
A MARS ALL CA EN ITImw17 MPUTER COURSE IN WEEKLY PARTS

EARN PROGR#011LIR, UN AND THE FUTURE

Vol. 2 	 No 17

BASIC PROGRAMMING 38

IT'S A FRAME-UP 	 509

Wireframe drawings are an exciting part of computer
visuals. Get started on the basic techniques

MACHINE CODE 18

Run this tracer through a faulty program, and it
will help you to sort out the bugs

APPLICATIONS 10

Change yards to metres, pounds to kilograms, and
lots more, with the aid of this handy program

BASIC PROGRAMMING 39

Complete the detailed jungle picture which you began
in the last part of this article

GAMES PROGRAMMING 17

WHEELING AND DEALING 	 534

The first part of a complete Pontoon program deals with
setting up card graphics and shuffling the pack

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Dave King. Pages 509, 510, Projection Audio Visual. Pages 514,
516, 517, 519, Paddy Mounter. Pages 520, 523, 524, 527, Dave King. Pages 528,
530, Jeremy Gower. Pages 529, 531, Ray Duns. Pages 532, 533, Chris Lyon.
Pages 534, 536, 538, Gary Wing.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIN , SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 	p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
4814128, and + 	COMMODORE 64 and 128

ri ACORN ELECTRON,
BBC B and B+ V: DRAGON 32 and 64

mr TANDY TRS80 a 7181
 7K

 VIC20 ' COLOUR COMPUTER

■ WHAT ARE WIREFRAME
DRAWINGS?

■ SETTING UP THE ROUTINES
■ DRAWING A GRID
■ DRAWIN_J; A CIRCLE

In the first of a series of articles on
wireframe drawing, find out how to
construct grids and circles. Later,
you'll see how these become the
building blocks of 3-D images.

Animated engineering drawings of cars and
other machinery have become popular adver-
tising images—and most impressive they are,
too. These `wireframe drawings' are among
the latest design aids made possible by com-
puter graphics. If, as a home computer user,
you have longed to produce such animated
images on your TV screen, then you will be
disappointed to learn that your micro cannot
match the splendour of advertising images
produced jointly by computers, artists and
photography experts. All is not lost, however,
because you can learn in this series of articles
how to draw and manipulate three-
dimensional images in a way that many design
engineers will envy.

Your computer's ability to address indiv-
idual points or pixels (picture elements) on the
screen provides a powerful means of drawing
as you have seen in a number of graphics
articles. For example, the Spectrum has 256
pixels horizontally and 176 pixels vertically.
Normally you can plot straight lines or points.
Combined with colour facilities, these can be
used to provide high-resolution displays.

The normal method of drawing lines on
computer controlled graphics systems is
similar to the way you use a pen and paper.
You can move the cursor over the screen
without marking it, or you can move it on the
screen to leave a mark. Changing colour is as
simple as changing pens. The main difference
between the computer system and a person
using pen and paper is that the computer is
faster and better at drawing straight lines—a
task that is difficult for people, without the use
of a ruler.

This line drawing facility allows you to
draw outline images, and also `wireframe'
pictures of three-dimensional objects. Wire-
frame pictures are an imaginary representation
which consist of a grid of lines over the surface
of the object. Often no attempt is made to hide
the lines at the back of the object—to do so

requires a considerable amount of extra com-
putation. The result looks as if the object is
made from a wire frame joined to form a grid
or mesh.

This type of display can be animated by
turning and moving the wireframe object, as in
the advertising images of a car, say. The rapid
animation is not practicable on a home com-
puter, because each frame needs to be dis-
played at a rate of at least 25 per second for

smooth animation, and a home computer takes
much longer than ig of a second for all but the
simplest displays. Indeed, most commercial
computer animated displays are not generated
in 'real time' (as they happen on the screen).
Instead, each picture frame is generated sepa-
rately, taking seconds, minutes or even hours
for complicated high-resolution displays, and
then saved on film or video tape for viewing
later at the correct speed.

For static displays, time is not important,
although you might become impatient waiting
for the picture to be completed. Often, how-
ever, it is just as interesting, if not more so,
to watch a wireframe picture being built up
on the screen, as it is to see the finished
object—especially with some of the more
complicated drawings.

The drawing routines in this article are
beyond the scope of the ZX81. Users of the

Commodore 64 need a Simons' BAS IC car-
tridge, and the Vic 20 needs a Super Expander
cartridge in order to RUN these programs.

It is best to begin by drawing simple
shapes—such as a cube or sphere—then as you
gain experience, you can try drawing more
complicated and interesting shapes. In this
article you will learn how to generate some
two-dimensional shapes and to make them
appear to be in three-dimensional space.

BASIC STEPS
Even with the high-speed capacity of your
computer, and its ability to draw lines, it takes a
great deal of work to produce a complicated
wireframe picture. The basic steps are in a set
of routines, which include the basic drawing
commands. Essentially, you need a command
to move the cursor without drawing, and one
to draw from the last cursor position to a new
one. These commands are slightly different
from machine to machine. They are the PLOT,
MOVE, DRAW and LINE commands you have
used often in the other graphics articles.

At the start of a graphics program you
normally set the computer to a graphics mode,
if necessary, and clear the screen. If you have a
choice of screen resolution, choose the highest.
It is also a good idea to structure the program,
so that all the drawing commands are collected
together into subroutines. Besides being
sound programming practice, this methodical
approach prevents you frequently having to
rewrite sections of program that achieve the
same results. And because all the commands
that perform a certain task are collected in one
section of program, it is a simple matter to
develop or expand the program and to under-
stand it. Structuring actually slows down the
program, but this is not important for static
displays, and the greater flexibility it gives—
particularly for an application such as wire-
frame drawing—is a great advantage.

INITIALIZING THE MACHINE
To set up the first stage of these drawing
routines, enter this section of programming,
but do not RUN it yet, because it is incomplete.

9000 REM INIT
9010 BORDER 4: PAPER 7: INK 0: CLS:LET

N=0
9070 RETURN
9100 REM MOVE
9110 PLOT X,Y
9120 RETURN
9200 REM DRAW
9210 DRAW X—PEEK 23677,Y—PEEK 23678
9220 RETURN

9000 PRINT "Q"
9030 RETURN

9000 SCNCLR
9030 RETURN

9000 DEF PROCINIT

9010 CLS:CLG
9030 ENDPROC
9100 DEF PROCMOVE(X, Y)
9110 MOVE X, Y
9120 ENDPROC
9200 DEF PROCDRAW(X, Y)
9210 DRAW X, Y
9220 ENDPROC

1M IA
9000 PCLS
9030 RETURN

The Commodore 64, Vic 20, Dragon and
Tandy programs are shorter because these
computers allow you both to move the cursor
and draw on the screen using a single com-
mand. The Spectrum and Acorn programs set
up subroutines to move the cursor position
without drawing (Lines 9100 to 9120) and to
draw on the screen (Lines 9200 to 9220). This
is so that these routines can be combined to
make a single moving and drawing routine.

