CODE will cause the program to autoRUN.

The ordinary LOAD command will not
work if N is very large—for example, 65000
for the 48K machine. It is wasteful on tape
and memory and as there is hardly sufficient

room in the computer's memory for your own
program, nothing else—such as a copy tape
program—will fit, so your program is safe.

[.3 	

The autoRUN program and any keyboard
disabling are easily recognisable and a further
ploy is needed to augment these. This is to use
the back-delete technique to conceal the
presence of POKEs used to alter memory and
disable certain keys. In fact, the technique may
be used to disguise anything in a program
line—even data used for a security check!

The back delete technique uses embedded
delete commands contained within quotes
following the non-active REM part of a
program line. An example shows clearly how
this technique works, so type in the
following—with no spaces:

99 PO KE45,0: PO KE46,20: R UN:
REM""SYS4096

Now move the cursor to the second set of
quote marks and press ISHIFTI and the
I INST/DELI key to insert 27 spaces. As soon as
this has been done press the u
IINST/DELI key to enter 27 deletes. These
symbols take the form of reverse Ts. Press
'RETURNS to enter the line. Again move the
cursor up to edit it, but this time delete the
last set of quote marks. Enter the line by
pressing 'RETURN . Now try LISTing it. If
you've followed the steps correctly all that
should be displayed is:

10 SYS4096

Try editing the series of embedded deletes by
inserting extra spaces and adding further
delete symbols.

You can in fact wipe an entire line using
this technique. Or you can choose to wipe out
only part of a line in a program.

If these program lines appear at the start
and end of a screen listing, then no obvious
gaps will be left but the momentary flash of
the disguised line may give the game away.
And of course this technique applies only to
the screen display: a listing taken from a
printer will reveal all!

However, the very presence of a SYS call
may be enough to deter an intruder afraid that
a machine-code program was looming.

If you are using a bootstrap program,
another method of providing additional pro-
tection to the autoRUN program is to incorpo-
rate an additional program line within the
autoRUN program which PEEKs locations used
by the bootstrap. This would mean that the
autoRUN program could not be LOADed and
RUN other than by the bootstrap. If you've
used the bootstrap program earlier, add the

following line to your second program:

1 IF PEEK (679) < > 169 OR PEEK (680)
< > 47 THEN NEW

1 IF PEEK (679) < > 32 OR PEEK (680)
< > 135 THEN NEW

Also include suitable keyboard disable POKEs
so that the RUNning program cannot be
interrupted when under way.

El
The only way to make your programs really
secure is to write a short section of machine
code. The problem with using a BASIC
program is that whatever you do relies on the
program being RUN—whether it is resetting
variables, altering memory or making the
program crash when 'BREAK is pressed. All the
pirate has to do is LOAD the program and then
LIST it before it is RUN—thus displaying all
your clever tricks. This is why a short
bootstrap or 'header' program in machine
code is so useful—if the pirate tried to LOAD
and LIST that, all that would result would be a
`Bad program' message.

However there is one sure-fire protection
method that will foil all but the real machine
code experts and, surprisingly, it doesn't
actually use any machine code itself.

What it does is alter the very last byte of the
program. This is always &FF (in hex) for a
BASIC program. If you alter this byte and
then try to LIST the program, the computer is
unable to find the end of the program and so
gives the inevitable 'Bad program' message.
But you must make sure the program ends
properly so add END as the last line to be
safe. Here's what to do:

First type in this line:

PRINT — PAGE, —STOP

(Don't worry that the — sign appears as ÷ in
MODE 7 on the BBC as they mean the same
thing—all it does is to convert a decimal
number into the more convenient hex.) You'll
see two numbers printed on the screen. These
are PAGE, where your program starts in
memory, and TOP, where it ends. PAGE is
usually 0E00 (or 1900 if you have an Acorn
disk filing system). TOP depends on the size of
your program. Now enter this:

?(TOP 1) = 0

This sets the last byte of your program to
zero. Now all you have to do is save the
program using the *SAVE command:

*SAVE "program name"IIIMMMM ❑ NNNN

Where MMMM and NNNN are the two num-
bers for PAGE and TOP you found earlier. Your
program is now safe.

Anyone using the program must load it
using LOAD "progname", as the CHAIN com-
mand will not work. It will RUN normally but
it is impossible to LIST.

To get a BASIC program to autoRUN after
LOADing from tape requires some fairly tricky
machine code routines when SAVEing to tape.

A simpler method to protect your BASIC
program is to SAVE it as 'machine code', using
the command CSAVEM, and to include a short
machine code routine within that program to
reset the BASIC pointers. You then RUN the
program without returning to the normal
direct command mode. Here's how to do it.

The BASIC pointers which need to be reset
are the start address of the program, which is
given by:

PEEK(25)*256 + PEEK(26)

Similarly you can obtain the end address
with:

PEEK(27)*256 + PEEK(28)

Another important pointer which prevents
LISTing of the program is contained in the first
two bytes of the BASIC program. If both these
bytes are set to zero, the Dragon will not be
able to LIST or RUN the program.

To add this protection to your BASIC
program, first debug your program. Then
RENUMber it so that its lowest line number is
10. Then add the following lines. Be especially
careful to type in Line 1 exactly as shown,
including the all-important space:

1 REM 111AAAAAAAAAAAAAAAAAAAAAAAAAA
2 ST = PEEK(25)*256 + PEEK(26):

A$ = "308C1OEC81DD19EC81ED
8CEEEC84DD1 B7 E85A5"

3 FOR K = 1 TO 38 STEP 2: POKE ST + 6 +
K/2, VAL(" &H" + MID$(A$,K,2)): NEXT

4 POKE ST + 25, PEEK(25): POKE ST + 26,
PEEK(26): POKE ST + 27,PEEK(ST): POKE
ST + 28, PEEK(ST + 1): END

At this point make sure you CSAVE the
program normally. When you RUN this
program, a short machine code routine is
POKEd into the REM statement of Line 1 by
Lines 2 and 3. Information for the BASIC
start pointer is also POKEd into the REM
statement by Line 4. RUN the program and
then try to LIST Line 1. You should see that it
has changed.

To prevent the final program being broken
into, it is necessary also to disable the 'BREAK!
key and the more powerful 'RESET! button. To

The Commodores can enter several ma-
chine code routines using a bootstrap. But
precautions have to be taken as the com-
puter returns to the beginning of the
program and so will attempt to reLOAD the
first file each time. To prevent this, "flag"
a variable at the start of the program:

10 IF A=0 THEN A= 1:LOAD"F1LE1"1,1
20 IF A=1 THEN A= 2:LOAD"FILE2",1,1

When the program returns to the beginn-
ing of the program, it will note that it has
already given variable A (the flag) a value,
and go straight away to Line 20 to LOAD
the next file.

do this, enter the following line after deleting
Lines 3 and 4 of the previous program. These
have already done their job:

2 A$ = "E4EDO4CBE4EC": FOR K =1
TO 12 STEP 2: POKE 416 — K/2,VAL("&H"
+ M1D$(A$,K,2)): NEXT: POKE113,0

The FOR . .. NEXT loop, when RUN, prevents
BASIC looking at the BREAK' key, and the last
POKE will cause the program to be NEWed if the
RESET button is pressed. However, this is not
suitable for programs with INPUT lines.

Before you SAVE the protected program
you have to add information about the end of
the BASIC program to the REM statement of
Line 1. You can't do this in program mode, as
this information immediately changes value
when any line number is IENTER led. There-
fore, in direct mode enter the following:

ST = PEEK(25)*256 + PEEK(26): POKE
ST + 29, PEEK(27): POKE ST + 30, PEEK(28):

POKE ST,0: POKE ST + 1,0

Press 'ENTER . Then, to SAVE the protected
program use:

CSAVEM "PROGRAM NAME",ST,
PEEK(27)*256 + PEEK(28),ST + 6

The program is SAVEd in its protected form
ready for use at any time in the future.

To LOAD the program from tape use
CLOADM instead of CLOAD. After LOADing,
the Dragon will be unable to find a BASIC
program so LIST and RUN will have no effect.
To RUN the program you have to use the
command EXEC followed by WIT13

Joysticks are the key to more
professional games. But making your
games more enjoyable doesn't mean
that you have to learn machine
code—you can start with BASIC

One obvious difference between commercial
games and home-produced ones is often the
provision of a joystick option. You don't have
to zoom off into the heady realms of machine
code to use joysticks with your own programs,
though.