Now, when you wish to draw a shape, you
need not tell the computer how to move the
cursor or how to mark the screen to form each
different shape. Instead, it is much simpler to
define each new shape in terms of these basic
routines.

LINE DRAWING
The simplest shape you could wish to draw is a
line, so here is a routine to do it (you still won't
be able to RUN the program):

9500 REM LINE
9510 LET X = XS: LET Y=YS: GOSUB 9100
9520 LET X = XE: LET Y =YE: GOSUB 9200
9550 RETURN

9500 LINE XS,YS,XE,YE,1
9550 RETURN

FAX
9500 DRAW 1,XS,YS TO XE,YE
9550 RETURN

9500 DEF PROCLINE(XS,YS,XE,YE)
9510 PROCMOVE(XS,YS)
9540 PROCDRAW(XE,YE)
9550 ENDPROC

9500 LINE(XS,YS) — (XE,YE),PSET
9550 RETURN

This routine specifies a start position, coordi-
nates (XS,YS), and an end position, coordinates

(XE,YE), for the line. Some computers need
DRAW or LINE commands; for others these are
already specified in the routines from Line
9100 to Line 9220. The line-drawing routine
is the basis of most wireframe drawing
programs, so it can be used to establish one of
the 'building blocks' in the drawing process—a
grid.

DRAWING A GRID
To depict a surface and any irregularities, such
as cracks, hills and dales it might contain, it is
best to visualize it not as one continuous area
enclosed in a rectangle, but as a grid of
horizontal and vertical lines. Any irregular
features in the surface can be shown as
distortions of these lines. Enter the next
section of program (but do not RUN) to define a
routine to draw a grid:

5000 LET JA= LW/NX
5010 LET XS = XA
5020 FOR J = 0 TO NX
5025 LET YS = YA: LET XE = XS: LET

YE =YA + LH
5030 GOSUB 9500
5040 LET XS = XS +JA
5050 NEXT J
5060 LET JA= LH/NY
5070 LET YS=YA+ LH
5080 FOR J = 0 TO NY
5090 LET XS = XA + LW: LET XE = XA: LET

Y E = YS
5100 GOSUB 9500

Can I add colour to liven up my
wireframe drawings?
Usually, wireframe drawings are in two
colours only—most commonly black and
white. One reason for this is that too
many colours would complicate the
image. More importantly, however, the
addition of colour reduces the resolution
of the image and in some computers,
such as the Spectrum, can cause
problems when one colour overprints
another. On the Commodore 64, the use
of colour would halve the drawing
screen, so the program would have to be
modified to compensate. Towards the end
of this series of articles, we discuss the
addition of colour further, but there
is no reason you should not
experiment with colour now.

5110 LET YS = YS — JA
5120 NEXT J
5130 RETURN

!HI
You'll need to make just one change to make
this section of program run on the Vic 20. Line
5110 should read:

5110 YS = ABS(YS — JA)

5000 JA = LW/NX
5010 XS = XA
5020 FOR JB = 0 TO NX
5025 YS = YA:XE = XS:YE = YA + LH
5030 GOSUB 9500
5040 XS = XS + JA
5050 NEXT JB
5060 JA = LH/NY
5070 YS = YA + LH
5080 FOR JB = 0 TO NY
5090 XS = XA + LW:XE = XA:YE = YS
5100 GOSUB 9500
5110 YS =YS —JA
5120 NEXT JB
5130 RETURN

5000 DEF PROCGRID(XA,YA,LW,LH,NX,NY)
5010 JA = LW/NX
5020 XS = XA
5030 FOR JB = 0 TO NX
5070 PROCLIN E(XS,YA,XS,YA + LH)
5080 XS = XS + JA
5090 NEXT JB
5100 JA=LH/NY
5105 YS = YA + LH
5110 FOR JB= 0 TO NY
5150 PROCLIN E(XA + LW,YS,XA,YS)
5160 YS = YS —JA
5170 NEXT JB
5180 ENDPROC

Coordinates (XA,YB) specify the bottom left-
hand corner of the grid. LW specifies the width,
and LH the height. NX specifies the number of
horizontal divisions, and NY the number of
vertical divisions. The variable JA specifies the
distance between the vertical lines, and the FOR
... NEXT loop draws horizontal lines stepped
off in this distance. The second FOR...NEXT
loop draws vertical lines in steps calculated by
Line 5060 (5100 for the Acorn).

The routine between Lines 5000 and 5180
draws horizontal lines in one step from left to
right, and vertical lines in one step from
bottom to top, so that such a grid can map only
flat surfaces. It could not, for example, depict
irregularities within the surface.

To display the grid on the screen, enter
these lines to call the routine and RUN the
program:

100 GOSUB 9000
175 LET XA = 0: LET YA = 0: LET LW = 255:

LET LH =175: LET NX =16: LET NY =12
180 GOSUB 5000
190 STOP

100 HIRES 0,1:COLOUR 5,1
175 XA = 0:YA = 0:LW = 320:LH = 200:

NX = 4:NY = 4
180 GOSUB 5000
190 GOTO 190

ECK
100 GRAPHIC 2:COLOR 1,5,0,0
175 XA = 0:YA = 0: LW =1023: LH =1023:

NX = 4:NY = 4
180 GOSUB 5000
190 GOTO 190

100 MODEO
110 PROCINIT
180 PROCG RI D(0,0,1279,1023,20,15)
190 END

(Line 110 is not necessary in this program at
the moment, because Line 100 achieves the
same result. It is included for completeness,
because it is expanded in a later program.)

1M !HI
100 PMODE4:SCREEN1,1
105 PI = VAIN (1)
110 GOSUB 9000
175 XA = 0:YA = 0:LW = 255:LH =191:

NX = 4:NY = 3
180 GOSUB 5000
190 GOTO 190

When you RUN the program, you should see a
grid filling the entire screen. To see how
versatile the program is, make the changes
below and RUN again:

a
175 LET XA =10: LET YA =10: LET

LW = 240: LET LH =144: LET NX =1: LET
NY =1

175 XA =10:YA =10:LW = 300:LH =180:
NX =1:NY = 1

175 XA = 7:YA = 7:LW =1007:LH =1007:
N X = 1:NY =1

180 PROCGRID(0,0,1279,1023,1,1)

175 XA =10:YA = 10:LW =240:LH =160:
NX = 1:NY = 1

This time, a rectangular box is drawn, because
a grid with one horizontal and one vertical
division is specified. By giving NX and NY
suitable values, as above, you can draw a grid in
which the number of horizontal divisions is
different from the number of vertical divisions.

Make the changes below and RUN again:

a
175 LET XA = 0: LET YA = 0: LET LW =160:

LET LH = 144: LET NX = 15: LET NY =10

175 XA = 10:YA = 80:LW = 150:LH = 90:
NX=15:NY=10

ECK
175 XA = 7:YA = 500: LW = 507: LH = 507:

NX=15:NY=10

180 PROCG RI D (0,0,800,765,15,10)

fiC1
175 XA= 0:YA = 31:LW =160:LH =160:

NX=15:NY=10

The grid no longer fills the screen, but instead
is a square in the bottom left-hand area. The
square shape is achieved by giving LW and LH
the appropriate value, and the number of
divisions is specified by NX and NY as above.

DRAWING CIRCLES
A rectangular grid is not the only 'building
block' you can use for wireframe drawing; it
is often useful to be able to draw circles. Some
micros have a command that lets you draw
circles by specifying the centre and radius.

This direct command, however, does not
give the degree of controllability you need for
drawing three-dimensional images. With per-
spective, a circle in one view might be an ellipse
in another, or some other curve in others.
Although the CIRCLE command can be used to
draw ellipses, it cannot usually cope with the
third dimension, which is essential for natural-
looking shapes. So it is better to be able to
define a general function.

One way to draw a circle is with a series of
short, straight-line sections. Provided the lines
are short, the circumference of the circle will
appear as a smooth curve, but the shorter the
lines, the more of them you need and the longer
will be the drawing time. Here is a routine to
draw a circle radius R, with centre at (XS,YS);
do not RUN the program yet:

a
6000 IF N = 0 THEN LET N = 20 + INT (R/10)
6020 LET JA = 2*PI/N
6050 LET XR = XS: LET YR = YS
6060 LET JB = 0: LET XS = XS + R
6070 FOR J = 2 TO N
6080 LET JB =JB +JA
6090 LET XE = XR + R"COS JB: LET

YE =YR + R'SIN JB: GOSUB 9500
6100 LET XS = XE: LET YS = YE
6110 NEXT J
6120 LET XE = XR + R: LET YE = YR: GOSUB

9500
6130 LET XS = XR: LET YS = YR
6160 RETURN

14M:
On the Commodores, change the PI in Line
6020 to the symbol 7c.

6000 IF N = 0 THEN N = 20 + INT(R/10)
6020 JA = 2' PUN
6050 XR = XS: YR = YS
6060 JB = 0:XS = XS + R
6070 FOR JC = 2 TO N
6080 JB=JB+JA
6090 XE = XR + R•COS(J B):YE = YR + R*SIN

(JB):GOSU B9500
6100 XS = XE:YS = YE
6110 NEXT JC
6120 XE = XR + R:YE = YR:GOSU B9500
6130 XS = XR:YS = YR
6160 RETURN

El
6000 DEF PROCCIRCLE(XS,YS,R,N)
6010 IF N = 0 THEN N =20 + INT(R/10)
6020 JA = 2*PI/N
6050 PROCMOVE(XS + R,YS)
6060 JB = 0
6070 FOR JC = 2 TO N
6080 JB=JB+JA
6110 PROCDRAW(XS + R*COS(JB),

YS + R .SIN(JB))
6120 NEXT JC
6150 PROCDRAW(XS + R,YS)
6160 ENDPROC

The variable N sets the number of straight-line
segments to be used for the circumference of
the circle. If you specify N = 0, Line 6000
(6010 on the Acorn) calculates how many
segments are needed for the smoothest circle,
taking into account the size of the display.

Line 6020 calculates the angle of each line
segment on the circumference. Line 6050
moves the cursor to a position on the circum-
ference. The FOR ... NEXT loop draws each line
segment, except the last one, which is drawn by
Line 6120 (6150 for Acorn) to ensure that the
last line joins up with the first.

To see how the routine works, delete Line
180 and add the next few lines to call it:

a
150 FOR R = 20 TO 70 STEP 10
155 LET XS =128: LET YS =102: LET N = 24
160 GOSUB 6000
170 NEXT R

150 FOR R = 20 TO 100 STEP 20
155 XS = 160:YS =100: N = 24
160 GOSUB 6000
170 NEXT R

KIK
150 FOR R = 50 TO 500 STEP 100
155 XS=512:YS=512: N=24
160 GOSUB 6000
170 NEXT R

II
150 FOR R = 60 TO 500 STEP 80
160 PROCCIRCLE(640,512,R,24)
170 NEXT R

1VZ !HI
150 FOR R = 0 TO 100 STEP 20
155 XS= 128:YS= 102: N=24
160 GOSUB 6000
170 NEXT R

The display on your screen should now show a
number of concentric circles at the centre of
the screen. As with the Grid routine, you can
vary the parameters in the program that calls
the routine to change the display. Line 150 sets
the radius of the first circle, and the amount by
which it is increased to give the radii of
successive circles. Line 155 (160 on the Acorn)
specifies the centre of the circles and the
number of line sections in the circumference.
As an exercise, vary these values and note the
effect on the display.

If you are wondering what has happened to
the grid routine, it is still in the memory, but
since you have rewritten the lines of code that
call the routine, the computer does not display
it. Routines like these can be collected into a
library of useful line graphics routines for use
as needed. They can be used in all sorts of
graphics prograrris, as well as those for wire-
frame drawing. You can add new routines as
you need them. Once they are in the computer,
save them on tape or disk. When you want to
use them, load them into memory again,
merging several routines together if necessary
(see pages 339 to 343).

Next time you'll see how to use these
routines to create three-dimensional wire-
frame drawings.

When you are all at sea with your
programs and the error messages are
flying, switch on this trace and get
back on course, before you sink
beneath a sea of syntax

It is almost impossible to key in a long
program—like your assembler—without in-
troducing some errors. No matter how much it
is checked, there are some bugs that defy even
the deftest programmer, without the aid of
some powerful diagnostic tool.