This time in Games Programming you'll
see how to use joysticks with programs
written in BASIC, making your games
programs look more professional and more
fun to play.

In the next part of Games Programming
the joystick routine will be used in a game, so
don't forget to SAVE the program.

Before you can use a joystick program, you
will need a suitable joystick. Each computer's
program is written to suit particular joystick
standards for that machine, and you'll find
notes on this at the beginning of the pro-
gramming. And there is more information on
joystick hardware in general in the article on
pages 220 to 224.

There is a very large number of joysticks
available for the Spectrum. As they all work
in a slightly different way it is not possible to
write routines for use with all those available.
Instead, you'll see how to write a routine
which will read by the most widely-used type,
the Kempston joystick, and those which use
the Kempston standard.

A GUNSIGHT
Type in this first section of program and
you'll see a gunsight which you can control
with your joystick:

100 BORDER 1: PAPER 1: INK 7: OVER 1: CLS
: INK 8

110 FOR n=USR "a" TO USR "h" +7: READ
a: POKE n,a: NEXT n

130 LET s=0: LET x= 15: LET y=10
140 PRINT OVER 1;AT y,x;CHR$ 148;CHR$

149;AT y+1,x;CHR$ 150;CHR$ 151
200 GOSUB 500
480 GOTO 200
500 IF IN 31=0 THEN RETURN
510 PRINT OVER 1;AT y,x;CHR$ 148;CHR$

149;AT y+.1,x;CHR$ 150;CHR$ 151
520 IF (IN 31=80R IN 31=90R IN

31=10) AND y> 1 THEN LET y= y-1

530 IF (IN 31=4 OR IN 31=5 OR IN 31=6)
AND y<20 THEN LET y=y+1

540 IF (IN 31=1 OR IN 31=50R IN 31=9)
AND x<30 THEN LET x=x+1

550 IF (IN 31=20R IN 31=60R IN
31=10) AND x>0 THEN LET x= x-1

560 PRINT OVER 1;AT y,x;CHR$ 148;
CHR$ 149;AT y+1,x;CHR$ 	 --

150;CHR$ 151

570 RETURN
1000 DATA 14,27,127,31,

15,7,15,31
1010 DATA 0,0,0,0,0,192,

112,188
1020 DATA 31,29,30,15,3,1,1,3
1030 DATA 206,30,124,248,224,64,

64,224
1040 DATA 12,12,12,12,252,252,0,0
1050 DATA 48,48,48,48,63,63,0,0
1060 DATA 0,0,252,252,12,12,12,12
1070 DATA 0,0,63,63,48,48,48,48

■ COMPATIBILITY WITI-
DIFFERENT JOYSTICK

■ HOW TO READ JOYSTICK
WITHIN A BASIC PROGRAfV

■ ANIMATING A GUNSIGH1

■ MAKE YOUR GAMES MORE
PROFESSIONAL

■ ELECTRON INTERFACE
■ TESTING FOR THE FIRE

BUTTON

The program begins by initializing the screen
colours. Next, eight UDGs are created using
the DATA in Lines 1000 to 1070. These are not
all used yet, because you are not only

defining a gunsight, you are also creating a
picture of a duck which will be used when
you type in the remainder of the program

• (covered in the next parr of this article).
Having created the UDGs, Line 130

sets the start position of the gunsight.
The line also sets the score to zero

1 	but, again, this won't be needed
until later.

Line 140 PRINTS the top half of
the gunsight using two UDGs,

followed by the bottom half
,using two more. The gunsight

is controlled by calling the
subroutine starting at Line

500—the calling is done
by Line 200.

The joystick subroutine, starting at Line
500 looks at the values of IN 31 to detect which
way the joystick is being pushed. What the IN
function does is to look at a particular port
within the machine to see which value is being
returned. The Kempston joystick addresses
port number 31, so the program looks at the
values of IN 31.

The values that IN 31 can take are shown in
fig. 1. The four main directions give values of
1, 2, 4 and 8. In addition, diagonal joystick
movements can be detected by looking at the
total of the two adjoining directions—see fig.
1 again.

The first line in the subroutine—Line
500—detects if the joystick is positioned
centrally. IN 31 will be zero if you leave the
joystick alone and it springs back to its central
position.

Line 510 blanks out the gunsight because
this is the second time you've PRINTed OVER
1—the first was in Line 140. OVER 1 blanks
out the graphic when it is used for the second
time, so the graphic will disappear.

Now that the previous position has been
blanked out, a new position can be calculated.
The new position depends on which way the
joystick has been pushed by the player. Line
520 detects the three positions which indicate
a downwards movement—straight down and
the two downward diagonals. Line 530 de-
tects the three upward possibilities, and Lines
540 and 550 detect the left and right po-
sitions. The diagonal position values appear
in two lines because a diagonal movement is
made up of two up or down, and left or right,
values. If you're a little confused, look back at
fig. 1 and you should see what's happening.

The subroutine ends by PRINTing the
gunsight at the new position. Notice that as
this is the first time the gunsight has appeared
at that position, it appears normally.

To allow you to continue moving the
gunsight, Line 480 says GOTO 200 as a

'temporary measure so that the joystick rout-
ine can be called repeatedly.

The Commodore 64 program is compatible
with any Atari-type joystick. First connect
your joystick to the socket marked 1.

8 1

5 BIT THREE BIT ZERO 10

BIT SEVEN
(LOC 37154)

BIT TWO
(LOC 37137)

2 4

BIT ONE BIT FOUR BIT THREE
(LOC 37137)

BIT FOUR
(LOC 37137)

9

I. The Spectrum joystick gives one of
these eight values according to which
way the joystick is pushed

A GUNSIGHT
Now type in this first section of program
which will allow you to use your joystick to
move a gunsight around the screen.

In the next part of this article, you'll see
how to turn the program into a complete
duck-shooting game.

20 POKE 53280,5:POKE 53281,0:
PRINT "0"

30 Y = I284:TU = 0:SC = 0
40 FOR Z = 1 TO 23:PRINT "00

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
01:11110CIDEICIE";:NEXT Z

110 J= PEEK(145)
120 POKE Y,32:POKE Y + 1,32: POKE

Y + 40,32: POKE Y + 41,32
130 T = 0:T1 = 0:T2 = 0:T3 = 0:T4 = 0:

IF ((JAND1) =0) = —1 THEN
T1 = — 40

140 IF ((JAN D2) = 0) = —1 THEN T2 = 40
150 IF ((JAND4) = 0) = —1 THEN

T3= —1
160 IF ((JAND8) = 0) = —1

THEN T4 = 1
165 T=T1 +T2+T3 +T4
170 IF(Y+ T> 1063ANDY+T< 1943)

AND(PEEK(Y + T) < > 102AND
PEEK(Y + T + 1) < > 102)THEN
Y = Y + T

180 POKE Y,125:POKE Y+ 1,109:POKE
Y+ 40,110:POKE Y+41,112

190 GOTO 110

Line 20 sets the border and background
colours and clears the screen. The gunsight's
start position is set by Line 30 along with the
number of ducks and the score—the variables
TU and SC won't be needed until later. The
border is drawn by Line 40.

2. The Commodore 64 joystick sets thee
bits in location 145. AN Ding will tell yo
the joystick's direction

The routine from Lines 110 to 180 deals
with the joystick. PEEKing location 145 can
provide you with information about which of
the four directions—up, down, left and
right—the joystick is being pushed, and
whether the fire button is being pressed.

To detect movement of the joystick, the
logical operator, AND, is used. For more
information about how this works, see the
article on pages 284 to 288. Bit zero is set if the
stick is pushed up. ANDing it with 1, then, will
yield zero if the joystick is pushed in that
direction. Similarly, for down, bit one is set,
and J needs to be ANDed with 2. For left, J
needs to be ANDed with 4, and for right, J
needs to be AN Ded with 8. As you will see next
time, J needs to be ANDed with 16 to detect
pushes on the fire button.

In Line 130, T, T1, T2, T3 and T4 are set to
zero. This set of variables is used to adjust the
gunsight's screen position according to the
results from ANDing with J. Lines 130 and
140 deal with vertical movements of the
gunsight, while Lines 150 and 160 deal with
left and right movements.

Line 165 calculates the overall change in
screen position. If the gunsight isn't going to
move off screen, a new screen position is
calculated by Line 170. The POKES in Line 180
display the gunsight on the screen again.

ECK
The Vic 20 program is very similar to the
program designed for the Commodore 64. As
usual, some of the memory locations are
different, and the screen dimensions differ.

A GUNSIGHT
Type in this program and you will have a
gunsight to move around the screen:

3. The Vic 20 joystick sets bits in two
separate memory locations, according to
the direction of the stick

40 FOR Z = 0 TO 7:POKE 7424 + Z,
0:NEXT Z

50 POKE 36879,13:PRINT "0":
POKE 36869,255

60 Y = 7791 +88'2: POKE 36878,
15:TU = 0:SC = 0

70 FOR Z = 1 TO 22:POKE 7680+
Z*22,230:POKE 7701 + Z*22, 230:NEXT Z

150 POKE 37139,0: POKE 37154,127:
J = PEEK(37137):J0 = ((JAND4) = 0):
J1= ((JAND8) = 0)

160 J2= ((JAND16) = 0):F = ((JAN D32)
= 0):J3 = ((PEEK(37152)AND
128) = 0):POKE 37154,255

170 POKE Y,32:POKE Y + 1,32: POKE
Y + 22,32: POKE Y + 23,32

180 T = 0:T1 = 0:T2 = 0:T3 = 0:T4 = 0:
IF JO = — 1 THEN T1 = — 22

190 IF J1 = —I THEN T2 = 22
200 IF J2= —1 THEN T3= —1
210 IF J3 = —I THEN T4 = 1
220 T=T1 +T2+T3+T4
230 IF (Y+T>7701ANDY+T<8163)

AND(PEEK(Y + T) < > 230ANDPEEK
(Y+T+I)< >230)THENY=Y+T

240 POKE Y,253: POKE Y + 1,237:
POKE Y + 22,238:POKE Y + 23,240

250 GOTO 150

First of all, Line 40 defines the space character.
Line 50 sets the screen colour, clears the screen
and sets up the graphics mode. Line 60 is
another initialization line. It is concerned with
setting the start position of the gunsight—Y-
and setting up some things that won't be
needed until next time: the sound effect
volume, the number of ducks—TU—and the
score—SC. Line 70 sets up the border.

The joystick routine itself runs from Line
150 to Line 240. Before you can use a

BIT THREE

65320

BIT ONE

•

63

BIT ZERO

BIT TWO

4. The Electron joystick sets these bits as
the joystick is pushed, returning to zero
when released

joystick, location 37139 must be POKEd with
0, and location 37154 must be POKEd with
127.

To find our which way the joystick is being
pushed, the contents of locations 37137 and
37154 must be examined. In location 37137,
bit two is set when the joystick is pushed
upwards, bit three when it is pushed down-
wards, and bit four when it is pushed to the
left. When the joystick is pushed to the right,
it sets bit seven of location 37154—not very
logical at all! If you move the stick diagonally
two bits are set.

Lines 150 and 160 use logical ANDS to find
out which way the joystick is being pushed—
JO to J3 correspond to up, down, left and right.
In addition, the fire button is checked—bit five
of location 37137 is set when the button is
pressed. If the bit that is being tested is set, the J
variable becomes — 1.

In Line 180 T, T1, T2, T3 and T4 are set to
zero. This set of variables is used to adjust the
gunsight's screen position according to the
values of JO, J1, J2 and J3. Lines 180 and 190
deal with vertical movements of the gunsight,
while Lines 200 and 210 deal with left and
right movements.

Line 220 calculates the overall change in
screen position. If the gunsight isn't going to
move off screen, a new screen position is
calculated by Line 230. The POKES in Line
240 display the gunsight back on the screen.

Line 250 is simply a temporary measure so
that the joystick can control the gunsight
continuously.

This program will only work with the BBC.
Electron owners should look at the next one.

If you are using Acorn's own joysticks,

65320

5. The BBC joystick returns a value in
the range 0 to 65320 from each of the two
potentiometers

63

6. The Dragon and Tandy joysticks re-
turn a value in the range 0 to 63 from each
of the two potentiometers

you'll find that the program only responds to
one of the pair of joysticks.

Type in this first section of program and
you'll see a small gunsight—a plus sign—
which you can move around the screen:

20 DIMV(2),V2(2)
25 V(1) = 680:V(2) = 512
30 *TV255,1
60 MODE1
70 VDU23;8202;0;0;0;
100 GCOL3,3
110 VDU5
115 MOVE 680,512:PRINT" + "
120 PROCUPDATE(1)
130 V(1)=1280 — V(1)
140 PROCUPDATE(2)
160 MOVE V2(1),V2(2): PRINT" +"
170 MOVE V(1),V(2): PRINT" + "
220 GOTO 120
230 DEF PROCUPDATE(P)
240 V2(P) = V(P)
250 V(P) = (ADVAL(P))/(53 +

13*((P+1) MOD 2))+20
260 EN D PROC

At the start, two arrays are DIMensioned.
They will be used to store the current position
and the last position of the gunsight.

Line 30 prepares the screen for the game,
while Line 60 selects MODEl. The text cursor
is switched off by Line 70.

In order that the gunsight can be blanked
out in the course of animating it, Line 100
sets up an exclusive OR—see page 372—on
white. The effect of this is that printing a
white graphic on top of another white graphic
will cause the areas where they overlap to
disappear. The VDU5 in Line 110 allows you
to PRINT at the graphics cursor and use GCOL
to colour the text characters.

PROCUPDATE deals with the input from the
joystick. The Acorn joysticks come as a pair
which plug into the Analogue to Digital (A to
D) converter at the rear of the machine. The
ADVAL function returns a value that is being
sent through the A to D converter. In the case
of joysticks, ADVAL(1) reads a value for the
horizontal position of one joystick, and
ADVAL(2) reads the vertical position.
ADVAL(3) and ADVAL(4) read the horizontal
and vertical position of a second joystick.
Each of the four ADVALs can return a value
from 0 to 65320 in steps of 16.

PROCUPDATE will work for either
ADVAL(1) or ADVAL(2). The value of P is
passed from the PROCedure calls in Lines 120
and 140. Line 240 swaps either the vertical or
the horizontal element of V2 for the corre-
sponding element in V. This is swapping the
last position for the current position, ready
for calculating a new position and subseq-
uently moving the gunsight. Line 250's job is
to calculate the screen coordinate which cor-
responds to either the horizontal or vertical
position of the joystick. When dealing with
ADVAL(1), Line 130 adjusts the newly-
calculated value of V(1).

Now that both V(1) and V(2) have been
calculated, the gunsight can be blanked out
and replotted at its new position. Line 160
sees to the blanking out—remember that you
are using an exclusive OR, so that plotting a
second time will make the gunsight disappear.
The gunsight is replotted by Line 170.

In order to use the joystick to move the
gunsight continuously rather than just one
step every time the program is RUN, you will
need to close a loop—this is the function of
Line 220, which is a temporary measure only.

JOYSTICKS ON THE ELECTRON
There is no direct way of attaching joysticks
to the Electron, as there is no built-in joystick
socket. This doesn't mean that you can't use
joysticks with the Electron—but you do need
to buy a separate interface. There are a

number of suitable ones on the market, but
this program has been written for use with the
First Byte Joystick Interface which allows you
to connect any Atari-type joystick.

5 DV = 32
20 DIMV(2),V2(2)
25 V(1) = 680:V(2) = 512
30 *TV255,1
60 MODE1
70 VDU23;8202;0;0;0;
100 GCOL3,3
110 VDU5
115 MOVE 680,512: PRINT" + "
120 PROCUPDATE
160 MOVE V2(1),V2(2):PRINT" +"
170 MOVE V(1),V(2):PRINT" + "
220 GOTO 120
230 DEF PROCUPDATE
232 V2(1)=V(1):V2(2) =V(2)
240 V= 255 —?&FCCO
242 IF V AND 1 THEN V(2) =

V(2) + DV
244 IF V AND 2 THEN V(2) =

V(2) — DV
246 IF V AND 4 THEN V(1) =

V(1) — DV
248 IF V AND 8 THEN V(1) =

V(1)+DV
250 IF V(1) <0 OR V(1) > 1240 THEN

V(1)=V2(1)
255 IF V(2) < 0 OR V(2) > 1000 THEN

V(2)=V2(2)
260 ENDPROC

Line 5 sets DV at 32. DV will be used to move
the gunsight in steps of 32 pixels. Line 20
DIMensions two arrays which will be used to
store the gunsight's last position and current
position. The initial position of the gunsight
is set by putting 680 and 512 into array V.