Having a properly working assembler is
essential. Many of the following
chapters depend on it and it is
vital that you locate all of the
bugs in it now. So INPUT is
providing Commodore 64 and Vic 20
owners with a trace program to help
them check their assemblers out. The
Dragon and Tandy have trace programs
built in. So do the BBC and Electron.
And a trace program for the Spectrum
was given last time.

The trace program listed below is
given in assembly language as well as machine
code. If your assembler is not working you can
feed in the trace program machine code using
the machine code monitor given on pages 280
and 281. If your assembler is working, you can
assemble the trace and SAVE it so that you can
use it to diagnose problems in other BASIC
programs that you have written. And if you are
not sure whether your assembler is working or
not, you can test it by trying to assemble the
trace program.

HOW TO USE IT
When a BASIC program will not RUN, your
computer will often give you an error message
which tells you which line it cannot execute.
This may be all you need to know to debug a
short, simple program. But when your
programs get longer and more complicated,
such a message may still leave you in the dark. A
particular line may be executed a number of
times while the program is being RUN. And
other lines that have been executed before it
may set the variables to values that cause
problems in the line which your computer
eventually falters on. The articles on pages 334
to 338 and 375 to 379 showed how difficult it
can be to de-bug a program.

The trace program for the Commodore
simply PRINTS out on the screen the number
of each line as it is executed.

You need a copy of the program—either

printout or the version published in INPUT.
Follow the program to the point where it
stops, using the trace. This way you will
be able to see clearly the structure of the
program. You'll be able to spot whether the

■ WHY YOU NEED A TRACE
■ ENTERING THE TRACE

TO CHECK
YOUR ASSEMBLER

■ WHAT A TRACE CAN DO

■ TRACKING DOWN
ERRORS

■ HOW THE
TRACE WORKS

■ HOW TO USE IT

computer is RETURNing from subroutines
properly. You'll also be able to work out the
value of the variables as you go and check that
conditional IF ... THEN statements are being
fulfilled and that GOTOs go to the right line.

HOW IT WORKS
A trace program is rather special. It runs while
another program—the BASIC program that

you are checking out—is R U Nning. Normally it
is not possible to run two programs in your
computer at the same time. In this case though,
the two programs—although they seem to be
running simultaneously—are not. The trace
runs in pauses in the main program using what
are called interrupt driven routines.

These interrupt the main program every
60th of a second on the Commodore 64. While
the main program is halted for a fraction of the
second, the interrupt driven routine is perfor-
med. And when it is finished, the main
program RUNs again until the next interrupt.

BASIC programs are always interrupted
when they are RUN. The computer breaks off
every 60th of a second to scan the keyboard

and to check to see if a key has been
pressed. Interrupt driven routines are
simply tacked onto this keyboard scan

routine.
The high frequency of interruption

means that a long line of BASIC may
be interrupted several times during
its execution. So the trace may give
you a line number repeated several

times. Conversely, if a line is
very short—say a single PRINT

or a RETURN from a subroutine—
there is a slight chance that the

trace will miss it. Sometimes,
such lines take less than a 60th

of a second and the interrupt
could miss them. If the trace

does not list the number of
a short line, try adding a

delay—a FOR ... NEXT
loop or a REM state-

ment—to it.

The following program prints out the number
of the line of BASIC being executed as it is
executed in the top left-hand corner of the
screen. This is to keep it out of the way of
anything that your BASIC program might
want to PRINT on the screen.

If you key it in using your assembler, the
origin is 49,152. If you are using your machine
code monitor the start address is also 49,152.
And to switch on the routine you use SYS49152.

When you RUN a program, the BASIC line

numbers will be flipped through very rapidly.
To slow it down to a readable speed, press the
El key. To stop it, hit the RUN/STOP I key. This
will leave the line number the machine stopped
on displayed. Key in CO NT, and your computer
will start again from where it left off.

ORG 49152
SEI 	 78
LDA # &OD 	 A9 OD
STA &0314 	 8D 14 03
LDA # &CO 	 A9 CO
STA &0315 	 8D 15 03
CLI 	 58
RTS 	 60
LDA # &01 	 A9 01
LDX &D021 	 AE 21 DO
CPX # &F1 	 E0 F1
BNE COL 	 DO 02
LDA # &00 	 A9 00
. El COL STA &FF 	 85 FF
LDA # &00 	 A9 00
STA &FE 	 85 FE
LDA &39 	 A5 39
STA &FB 	 85 FB
LDA &3A 	 A5 3A
STA &FC 	 85 FC
LDY # &07 	 AO 07

LDX # &30 	 A2 30
. ❑ FIG SEC 	 38
LDA &FB 	 A5 FB
SBC NUMS —1,Y 	 F9 75 CO
PHA 	 48
DEY 	 88
LDA &FC 	 AS FC
SBC NUMS +1,Y 	 F9 77 CO
BCC OUT 	 90 09
STA &FC 	 85 FC
PLA 	 68
STA &FB 	 85 FB
INX 	 E8
INY 	 C8
BNE FIG 	 DO E8
.11I OUT PLA 	 68
TXA 	 8A
STY &FD 	 84 FD
INC &FE 	 E6 FE
LDY &FE 	 A4 FE
STA &0420,Y 	 99 20 04
LDA &FF 	 AS FF
STA &0820,Y 	 99 20 D8

LDY &FD 	 A4 FD
DEY 	 88
BPL DIG 	 10 D1
LDA &FB 	 A5 FB
ORA # &30 	 09 30
STA &0425 	 8D 25 04
LDA &FF 	 A5 FF
STA &D825 	 8D 25 D8
LDA &C5 	 A5 C5
CMP #&04 	 C9 04
BNE QUIT 	 DO OA
LDX # &00 	 A2 00
.0 AGAIN LDY # &00 	 A0 00
. ❑ BACK INY 	 C8
BNE BACK 	 DO FD
I N X 	 E8
BNE AGAIN 	 DO F8
D QUIT JMP &EA31 	 4C 31 EA

WOR 10 	 OA 00
WOR 100 	 64 00
WOR 1000 	 E8 03
WOR 10000 	 10 27

HOW IT WORKS
The first seven instructions form a small
routine that switches the main program on. SEI
SEts the Interrupt flag in the status register.
This switches the normal interrupts off so that
you can change the interrupt vector and point it
to the trace routine. If you did not disable the
interrupts while you were doing
this, there would be a
danger that an interrupt
might occur half way
through the change and be
directed off to a place you did
not intend.

LDA # &OD and STA &0314,
and LDA # &CO and STA &0315
load the number GOOD into the
interrupt vector, which occupies
memory locations 0314 and 01315
hex. The hash # sign tells the assembler
what follows is a number rather than an
address, and the ampersand & tells it
that the number is in hex. There is no
instruction to load a number directly into
a memory location. First the number has to be
loaded into either the A, X or Y register with an
LDA, LDX or LDY instruction, then contents of
the register are stored in the appropriate
memory location with an STA, STX or STY
instruction.

COOD is the address of the beginning of the
main trace routine which starts in the assembly
language listings here with the instruction LDA
&01.

C LI then Clears the Interrupt flag, in other
words it enables the interrupts again. And RTS
ReTurnS BASIC.

Once those seven instructions have been

executed, the trace routine has been switched
on. Now, every 60th of a second, when the
computer interrupts its main operation to scan
the keyboard, it is directed to the trace routine
instead.

THE MAIN ROUTINE
You will notice that the main routine does not
start by switching the interrupts off, as you
might expect. After all you wouldn't want your
interrupt routine to be interrupted, as that
would put it into an endless loop. But on the
6510 chip (and the 6502) the interrupts are
automatically disabled when an interrupt
routine is started.

The first thing the main routine does do is
check the background screen colour—there is
no point in printing white numbers onto a
white screen. You won't see them.

LDA # &01 loads the A register with the
number 1, which is the number that will give
you white. LDX &D021 then loads the X register

with the contents of memory location D021
hex, or 53,281 decimal. This location controls
the background colour. The most significant
four bits are always held high—that is set to 1.
So if the background colour is white, the
contents of that location will be 11110001 in
binary, 241 decimal or F1 hex. And CPX # &F1
Com Pares the contents of the X register—that is
the contents of D021—with Fl.

If the background colour is white the CPX
instruction sets the zero flag in the status
register. And BNE—Branch if Not Equal—
jumps over the instruction LDA # &00 to the
next mention of the label COL if the zero flag is
not set. But if the background colour is white
and the zero flag is set, the jump is not
executed. LDA # &00 then loads the ac-

cumulator with 0, the number corresponding
to black.

Whatever thy result of this test, the contents
of the accumulator are then stored in the
memory location FF on the zero page. The
microprocessor refers back to the number in
that location when it gets round to putting the
line number on the screen.

LDA # &00 and STA &FE sets the contents of
the zero page memory location FE to 0. This is

BASIC line which the computer is currently
executing. FC and FB are free locations on the
zero page where these numbers can be
manipulated—remember, these numbers are
in hex and the routine has to do a considerable
amount of work on them to print them out in

digit to poke in that position on the screen.
SEC SEts the Carry flag. This should always

be done before a subtraction is carried out
because it is the 1 from the carry flag that gives
the 1 that's added to the flipped bits to give 2's
complement (see page 181). When the

microprocessor subtracts, it flips the
bits and adds. The addition takes

the carry into account. So if the
carry flag is set to 1, the 1 is

added in effectively giving
2's complement. And when

the carry flag is not set—
that is, it's 0-0 is added in.

That effectively subtracts
an extra one.

going to be used as a counter when the routine
works out the position of the decimal digits on
the screen.

LDA &39 and STA &FB, and LDA &3A and STA
&FC transfer the contents of memory locations
39 and 3A hex, 57 and 58 decimal, into FC and
FB. Locations 57 and 58 hold the number of the

decimal on the screen. You wouldn't want a
trace program that gave you hex line numbers,
would you?

The next section works out the decimal
digits which will then be poked onto the screen.

LDY # &07 loads the Y register with the
number 7. This is going to be used as an offset
and a counter, so the routine knows which
decimal digit it is working on. And LDX # &30
puts 48 decimal into the X register. 48 is the
ASCII code for the figure 0 and, again, the X
register is going to be used as a counter,
counting along the ASCII codes for the correct

This is very useful if you are subtracting the
two-byte numbers. If you set the carry,
subtract the low bytes first, then the high bytes.
Then if the low bytes need a borrow the carry
flag will be set to 0. When the high bytes are
subtracted, an extra 1 will be subtracted and
the borrow will automatically be accounted
for. You will note that the carry flag works the
other way round from what you would expect
logically. When it is set to 1 there is no borrow,
and when it is reset to 0, there is.

So the rule is: If you're going to subtract, set
the carry flag. And if you're going to add, reset
the carry flag to 0—you don't want an extra 1
added in then, after all.

The next thing that happens in this routine
is exactly that sort of two-byte subtraction
routine. LDA &FB loads the accumulator with

the contents of FB, which are the low byte of the
current line number. SBC NU MS — 1,Y sub-
tracts the low byte of a number that it looks up
in the data table which starts at the label N U MS.
The table comprises the WOR numbers at the
end of the routine. Each of the decimal
numbers given there are loaded, as hex, into
two bytes. The SBC instruction looks up the
byte you want to subtract, by jumping to the
byte before the label NU MS—in other words,
memory location N U MS — 1—then counting
the number contained in the Y register on from
there. So on the first pass, when the contents of
Y are 7, it subtracts the byte six (7 —1) on from
N U MS, which is the low byte of WOR 10000. It
may seem a little strange to use two offsets like
this—the —1 with the label and the contents of
the Y register—but this saves instructions and
gives the correct value of the Y register at the
end of this routine. It's being used to memorize
which decimal digit the routine's working on.

The result of the first subtraction is pushed
onto the stack with PHA. The contents of the Y
register are then decremented by D EY. And
LDA &FC and SBC N U MS + 1,Y subtract the
high byte of the same decimal in the table.

BCC means Branch on Carry Clear. So if
there is carry—or in this case, a borrow—from
the subtraction, the routine branches to the
next mention of the label OUT, which appears
before PLA. Remember that the carry flag is
clear, or 0, when there is a borrow. And if there
is no borrow and the carry flag is set to 1, the
routine proceeds to the next instruction.

STA &FC puts the remainder of this high byte
back in FC. And PLA and STA &F B pulls the
remainder of the low byte off the stack and puts
it back in F B. I NX increments the X register. The
effect of this is to make the X register count
along the ASCII codes of the decimal digits.

INY increments the Y register. This is done
because the register was decremented before
and the value in the Y register needs to be
restored before the next instruction BNE FIG
sends the processor round this loop again.