Line 30 prepares the screen for the game,
whilst Line 60 selects MODE1. The text cursor
is switched off by Line 70.

In order that the gunsight can be blanked
out in the course of animation, Line 100 sets
up an exclusive OR—see page 372—on white.
The effect of this is that printing a white
graphic on top of another white graphic will
cause the areas where they overlap to disap-
pear. Next, the VDU5 in Line 110 allows you
to PRINT at the graphics cursor and use GCOL
to colour the text.

PROCUPDATE deals with the input from the
joystick. Line 232 swaps the values in the
current position array—V—into the last po-
sition array—V2. Line 240 takes the value
from the port being addressed by the joystick.
It's subtracted from 255 to make the testing in
Lines 242 to 248 easier.

The checks look for bits set by the signals
from the joystick. Line 242 tests bit zero, for

when the joystick is pushed up, and Line
243 tests bit one, for when the joystick is
pushed down. Similarly, Lines 246 and 248
check bit two and three, for left and right
movements.

Lines 250 and 255 check that the adjust-
ments made by the previous lines haven't
tried to push the gunsight off screen. If they
have, then the gunsight's previous position is
put back in the current position array.

Now that the gunsight's position has been
adjusted it can be blanked out and replotted at
its new position. Line 160 sees to the blanking
out—remember that you are using an exclus-
ive OR, so plotting a second time will make the
gunsight disappear. The gunsight is plotted at
its new position by Line 170.

In order that you can use the joystick to
move the gunsight continuously rather than
just one step every time the program is RUN,
you will need to close a loop—this is the
function of Line 220.

IA hi
The Dragon and Tandy are equipped with a
BASIC command—J OYSTK—which allows
you to use joysticks very easily. Both ma-
chines will allow you to use one or two
joysticks, but the program below only uses
one. Before you start programming plug your
joystick into the socket marked RIGHT.

A GUNSIGHT
Type in this first section of program and RUN
it. You'll see a gunsight appear.

Can I add a joystick routine to
any of the games in INPUT?
Joystick control is just a more
convenient alternative to keyboard
control, so the core of the programs in
this part of Games Programming can be
dropped into most programs which use
GET$ or INKEY$ to read the keyboard.

The important lines in the programs
are, for the Spectrum, Lines 520 to 550;
for the 64, Lines 110 and 130 to 170;
the Vic 20, Lines 150 to 240 (use
variable Y for POKEing on to the screen);
the BBC needs PROCUPDATE and the
Dragon and Tandy will need to call
Lines 1000 to 1070 as a subroutine,
but you'll have to make some
changes if your graphic is a
different size.

10 PMODE3,1
20 FORK =1536T01868 STEP32
30 FORJ= 0102
40 READA:POKEK + J,A
50 NEXTJ,K
160 SCREEN1,0
170 GOTO 170
4000 DATA 252,15,192,192,0,192,48,3,

0,12,12,0,3,48,0
4010 DATA 0,0,0,3,48,0,12,12,0,48,3,

0,192,0,192,251,15,192

This part of the program is very simple. Lines
20 to 50 POKE the gunsight on to the screen—
the DATA which creates the gunsight pattern is
held in Lines 4000 and 4010.

The high resolution screen is switched on
by Line 160. Line 170 has been entered as a
temporary measure to keep the screen
switched on.

ADDING THE JOYSTICK
When you have entered this section of
program you'll be able to move the gunsight
around the screen:

60 DIM S(5),B(5),D(4),H(4)
70 GET(0,0) — (17,11),S,G
130 PCLS
140 LINE(0,0) — (255,191),PSET,B
170 X=127:Y=95
200 GOSUB1000
210 GOTO 200
1000 JO=JOYSTK(0):J1 =JOYSTK(1)
1010 IFJO > 58 THENJO = 58
1020 IFJ1 >59 THENJ1 = 59
1030 IF X=J0•4*10 AND Y=J11+6

THEN 1070
1040 PUT(X-8,Y-5)—(X+9,Y+5),

B,PSET
1050 X=J0.4+10:Y=J11+6
1060 PUT(X-8,Y-5)—(X+9,Y+5),

S,OR
1070 RETURN

Two arrays need to be DIMensioned at this
stage, but as a total of four will be needed in
the complete program, all have been set up in
Line 60. GET—see page 350—is used to store
the graphic in array S, which will be used in
conjunction with array B—a blank—to ani-
mate the gunsight.

Line 130 clears the screen so that the
original image of the gunsight will not be
shown when the screen is switched on. Line
140 draws a border to improve the appearance
of the game.

Before the joystick subroutine is called by
the GOSUB in Line 200, the start position of
the joystick has to be set. The X and Y values
in Line 170 see to this.

Now on to the most important part of the
program: the joystick control routine located

7. Depending upon your computer, a
suitable gunsight can be made from
UDGs, ROM graphics, or even from the
standard character set

between Lines 1000 and 1070. The routine
makes the gunsight's screen position corre-
spond to the joystick's position.

Line 1000 uses the JOYSTK function.
There are four ways that you can use JOYSTK.
JOYSTK(0) reads the horizontal position of the
right joystick, and JOYSTK(1) reads the vert-
ical position of the same joystick. The left
joystick's horizontal position is read by
JOYSTK(2) and the vertical position is ready
by JOYSTK(3).

Each of the four functions returns a value
between 0 and 63 according to the joystick's
position.

In the subroutine Line 1000 sets JOYSTK(0)
equal to JO, and JOYSTK(1) equal to J1 to save
having to type out the full form of the function
many times during the program—it's similar
to setting K$ equal to INKEY$.

Lines 1010 and 1020 stop the gunsight
being pushed off screen by allowing for the
width of the gunsight.

Lines 1040 to 1060 actually provide the
animation, first blanking out the previous
position of the gunsight, then calculating the
new position, before PUTting the gunsight at
its new position.

Line 1040 PUTs the blank on screen. The
screen position is worked out from the value
of JO and J1—see Line 1050. X and Y are the
new coordinates of the centre of the gunsight.
Notice that JO is multiplied by 4 and J1 is
multiplied by 3. The amount you should
multiply the values is determined by the
resolution of the screen. This is from 0 to 255
across the screen and 0 to 191 from top to
bottom. By multiplying the JOYSTK values by
the factors you are stretching the 0 to 63 range
of the joystick to the 0 to 191, and 0 to 255
range of the screen. These values are the same
for every PMODE. The only other factor you
may need to take into account is the size of the
graphic you are manipulating. Use smaller
multipliers to leave enough room for large
graphics.

Once the new position for the gunsight has
been calculated, Line 1060 PUTs it on the
screen. PUT ... OR has been used so that
PUTting the gunsight will not obliterate what

I is already on screen.
The subroutine will work as it stands with

just the addition of Line 1070—the RETURN
line. However, think about what would happen
if the joystick wasn't constantly moving—the

I gunsight would appear to be flashing on and off
very rapidly because it is being blanked and
replotted over and over again in the same place.
To stop this happening, Line 1030 checks if
the screen position has changed. If it hasn't, the
animation lines are by-passed, and the,
program jumps to Line 1070. 1

Whatever the source of your data—
the household budget, a small
business, a hobby or even your
health records—they can be more
meaningful as a bar or pie chart

On page 413, you saw how to write a program
which would display your data as a graph. The
alternative to displaying numerical inform-
ation in this way is some form of non-linear
chart. Barcharts (histograms) and pie charts
are the forms most popularly used to display
statistical and commercial information. They
have the added advantage that they can be
made colourful and attractive.

Apart from this, each form of chart has
advantages which make them specially suit-
able for displaying particular kinds of data.
The bar chart is very good when you have
data which fluctuates across a wide range of
values. The pie chart's special strength is if
you want to see how different values are
related as proportions of a whole—as when
you are comparing percentages, for example.

The following programs show how you can
use your computer to prepare both types. Due
to the absence of suitable graphics commands
on the ZX81, there are no programs for that
machine. And because of the difficulty of
accessing the graphics functions on the Com-
modores in their standard BASIC, both of
these machines need to be fitted with an
expansion cartridge—the Simons' BASIC
cartridge for the Commodore 64, and the
Super Expander for the Vic 20.

SETTING UP A BARCHART
The routine for setting up a barchart is
essentially the same as for any other graph.
Once you have gathered the data, you need to
enter it into memory, then decide on the axes,
plot the bars and add the legends. As de-
scribed in the article on page 413, you can
choose to INPUT the data, plotting each bar as
you go, or INPUT all the data first then plot the
bars. A third option is to READ in the data and
change it each time you wish to draw a
different barchart. Whatever method you use,
it is best to store the data in an array of
variables, so the micro can identify the co-
ordinates of each bar.

READING THE DATA
Enter these lines to READ in the data, then
RUN them. You won't see anything on the
screen yet, but it is a good idea to RUN each
part of a program to check for errors.

10 LET n=12
20 DIM a(n)
70 FOR t =1 TO n
80 READ a(t)
90 NEXT t
3010 DATA 3,6,5,9,6,3,6,8,3,5,9,4

5 HIRES 0,1:MULTI 2,4,6
10 N=12
20 DIM A(N)
70 FOR T=1 TO N
80 READ A(T)
90 NEXT T
3010 DATA 2,4,7,4,6,3,8,0,5,6,9,4

IgY
5 GRAPHIC 1:COLOR 1,5,4,6
10 N=12
20 DIM A(N)
70 FOR T=1 TO N
80 READ A(T)
90 NEXT T
3010 DATA 2,4,7,4,6,3,8,0,5,6,9,4

5 MODE1
10 N=12
20 DIM A(N)
70 FOR T=1 TO N
80 READ A(T)
90 NEXT
3010 DATA 2,5,3,8,6,2,8,5,2,9,5,2

M
10 N=12
20 DIM A(N)
60 PMODE3,1:PCLS:SCREEN1,0
70 FOR T=1 TO N
80 READ A(T)
90 NEXT
3010 DATA 1,5,3,8,6,2,8,5,2,9,5,10

On machines that require it this section of
program selects a mode that supports
graphics. It sets the number of bars to be
plotted as 12 (Line 10), and dimensions the
array to this number (Line 20). You can
choose other numbers, but if you opt for

larger ones then you need to have an equiva-
lent number of entries in the DATA statement
at Line 3010, otherwise you will get an 'out of
data' error. It is often useful to have more
entries in the DATA line while testing the
program, so you can increase or decrease the
number of bars to be plotted at Line 10,
without having to alter the data each time.

SCALING THE AXES
The computer now knows the absolute values
of each bar coordinate, but you also need to
tell it how to scale the data. You need to do

■ DRAWING A BARCHART
■ ENTERING THE DATA
■ SCALING THE AXES
■ A 3-D BARCHART
■ DRAWING A PIE CHART

this to ensure that any set of data fills the
screen when plotted. If you don't, you may
well find that a very low number is a virtually
invisible speck on the screen, or conversely,
that a large one is out of the range of the
display. To scale the axes, enter and RUN the
next few lines—again you won't see anything
on the screen, but do it as a test:

30 LET dx = 239/n
40 READ dy
3000 DATA 18

30 DX=150/N
40 READ DY
3000 DATA 18

[.3
30 DX = 900/N
40 READ DY
3000 DATA 70

LI
30 DX =1000/N
40 READ DY
3000 DATA 1

M
30 DX=164/N
40 READ DY
3000 DATA 1

This section of program scales the X axis by
dividing the available area of screen (after
allowing for margins) by the number of bars
to be plotted (Line 30). The maximum
number of bars possible varies from machine
to machine, but knowing the extent of your
computer's graphics screen (from your User
Manual), and by changing the value of N at
Line 30, you can soon work out the best value
to give a readable graph.

Values along the Y axis are scaled by being
multiplied by a factor, again after taking
account of space for legends beneath the axis.
This value is not entered automatically, but is
read in (Line 40) from a DATA statement
(Line 3000). So for each new set of data, you
need to look at the values to be plotted and
decide what factor should be entered at Line
3000. At this stage, you might like to try
writing a short routine to INPUT this value at
Line 40. If you are able to do this, delete Line
3000, otherwise it will become the first piece
of data that gets plotted, instead of the first
number at Line 3010.

The rest of the program comprises two
routines—one to draw the axes and the other
to draw the bars. Enter the next section of

program, but do not RUN it, otherwise you
will get an error message when the machine
cannot find the routines you have called:

100 GOSUB 1000
140 GOSUB 2000
160 STOP

Lines 100 and 140 call the subroutines that
draw the axes and the bars.

100 GOSUB 1000
110 FOR T=1 TON
130 X=(T-1)*DX+11
140 GOSUB 2000
150 NEXT T
160 GOTO 160

100 GOSUB 1000
110 FOR T=1 TON
130 X=(T-1)*DX+123
140 GOSUB 2000
150 NEXT T
160 GOTO 160
Line 100 branches the program to the routine
that draws the axes, and Line 110 steps
through the numbers of bars to be drawn. Each
time round the loop, Line 130 scales the X
coordinate of the bar being drawn (*DX) and
adds an offset (11 on the 64 and 123 on the Vic
20) to leave a margin along the Y-axis. Line
140 then branches the program to the subrout-
ine that draws the bars, and Line 150 moves to
the next step in the loop.

100 PROCAXIS
110 FOR T=1 TO N
130 X=(T-1)*DX+90
140 PROCBLOCK
150 NEXT
160 END

Line 100 branches the program to the routine
that DRAWs the axes, and Line 110 steps
through the numbers of bars to be DRAWn.
Each time round the loop, Line 130 scales the
X coordinate of the bar being DRAWn (*DX)
and adds an offset (90) to leave a margin along
the Y axis. Line 140 then branches the
program to the routine that DRAWs the bars,
and Line 150 moves the program to the next
step in the loop.

100 GOSUB 1000
110 FOR T=1 TON
130 X= (T-1)*DX+18:Y=188 —16*

A(T)*DY

140 GOSUB 2000
150 NEXT
160 GOT0160

Line 100 branches the program to the routine
that draws the axes, and Line 110 steps
through the number of bars to be drawn. Each
time round the loop, Line 130 scales the X
coordinate of the bar being drawn (*DX) and
adds an offset (18) to leave a margin along the
Y axis. Line 140 then branches the program
to the routine that draws each of the bars, and
Line 150 moves the program to the next
step—or bar—in the loop.

DRAWING THE BARS
Now enter the routines that draw the axes and
plot the bars:

a
1000 PLOT 16,0: DRAW 0,170
1020 PLOT 16,0: DRAW 235,0
1030 RETURN
2000 FOR a =1 TO n
2010 LETs=16+ (a — 1)*dx
2020 FOR t=s TO s+ dx — 4
2030 PLOT t,0: DRAW 0,a(a)*dy
2040 NEXT t
2100 NEXT a
2110 RETURN

Lines 1000 to 1020 draw the axes, leaving a
margin of 16 graphic units to the left of the Y
axis. To draw the bars, Line 2000 steps
through each one, Line 2010 scales the X
coordinate (*dx) and Line 2020 sets up a loop
to draw vertical lines to form each bar. The
— 4' at the end of this line causes a small gap

to be left between each bar, to increase
readability of the graph. The rest of the
program section draws the bars.

1000 LINE 10,0,10,181,3:
LINE 10,181,160,181,3

1050 FOR T=0 TO 10
1060 TEXT 0,180 —T*18,STR$(T),

1,1,4
1070 NEXT T
1080 RETURN
2000 CO= CO +1:1F CO > 3 THEN CO=1
2010 BLOCK X,180 — A(T)* DY,X +

DX — 1,180,C0
2060 RETURN

To draw the axes, this section of program
moves the cursor to the top left of the screen,
allowing for a margin, and Line 1000 draws
the Y axis. The same line draws the X axis
from the bottom of the Y axis to the right of
the screen.

Lines 1050 to 1070 loop through the

numbers from 0 to 10 and print them along
the Y axis. The rest of the section sets up
alternating colours (Line 2000) in which to
draw the bars. The bars are actually drawn by
Line 2010.