SAVING BYTES
B N E means Branch if result Not Equal to zero.
And the result of incrementing the Y register
could only be equal to zero if it had been —1
before. If you examine how this program
works in detail you will see that this never
happens. But using a branch, which uses
relative addressing, rather than an uncon-
ditional jump, which uses absolute addressing,
saves one byte.

This branch means that the microprocessor
goes round and round this loop, taking away
the decimal values it got from the data table
incrementing the X register—and counting
along the ASCII codes—as it goes. As you can

see, the way this routine works out is by
counting how many times it can take away
10,000, how many times it can take away
1,000, how many times it can take away 100
and how many times it can take away ten. When
it does these repeated subtractions and finds it
can't go, the BCC instruction branches out of
the loop to the instruction PLA. This pulls the
low byte off the stack into the A register. It is
immediately disposed of by transferring the
contents of the X register into the accumulator
with the instruction TXA.

The only reason that the low byte is pulled
off the stack is to prevent the stack growing.

As the subtraction will no longer go, the X
register now contains the ASCII value for the
correct digit to put into the decimal place that is
being worked out. The TXA puts that value into
the accumulator, ready for outputting.

PUTTING IT ON THE SCREEN
STY &F D puts the decimal place counter into
temporary storage in FD, so that the Y register
can be used for something else. The position
counter in FE is then incremented and its new
value is loaded into the Y register.

STA &0420,Y is the instruction that actually
puts the digit onto the screen. Memory
location 0420 is in the screen area—the top
right-hand part of it. The ASCII code of the
digit the routine has worked out is stored in the
succeeding memory locations by adding the
offset Y. So the right digit is poked onto the
screen in the right place.

LDA &FF then loads the accumulator with
the contents of FF which are 0 if black letters are
required and 1 if white are required. The
colour was worked out before.

That value is then stored in the appropriate
location in the colour file. The screen memory
and the colour memory work entirely inde-
pendently. What is displayed in any screen
location is completely independent of what
colour it is. And the fact that the colour is fixed
after the digit has been poked onto the screen
does not matter. As the whole routine takes less
than a 60th of a second, there is no chance that
you will see a digit appearing on the screen and
then, a fraction of a second later, changing
colour. Your eyes cannot respond that fast.
Neither can the TV screen.

The Y register is loaded with the contents of
FD again which is then decremented. This is
the decimal position store which counts from 7
downwards.

BPI means Branch on Plus result—and zero
counts as a plus. So BPL DIG sends the
microprocessor back to the beginning of this
whole routine if it is not on the second to last
digit. In other words, it loops back to work out
the next digit unless the last digit was the tens.

The units are worked out by a separate routine
which follows immediately.

LDA &C5 loads the accumulator with
whatever's left after the tens have been worked
out. It is then ored with 48 to give the ASCII.
An ORA instruction is used rather
than an ADC—ADd with
Carry—as you would have
to clear the carry flag
before adding. So
0 Ring, which is
not affected by the
carry flag, saves
a byte.

The result is then
stored on the screen
in the units position
and the correct colour
is added.

The zero page memory
location C5 contains
details of the last key
that's been pressed— the
actual number stored here
depends on the key's position
on the keyboard rather than the
corresponding ASCII.

The contents of C5 are loaded
into the accumulator and CoM Pared
with 4-4 corresponds to the Ei key.
BNE QUIT then jumps over the delay
routine that follows if the E11 key has
not been pressed, and the result of CM P
&04 is not 0.

The delay routine consists of a loop
within a loop. The X register and the
Y register are both loaded with 0 and
incremented. And the microprocessor is
branched back each time the result of the
incrementation is not zero. Obviously,
you'll only get a zero result when the
register had filled up and overflowed. So
it goes round each loop 256 times—this means
that the inner Y-register loop is executed
256 x 256 times.

Memory location EA31 is the beginning of
the regular interrupt routine. J M P &EA31 sends
the microprocessor off to perform the regular
interrupt routine. If you did. not do this, the
keyboard would freeze up and you would not
be able to use your Commodore.

What follows is the decimal data used to
work out the digits. This data is entered as
WORds. WOR is not assembly language. It is an
assembler instruction which tells the as-
sembler to leave two bytes empty for data.

You will have noticed that there is no return
instruction in this program, so you may be
wondering how it returns to BASIC. On the
other hand, you may have guessed that the
return instruction is in the regular interrupt

routine. Once it has performed its normal
duties—like scanning the keyboard—it auto-
matically switches the interrupts back on and
returns directly to BASIC without returning
to the routine you've keyed in. Then the
computer does another 60th of a second's
worth of BASIC and performs this interrupt
routine all over again.

HOW TO USE IT
To check out your assembler—or any other
program you want to run a trace on—you must
first have the trace routine in the computer's
memory. If your assembler is working you can
assemble the routine in the normal way.
Otherwise, key in the hex numbers given using
your machine code monitor (see page 280).

You will notice that the trace routine is in the
protected area after C000, so you don't have to

alter the boundaries of BASIC. Once you've
fed it in, SAVE it and NEW to get rid of the
assembler or monitor. Then feed in the BASIC
program you want to run the trace on.

Switch the trace on with SYS49152, then run
the program. You can let it run fast through
parts of the program you are confident work
properly. Press the El key when you approach
parts you're having difficulty with. And hit the
I RUN/STOP key if you want to freeze the trace.

Make sure that you have a listing of the
program beside you when you are doing a trace,
so that you can see what is happening—
otherwise the numbers flashing up on the top
right-hand corner of the screen will mean
nothing to you.

If the program calls for you to input
something on the top line, use the second line
instead as you won't be able to write over the
trace's digits.

To switch the trace off press I RUN/STOP I and
RESTORE .

RIK
The Commodore 64 trace program will run on
the Vic 20 too, with a few minor modifications.

As the program is basically the same, the
Commodore 64 explanation also holds for the
Vic 20 trace.

The first change that has to be made is to
relocate the whole program. C000 is not a
protected area on the Vic. So POKE 52 and 56
with 28 and use 7168 as your start address. And
to run the program you'll have to call SYS7168.
So the interrupt vector has been changed to

the new start address. The second LDA
should read LDA# &1C.