ITZ
1000 DRAW 2,115,0 TO 115,900 TO

1023,900
1050 CHAR 1,0,"10"
1060 CHAR 17,0,"0"
1070 CHAR 9,0,"5"
1080 RETURN

2000 CO--CO+ 1:IF CO>3
THEN CO =1

2010 FOR K=1 TO DX STEP 8:
DRAW CO,X + K,900 TO X + K,
900 — A(T)* DY: N EXT K

2060 RETURN

This section of program draws the Y axis
(Line 1000) from top to bottom, then the X
axis—the same line—from left to right, leav-
ing suitable margins. The numbers 0, 5 and
10 are printed by Lines 1050 to 1070 along
the Y axis, and the second subroutine (Lines

2000 to 2060) draws the bars in alternating
colours. Line 2000 selects the colour and
Line 2010 does the drawing.

1000 DEF PROCAXIS
1020 MOVE64,924: DRAW 64,100: DRAW

1100,100
1080 VDU 5
1090 FOR T= 0 TO 10
1100 MOVE 0,780 + 110
1110 GCOL0,3:PRINT;T
1130 NEXT
1140 VDU4
1150 ENDPROC
2000 DEF PROCBLOCK
2010 GCOL0,3
2020 MOVE X,100:MOVEX + DX,100
2030 PLOT85,X,A(T)*80* DY + 100
2040 PLOT85,X + DX,A(T)*80*DY +

100
2110 ENDPROC

Lines 1000 to 1150 DRAW the axes. The
cursor is moved to the top left of the screen,
allowing for margins (Line 1020), then a line
is DRAWn down and another along the screen.
Line 1080 allows you to write text accurately
at any point on the screen, so each time round
the loop starting at Line 1090, the numbers 0
to 10 are PRINTed along the X axis (Line
1110). The positions where these are PRINTed
are given by Line 1100 as 110, 80+ 110,
160 + 110, and so on to 800 + 110 graphics
units. Line 1140 cancels the effect of Line
1080, by causing text to be written only at the
text cursor.

NC !HI
1000 LINE(0,25) — (0,191),PSET
1020 COLORS
1030 LINE— (255,191),PSET
1050 COLOR2:FOR T = 0 TO 10
1060 LINE(0,191 — T*166/10) —

Bar charts are particularly good
when you have to present data
which varies within set limits

over a period of time. For
example, you can dis-

play something like
rainfall figures to
analyze monthly

trends

(3,191 — T*166/10),PSET
1070 NEXT
1080 RETURN
2000 COLOR2
2090 LI N E(X,190) — (X + DX,Y),

PSET, B F
2100 RETURN

The first line of this program section draws
the Y axis from top to bottom of the screen,
allowing for a margin, then Line 1030 draws
the X axis from left to right. Notice that the
minus sign in this line means that the line
should be drawn from the last cursor position
`to' the position after the minus sign. Line
1050 changes colour, and sets up a loop to
step through the bar numbers. Each time
round this loop, Line 1060 draws a short line
(from 0 to 3 graphic units) to mark the Y axis
at positions given by T*166/10.

The second routine (Lines 2000 to 2100)
draws a rectangle for each bar and fills it in
with yellow.

THE THIRD DIMENSION
When you RUN the program above, you will
notice that barcharts appear much less
academic and are more attractive than linear
graphs, even though both are made up of the
same amount of information. You can im-
prove the display of this information even
further by drawing the bars in three dimen-
sions. This gives a solid, natural look, and
greater scope for the use of colour.

Before you develop the next program, save
the one you have just entered (for your own
reference) then, without typing NEW or
1BREAK , enter the following changes. You
should be able to use the editing facilities of
your computer to make the changes and save
yourself some typing, but make sure you do
not introduce errors by overlooking small
differences in the lines.

There are no line changes for the Spectrum,
but you will need to add a few lines—see later.

2010 BLOCK X,180 — A(T)*DY,X +
(DX*.5) —1,180,C0

2010 FOR K = 0 TO DX* .5 STEP 8:
DRAW CO,X + K,900 TO X+ K,
900 — A(T)*DY

30 DX = 820/N
130 X= (T-1)*DX2+ 90
1020 DRAW 64+ DX*

.6,924 + DZ

130 X=(T-1)*D2+18:Y=188-
16*A(T)*DY

1000 LINE(0,191) - (0,25),PSET:
LINE- (DX*.6,25- DZ),PSET

1020 PAINT(2,100),4:COLOR3
1030 LINE- (255- DX* .6,191),PSET:

LINE - (255,191 - DZ),PSET
1060 LINE(0,191 -7166/10)-

(DX* .6,191 - 7166/10 - DZ),
PSET

2000 COLOR4
2090 LINE(X,188) - (X+ DX,Y),PSET,BF

Do not RUN the program as it stands, because
it is incomplete and all you will get is an error
message. The alterations you have just made
set up some variables and additional com-
mands for drawing in the Z direction-the
third dimension. To complete the program,
enter these additional lines and RUN the
program:

1010 DRAW 4,4: DRAW 0, -170
2050 PLOT 16 + (a -1)*dx,a(a)*dy
2060 DRAW 4,4
2070 DRAW dx - 4,0
2075 DRAW -4, - 4: DRAW 4,4
2080 DRAW 0, - a(a)*dy
2090 DRAW -4,-4

1010 LINE 10 + DV.5,0,10 -F DX
. .5,181,3

1020 FOR Z =18 TO 180 STEP 18
1030 LINE 10,Z,10 + DX*.5,Z - 5,1
1040 NEXT
2020 FOR N = OTODX*.5 -1
2030 LINE X + N,180 - A(T)*DY -1,

N + X + (DX*.5) -1,180 -A(T)
*DY -5,1

2040 NEXT
2050 LINE X + (Dr.5) - 1 + N,180-

A(T)*DY -5,X+ (DX*.5) -
1 + N,180,C0

ECK
1010 DRAW 2,115+ Dr.5,0 TO

115+ Dr.5,900
1020 FOR Z = 48 TO 900 STEP 56
1030 DRAW 2,115,Z TO 115+ DX*.5,

Z - 48
1040 NEXT Z
2020 DRAW 2 TO X+ K+ DX*.5,

900 - A(T)*DY - 48:NEXT K
2030 DRAW 2 TO X+ (K-8) +

DX*.5,900

50 DZ= 250/(N +1)

120 DX2 = DX*1.3:IF DX> 200 THEN
DX2= DX +60

1010 GCOL0,3:MOVE64,100:
DRAW 64,924

1030 GCOL0,1
1040 MOVE70,920:MOVE70 + Dr.6,

920 + DZ
1050 PLOT85,70,100:PLOT85,

70 + Dr.6,100 + DZ
1060 GCOL0,2
1070 PLOT85,1200,100:PLOT85,

1200 + DX* .6,100 + DZ
1120 MOVE70,780 +100:DRAW

70 + DX*.6,780 +100 + DZ
2050 GCOL0,2
2060 PLOT85,X+ DX".6,A(T)*80

• DY + 100 + DZ
2070 PLOT85,X+ DX*1.6,A(T)*80

*DY + 100 + DZ
2080 GCOL0,1
2090 MOVEX+ DX,A(T)*80*DY +100:

PLOT85,X+ DX* 1.6,100 + DZ
2100 PLOT85,X+ DX,100

50 DZ = 50/(N +1)
115 IF A(T) = 0 THEN 160
120 D2= DX*1.4:IF DX > 40 THEN

D2=DX+15
1010 LINE- (DX* .6,191 - DZ),PSET:

LINE- (0,191), PSET
1040 LINE- (DX . .6,191 - DZ),PSET:

LINE - (0,191), PSET: PAINT
(127,189),3

2010 LINE(X + DX,188) - (X+ DX*1.6,
188- DZ),PSET:LINE- (X+ DX
*1.6,Y- DZ),PSET

2020 LINE- (X+ DX,Y),PSET:
LINE- (X+ DX,188),PSET

2030 PAINT(X+ DX + 2,185),4
2040 COLOR3
2050 LINE(X,Y) - (X+ DX*.6,Y DZ),

PSET:LINE - (X+ DV- 1.6,Y- DZ),
PSET

2060 LINE- (X+ DX,Y),PSET:
LINE - (X,Y),PSET

2070 PAINT(X+ DX/2,Y - 1),3
2080 COLOR2

You should now have on screen a splendid 3-
D display of your data. It is a useful exercise
to change the values in the colour commands
to select colours of your own choice. Then
make a note of the lines you need to change to
alter the scale of the graph, so that you have a
quick reference when you use the program in
the future. A simple way to make notes is to
include REM statements in the program. For
example, you could add a new line containing
a REM statement followed by the entire alter-
native line, including its number and
command.

PIE CHARTS
An equally attractive way in which to display
information is with a pie chart-a circular
type of graph in which only a single coordi-
nate (a polar coordinate) is plotted for each
piece of data. In this type of chart, the size of
each division is represented by an angle.

Structurally, the program to draw a pie
chart is simple, but it is slightly more com-
plicated here to make it easy to use. Enter and
RUN the program to see how it works:

10 DIM a(12): LET n = 0
20 CLS
40 PRINT AT 5,14;"MENU"
50 PRINT AT 8,10;1: ENTER DATA"
60 PRINT AT 10,10;"2: VIEW CHART"
70 PRINT AT 12,10;"3: END"
80 LET a$ =1NKEY$: IF a$ < "1" OR

a$> "3" THEN GOTO 80
90 GOSUB VAL ar200
100 GOTO 20
200 CLS : LET n =1
210 PRINT "ITEM NO. ❑ ";n,: INPUT LINE a$:

PRINT a$: IF a$ = "" THEN RETURN
220 LET a(n) = VAL a$: LET n= n +1
230 IF n<13 THEN GOTO 210
240 LET n= n -1: RETURN
400 IF n = 0 THEN RETURN
410 CLS : LET tt= 0: FOR t= 1 TO n: LET

tt=tt+ a(t): NEXT t
420 LET f= (2*PI)/tt
430 CIRCLE 127,86,60
440 LET a = 0: FOR k =1 TO n
450 LET m= a + a(k)*f
460 PLOT 127,86: DRAW 60*SIN m,

so- cos m
470 LET a = m
480 NEXT k
490 PAUSE 0: RETURN

10 DIM A(100),P(100)
20 PRINT "0 Er:COLOUR 0,0
40 PRINT TAB(17)"MENU"
50 PRINT TAB(12)" ga 1 : ENTER DATA"
60 PRINT TAB(12)"2: VIEW CHART"
70 PRINT TAB(12)"3: END"
80 GET G$:G = VAL(GUIF G<1 OR G>3

THEN 80
90 ON G GOSUB 200,400,600
100 GOTO 20
200 PRINT "0":N = 0
210 A$ = "":PRINT "ITEM NO.";

N +1;:INPUT A$:1F A$="" OR
VAL(A$)= 0 THEN RETURN

220 N= N +1:A(N)= VAL(A$)
230 IF N<31 THEN 210
240 RETURN

400 IF N=0 THEN RETURN
405 PRINT "0":COLOUR 1,1:HIRES

0,1:MULTI 2,4,6
410 TT= 0:FOR T=1 TO N:TT= TT

+A(T):NEXT
420 RT= 0:FOR T=1 TO N:RT= RT

+A(T):P(T)= RT/TT:NEXT T
430 CO = 1:P(0) = -1:N=0
450 FOR T=0 TO 2*7" STEP .01
460 IF T>2 . 7*P(N) THEN N= N +1:

CO=C0+1:IF CO>3 THEN CO=1
470 LINE 80,100,80 + 40"SIN(T),

100 +50*COS(T),C0
480 NEXT T:LINE 80,100,80,150,0
490 PAUSE 15:NRM:RETURN
600 PRINT "0 II":NRM:COLOUR 6,1

10 DIM A(100),P(100)
20 PRINT "Oar:POKE 36879,8
40 PRINT TAB(9)"MENU"
50 PRINT TAB(4)"A gal: ENTER DATA"
60 PRINT TAB(4)"2: VIEW CHART"
70 PRINT TAB(4)"3: END"
80 GET G$:G=VAL(G$): IF G<1 OR G > 3

THEN 80
90 ON G GOSUB 200,400,600
100 GOTO 20
200 PRINT "0":N= 0
210 A$=`"':PRINT "ITEM NO.";

N+1;:INPUT A$:1F A$=`"' OR
VAL(A$)=- 0 THEN RETURN

220 N= N+1:A(N)=VAL(A$)
230 IF N<31 THEN 210
240 RETURN
400 IF N=0 THEN RETURN
405 PRINT "0":POKE 36879,28: GRAPHIC 1
410 TT -= 0:FOR T=1 TO N:TT= TT+ A(T):

NEXT T
420 RT= 0:FOR T=1 TO N:RT=

RT+A(T):P(T)= RT/TT:NEXT T
430 CO =1:P(0) = -1:N=0
450 FOR T=0 TO 2*.TE STEP .01
460 IF T>nr*P(N) THEN N= N +1:CO

=C0+1:IF CO>3 THEN CO =1
470 DRAW CO 3 512,512 TO 512+

300*SIN(T),512 + 300* COST)
480 NEXT T:DRAW 0,512,512 TO 512,812
490 PAUSE 15:NRM:RETURN

GRAPHIC 0:RETURN
600 GRAPHIC 0:PRINT "OM":

POKE 36879,27

10 DIM A(31),P(31):N =1
20 MODE1
30 VDU19,2,2,0,0,0
40 PRINTTAB(12,10)"MENU :"
50 PRINTTAB(12,13)"1: ENTER DATA"
60 PRINTTAB(12,15)"2: VIEW CHART"
70 PRINTTAB(12,17)"3: END"

80 G =GET-48: IF G<1 OR G>3 THEN 80
90 ON G GOSUB 200,400,600
100 GOTO 20
200 CLS:N = 1
210 PRINT"ITEM NO. ❑ ";N;" ❑ ?";:

1NPUT""A$:IF A$ = "" THEN RETURN
220 A(N) = EVAL(AS):N = N + 1
230 IF N <31 THEN 210
240 RETURN
400 IF N=1 THEN RETURN
410 MODE1:TT = 0:FOR T = 1 TO

N:TT = TT + A(T):NEXT
420 RT = 0:FOR T=1 TO N:RT = RT

+ A(T):P(T) = RT/TT:NEXT
430 VDU19,3,4,0,0,0,19,2,2,0,0,0
440 N = 0:P(0) = — 1
450 FOR T = 0 TO 2*PI STEP .01
460 IF T> 2*Pl*P(N) THEN GCOLO,

1 + (N+ 3) MOD 3:N= N +1
470 MOVE 640,512:DRAW 640 + 400

*SIN(T),512 + 400*COS(T)
480 NEXT
490 IF (N + 2) MOD 3=0 THEN

GCOL0,0:MOVE640,512:
DRAW640,912

500 PRINT TAB(0,30)"PRESS RETURN":IF
NOT INKEY(— 74) THEN 500

510 VDU19,3,7,0,0,0
520 RETURN
600 MODE1
610 VDU31,15,10,80,73,69,32,70,79,

82,32,78,79,87,30

10 DIMA(31),P(31)
15 PMODE3,1
20 CLS
40 PRINT@45,"MENU"
50 PRINT@169,"1: ENTER DATA"
60 PRINT@201,"2: VIEW CHART"
70 PRINT@233,"3: END"
80 A$ = INKEY$:IF A$ < "1" OR A$ > "3"

THEN 80
90 ON VAL (A$) GOSUB 200,400,600
100 GOTO 20
200 CLS:N = 0
210 PRINT"ITEM NO. ❑ ";N + 1;:

INPUTA$:IF A$ = "" THEN RETURN
220 N = N + 1:A(N) = VAL(A$)
230 IF N <31 THEN 210
240 RETURN
400 IF N = 0 THEN RETURN
410 PCLS:SCREEN1,0:TT = 0:FOR T=1 TO

N:TT = TT + A(T): NEXT
420 FOR T=1 TO N:P(T) = A(T)*

810* ATN (1)/TT: NEXT
430 J = 0:P(0) = —1
440 FOR T = 1 TO N
450 IF T = N AND N — 3*INT(N/3) = 1 THEN

COLOR4 ELSE COLOR T — 3*
INT(T/3) + 2

460 FOR K =1 TO P(T)
470 X=X+.01:Y=Y+.01
480 LINE(127,95) — (127 + 60*SIN(X),

95 — 60*COS(Y)),PSET
490 NEXTK,T
500 1FINKEY$ = "" THEN 500
510 RETURN
600 CLS

When you RUN this program, you see a menu
displayed on the screen. This is PRINTed by
Lines 40 to 70 and it allows you to enter data,
view the chart or end the program. Line 80
waits for you to press a key; you may press any
(except those that reset the memory), but only
1, 2 or 3 will let you leave the menu. This is
the effect of the IF ... THEN condition at Line
80. A similar condition at Line 400 returns
the program to the menu if you press 2
without having entered any data. And if you
should press 3, then the program ends. To
restart it, you have to RUN it again.