Most changes have to do with the screen,
which is in a different position in the

Vic. So when you want to look at
the screen colour you must load the X

register with the contents of 900E—
with LDX &900E—instead of the
contents of D021—LDX &D021.
The trouble is 900F on the Vic

contains the colour of the border
as well as the screen itself. So

you have to check whether the
value there is less than 16,
which means that the ink

colour should be white.
Anyway, the 64's. CPX &F1

and BNE COL must
be replaced with:

CPX#&10
BCC COL

As the screen area is in a different
position, the 64's STA &040F,Y should

read STA &1 EOF,Y. The colour memory is
moved too, so STA &D820,Y should read STA
&960F,Y. Also, STA &0425 and STA &D825
should read STA &1E14 and STA &9614.

The Vic's keyboard is organized slightly
differently and the Ft I does not give 4 but 39.
So the 64's instruction CM P # &04 should read
CMP # &27. And the regular interrupt routine
begins at EAB F on the Vic, rather than EA31. So
JMP &EA31 should read JMP &EABF.

Otherwise the Vic's trace operates in exactly
the same way as the 64's.

Of course, you will have to hand assemble
the Vic's trace, unless you have bought a
commercial assembler. But the following is the
machine code version of the program, so you
can check your conversion or simply key the
hex version straight in.

78 A9 OD 8D 14 03 A9 1C 8D 15 03 58 60 A9
01 AE OF 90 EO 10 90 02 A9 00 85 FF A9 00
85 FE A5 39 85 FB A5 3A 85 FC AO 07 A2 30
38 A5 FB F9 751C 48 88 A5 FC F9 77 1C 90
09 85 FC 68 85 FB E8 C8 DO E8 68 8A 84 FD
E6 FE A4 FE 99 OF 1E A5 FF 99 OF 96 A4 FD
88 10 D1 A5 FB 09 30 8D 14 1E A5 FF 8D 14
96 AS C5 C9 27 DO OA A2 00 A000 C8 DO FD
E8 DO F8 4C BF EA OA 00 64 00 E8 03 10 27

Do you have trouble working out
how many inches there are in a
metre? Or how many pints in a litre?
If so, then the INPUT conversion
program has all the answers

Working out how many litres of petrol yo car
can hold, or how to buy metric tiles that are
priced by the square yard can be a diff It task
unless you happen to know the vari metric
conversion factors by heart. Th rograms
below are an easy way to conver etric units
into Imperial, and Imperial un . into metric.
and work for any of the standa units you are
likely to come across.

WHICH MEASUREMENT?
11 the commo measurements are included in ill

he program, ng with some you'll need less
often—such s millimetres of mercury, a or measure of essure (abbreviated to mmHG in
the progr).

First, , pe in the program and RUN it. You
are shown a menu of options. The first option
(Quit allows you to return to BASIC, while all
the 	ers refer to the type of units you want to
c 	ert. The choices available are: length,

, volume, weight, pressure, and tempera-
re. Strictly speaking, the 'weight' option

ives measurements of mass, but conforms to
popular usage.

To the left of each option is a number. To

select a popular option just press the key with
the relevant number. For example, to convert a
unit of length (option 1), press the ' 1 ' key. It
does not matter at this point whether you want
to change a metric unit into an Imperial one, or
the other way round: that comes later.

WHICH UNITS?
Once you have chosen the type of measure-
ment you want to change, and pressed the
relevant key, the computer PRINTS a second
menu. This allows you to choose the units you
want to convert.

So, if you pressed the '1' key to convert units
of length you now get a menu which lists all the
possible units (inches, feet, millimetres, centi-

■ CONVERTING METRIC TO
IMPERIAL MEASUREMENTS

AND VICE VERSA
■ HOW TO USE THE

PROGRAM

■ CONVERSIONS FOR LENGTH, AREA,
WEIGHT, VOLUME, PRESSURE

AND TEMPERATURE
■ CONVERTING MIXED UNITS

AND FRACTIONS

metres, and so on). If you want to convert
inches into metric units, press the 1 key
again—the number beside the 'inches' on the
screen. Now enter the number of inches and hit
I ENTER or RETURN I.

PRINTING THE ANSWERS
The computer works out the conversions and
P R I NTs the result in all the units of the other set
(metric or Imperial). So if you typed in a value
in inches, you would be given the equivalent in
millimetres, centimetres, metres, and
kilometres.

After you have been shown the converted
values, the computer waits for you to press a
key before continuing. If you press the I ENTER

or I RETURN I key, you are returned to the main
menu to choose another option. If you press
any other key, you are sent to the second
menu—the computer assumes you want the
same type of measurement again.

You can stop the program if you want by
returning to the main menu, and pressing '0'
for the QUIT option.

MIXED UNITS
Sometimes you may want to convert a value of
an Imperial measure which is a mixture of
units. For example, you might want to convert
2 feet 6 inches into metric units. You can do one
of two things when this occurs.

The program accepts numbers which are

not whole numbers: so, with the example
above, if you know how many inches there are
in a foot, you could work out a decimal fraction
and tell the computer to convert that. With six
inches, of course, there is nothing to worry
about, six inches is exactly half a foot. So you
would INPUT 2.5 feet.

If the fractions are difficult to work out you
should use the second method. This is to
convert the number in two stages. First,
convert the feet into metric, and then convert
the inches. All you do after that is add up the
metric equivalent of both conversions (re-
member to add up the values of the same metric
units).

If you have a metric fraction to convert, you

Do Continental tiles cover the same
areas as British ones? If you're not
sure, the INPUT conversion program
will work out the calculations for you

can do the same again. But since metric units
are conveniently scaled so that each consecu-
tive unit is ten times larger, (or smaller) than
the last, the problem is much easier to solve.

a
5 POKE 23658,8
10 DIM L(8): DIM L$(8,12): DIM A(7): DIM

A$(7,9): DIM V(7): DIM V$(7,12): DIM
M(6): DIM M$(6,9): DIM P(5): DIM
P$(5,11)

20 FOR K=1 TO 8: READ L(K),L$(K): NEXT K
30 DATA 1,"INCHES",12,"FEET",36,

"YARDS",63360,"MILES",
.03937,"MILLIMETRES",
.3937,"CENTIMETRES",39.37,
"METRES",39370,"KILOMETRES"

40 FOR K=1 TO 7: READ A(K),A$(K): NEXTK
50 DATA 1,"SQ INCHES",144,"SQ

FEET",6272640,"ACRES",4.0145E9,
"SQ MILES",.155,"SQ CMS",1550,
"SQ METRES",1.55E7,"HECTARES"