At the start, the obvious choice is 1, which
branches the program to a routine to enter
your data. Line 90 calculates the actual line to
which the program should branch which in
this case is Line 200. This line sets up a
variable (N) for the data, which is INPUT by
Line 210 and stored by Line 220 in an array
that is dimensioned by Line 10.

To enter the data, you type the number
followed by ENTER or 'RETURN'. Line 230
checks whether you have entered all the data
for which you have reserved space at Line 10.
If you haven't, then the program loops back
to Line 210 to enter the next piece of data.
Notice that you need not use all the reserved
space; if, for example, you want to have a five-
sectioned pie chart, then you would press
ENTER1 or 'RETURN I a second time after enter-
ing the fifth piece of data. Line 100 then
returns the program to the routine to display
the menu. If, however, your data uses all the
space, Line 240 sends you back to the menu
automatically so you cannot exceed the capac-
ity of the array.

VIEWING THE CHART
If you now press 2, the program branches to
Line 400, which is the start of the routine to
draw the pie chart. Line 410 loops through
the data and totals the values. The rest of the
routine scales the data and draws the chart,
and these are dealt with slightly differently on
each machine. You may also find it useful to
look at pages 250 to 257 where there is more
information on how the computer handles
circular functions.

Line 420 divides the entire pie chart—an

angle of 360 degrees, or 2*PI—by the total
value of the data to give a scaling factor. Line
430 draws the pie—a circle of radius 60. Line
440 and 450 then loop theough the data
entries, making a subtotal of them each time
and multiplying this by the scaling factor (f).
This scaled subtotal (m) is the value of points
on the circumference of the circle to which
radii are drawn by Line 460 to divide the pie.

Line 420 loops through the data, makes a
subtotal on each pass and divides each sub-
total by the total of all the data. These scaled
subtotals are stored in the PO array dimen-
sioned at Line 10. Line 430 resets some
variables that help to sequence the colours of
the sections of the chart. Lines 450 to 480
divide the pie, select the colour of each section
and draw coloured radii to fill in the sections.
Line 490 sets up a short delay to make the
graph visible, then changes mode and returns
to the menu. Line 600 is a separate routine,
which returns the display to normal.

Line 420 loops through the data, makes a
subtotal on each pass and divides each sub-
total by the total of all the data. These scaled
subtotals are stored in the PO array dimen-
sioned at Line 10. Line 430 redefines two
logical colours, and Line 440 resets some
variables to help sequence the colours. Lines
450 to 480 step through the angles from 0 to
360 to select a colour for each section of chart
(Line 460) and DRAW radii (Line 470) to fill
in each section. The dividing line between the
first and last sections are DRAWn by Line 490.
Line 500 PRINTS an instruction to the user
and continues to display the chart until
RETURN is pressed. When this happens, Line
510 redefines logical colour 3 to white (for
text), and returns to the menu. The rest of the
program is the third option of the menu
which ends the program.

tgi
Line 420 loops through the data, makes a
subtotal on each pass and divides each sub-
total by the total of all the data. The scaled
subtotals are stored in the PO array dimen-
sioned at Line 10. Line 430 redefines some
variables that help to sequence the colours.
The FOR ... NEXT loop starting at Line 440
selects colours for each section of the chart,
and the one starting at Line 460 scales the
data and draws radii to fill in the sections.
Line 500 lets the chart continue to be dis-
played until a key is pressed, when the
program is returned to the menu. Line 600 is
the single-line routine to end the program.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Abbreviating keywords 	421
ADVAL, Acorn 	 467
Adventure stories 	422-424
Adventure themes 	422-423
Alien, flashing

ZX81 	 430-431
Arrays

in adventure games 	425,427
ASCII codes 	420-421
Assembler

Dragon, Tandy 	440-444
Autorun 	 460-461
Axes for graphs

setting up 	415-416
scaling 	 470-471

B
Bandwidth

of TVs and monitors 	447
Barchart

drawing a 	470-476
three-dimensional 	473-474

Basic programming
Commodore 64
graphics 	 420-421
formatting 	433-439
making more of UDGs 450-457
plotting graphs 	413-419,

470-476
protecting programs 458-463

BASIC, Simons'
Commodore 64 	 414

Bootstrap programs 459-463

C
Cathode ray tube

how it works 	445-447
Character sets

redefining, with UDGs
450-457

Colour for screen displays
433-434

Commodore key 420
Cursor control keys

Commodore 64

D
Data storage
Displays, improving

colour
positioning

Dragon assembler
Dragon speed POKE

E
Editing programs

Commodore 64
	

420

F
FLASH command

Spectrum
	 434

Flashing alien
ZX81
	

430-431

G
Games programming

adventures, planning your own
422-427

using joysticks 	464-469
Get routines

adventure games 	426
Graphics, ROM

Commodore 64 	 420
Graphs 	 413-419
Gunsights 	 464-468

H
Histograms and barcharts

Inventory
adventure games
	

426
Inversing the screen

ZX81
	

432

J
Joysticks, in games

interface, Electron
Kempston

JOYSTK
Dragon, Tandy

L
Legends

for graphs
	

416

Monitors and TVs

N
Number keys

redefining

0
Objects in adventures

Acorn, Commodore 64, Dragon,
Tandy, Vic 20
	

424
Spectrum
	

427
On-board graphics

Commodore 64
	

420

P
Parabolas, drawing 	415
Pie charts 	 474-476
Peripherals

TVs and monitors 	445-449
Planning screen displays

433-439

Program graphics
Commodore 64 	 420

Program symbols
Commodore 64 	 420

Protecting programs 459-463
Pseudo hi-res graphics

ZX81 	 432

Q
Quote mode

Commodore 64
	

420

S
SCREEN command

Dragon, Tandy
	

439
Sine waves 	 415
Speed POKE

Dragon, Tandy
	

444
Stunt rider UDG

Vic 20
	

429
Submarine UDG

Vic 20
	

430
Superexpander cartridge

Vic 20
	

414
SYS

Commodore 64, Vic 20
	

462

T
Tandy assembler 	440-444
Tandy speed POKE 	444
Title pages, for games 433-439
Toggling the screen display

Commodore 64 	 420
Tokens

Commodore 64 	 421
TROFF command

Dragon, Tandy
TRON command

Dragon, Tandy
TVs and monitors

bandwidth
choosing
colour
how they work
viewing conditions

U
UDGs

on the Vic 20
creating extra
redefining numbers
storing the data

V
Variables, list of

for adventure game 	425-427

Words, in adventures
	

424-426

445-449

Raster scan, in TVs
	

447
Reverse graphics symbols

Commodore 64
	

420
450-457 ROM graphics

Commodore 64
	

420

420-421 M

Machine code graphics
Vic 20 	 428-430

	

413 	ZX81 	 430-432
433-439 Machine code programming

	

433-434 	animation

	

434-439 	Vic 20, ZX81 	428-432

	

440-444 	assembler

	

444 	Dragon, Tandy 	430-444

Postbytes
6809 Processor 	440-444

470-476 PRINT
Acorn Commodore 64,
Spectrum, Vic 20 	434

PRINT AT
Acorn 	 434
Spectrum 	 434,436

PRINT SPC
Commodore 64, Vic 20 434-435

PRINT TAB
Acorn 	 434,438

	

464-469 	Commodore 64, Vic 20 	435

	

467-468 	Spectrum 	 434
464 PRINT @

Dragon, Tandy 	 435

	

468-469 	Processor
6809 	 440

Professional-looking programs
433-439

444

444

447
449
447

445-447
447

428-429
450

452-457
451-457

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Put your joystick routine to work in a
new DUCK SHOOTING GAME. Try out
your skills and beat the high score!

-.I Cheap cassette recorder or expensive
disk drive unit? Find out the pros and
cons of different STORAGE SYSTEMS.

'Find out how to use multiple UDGs to
build up a complex PICTURE that
appears on screen almost instantly.

`.-J If you practised the TYPING tutor,
you'll know your way around the
keyboard. Now try typing some
EXTENDED TEXT.

Plus, for SPECTRUM users, a machine
code TRACE PROGRAM that will help
track down bugs in other

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