60 FOR K=1 TO 7: READ V(K),V$(K): NEXTK
70 DATA 1,"CUBIC INCHES",1728,

"CUBIC FEET",34.67, "PINTS",
277.36,"GALLONS",.06102,"CC'S",
61.024,"LITRES",61024,"CUBIC
METRES"

80 FOR K=1 TO 6: READ M(K),M$(K):
NEXT K

90 DATA 1,"OUNCES",16,"POUNDS",
35840,"TONS",.03527,"GRAMS",
35.27,"KILOGRAMS",35270,"TONNES"

100 FOR K=1 TO 5: READ P(K),P$(K):
NEXT K

110 DATA 1,"PSI",51.73,"mmHG",6895,
"N/SQ METRE",.0681,
"ATMOSPHERES",68.95,"MILLIBARS"

120 CLS : PRINT INVERSE 1;"TAB 6;"WHICH
CATEGORY (0-6) ?";TAB 31;" ❑ "

130 PRINT AT 6,8;"0: - QUIT
PROGRAM";AT 8,8;"1:- LENGTH";
AT 10,8;"2: - AREA";AT 12,8;
"3:- VOLUME";AT 14,8;"4:- WEIGHT";
AT 16,8;"5: - PRESSURE";AT 18,8;
"6:- TEMPERATURE"

140 LET Z$=1NKEY$: IF Z$<"0" OR
Z$>"6" THEN GOTO 140

150 IF Z$="0" THEN CLS : STOP
160 CLS : GOSUB 1000+ (VAL Z$-1)'500
170 GOTO 120
1000 PRINT INVERSE 1;AT

0,12;" ❑ LENGTH ❑ ": PRINT AT
2,6;"SELECT ORIGINAL UNITS": PRINT :
FOR K=1 TO 8: PRINT 'TAB
10;K;": - ";14(K): NEXT K

1010 LET B$=1NKEY$: IF B$<"1" OR
B$> "8" THEN GOTO 1010

1020 LET B=VAL B$: INPUT "INPUT
NUMBER OF ❑ ";(14(B)),VL

1040 CLS : PRINT AT 2,4;VL;" ❑ ";

L$(B);" ❑ EQUALS"
1050 IF B>4 THEN GOTO 1080
1060 FOR K=1 TO 4: PRINT AT K*2+4,3;

VL*L(B)/L(K+4);TAB 18;L$(K+4):
NEXT K

1070 GOTO 1090
1080 FOR K=1 TO 4: PRINT AT K*2+4,3;

VIA(B)/L(K);TAB 18;L$(K): NEXT K
1090 LET Z$=1NKEY$: IF Z$="" THEN

GOTO 1090
1100 IF Z$=CHR$ 13 THEN RETURN
1110 CLS : GOTO 1000
1500 PRINT INVERSE 1;AT 0,13;

"OAREA ❑ ": PRINT AT 2,6;"SELECT
ORIGINAL UNITS": PRINT : FOR K=1 TO
7: PRINT 'TAB 10;K;":- ";A$(K): NEXT K

1510 LET B$=1NKEY$: IF B$ <"1" OR
B$ > "7" THEN GOTO 1510

1520 LET B=VAL B$: INPUT "INPUT
NUMBER OF ❑ ";(A$(B)),VL

1540 CLS : PRINT AT 2,4;VL;" ❑ ";
ACB);" ❑ EQUALS"

1550 IF B>4 THEN GOTO 1580
1560 FOR K=1 TO 3: PRINT AT K*2+4,3;

VI2A(B)/A(K+4);TAB 18;AVK + 4):
NEXT K

1570 GOTO 1590
1580 FOR K=1 TO 4: PRINT AT K*2+4,3;

VL*A(B)/A(K);TAB 18;A$(K): NEXT K
1590 LET Z$=1NKEY$: IF Z$="" THEN

GOTO 1590
1600 IF Z$=CHR$ 13 THEN RETURN
1610 CLS : GOTO 1500
2000 PRINT INVERSE 1;AT 0,12;

"EVOLUMEEI": PRINT AT 2,6;
"SELECT ORIGINAL UNITS": PRINT : FOR
K=1 TO 7: PRINT'TAB
10;K;":- ";V$(K): NEXT K

2010 LET B$=1NKEY$: IF B$<"1" OR
B$ > "7" THEN GOTO 2010

2020 LET B=VAL B$: INPUT "INPUT
NUMBER OF ❑ ";(V$(B)),VL

2040 CLS : PRINT AT 2,4;VL;" ❑ ";
1/$(B);" ❑ EQUALS"

2050 IF B > 4 THEN GOTO 2080
2060 FOR K=1 TO 3: PRINT AT K*2+4,3;

VL*V(B)/V(K+4);TAB 18;
V$(K +4): NEXT K

2070 GOTO 2090
2080 FOR K=1 TO 4: PRINT AT K*2+4,3;

VL*V(B)/V(K);TAB 18;V$(K):
NEXT K

2090 LET Z$=1NKEY$: IF Z$="" THEN
GOTO 2090

2100 IF Z$=CHR$ 13 THEN RETURN
2110 CLS : GOTO 2000
2500 PRINT INVERSE 1;AT 0,13;

"OWEIGHTE1": PRINT AT 2,6;
"SELECT ORIGINAL UNITS": PRINT : FOR
K=1 TO 6: PRINT'TAB
10;K;":- ";M$(K): NEXT K

2510 LET B$=1NKEY$: IF B$<"1" OR
B$>"6" THEN GOTO 2510

2520 LET B=VAL B$: INPUT "INPUT
NUMBER OF ❑ ";(M$(B)),VL

2540 CLS : PRINT AT 2,4;VL;" ❑ ";
M$(B);" ❑ EQUALS"

2550 IF B > 3 THEN GOTO 2580
2560 FOR K=1 TO 3: PRINT AT K*2+4,3;

VL*M(B)/M(K + 3);TAB 18;
M$(K+3): NEXT K

2570 GOTO 2590
2580 FOR K=1 TO 3: PRINT AT K'2+4,3;

VL'M(B)/M(K);TAB 18;M$(K):
NEXT K

2590 LET Z$=1NKEY$: IF Z$="" THEN
GOTO 2590

2600 IF Z$=CHR$ 13 THEN RETURN
2610 CLS : GOTO 2500
3000 PRINT INVERSE 1;AT 0,11;

"0 PRESSURE 0 ": PRINT AT 2,6;
"SELECT ORIGINAL UNITS": PRINT : FOR
K=1 TO 5: PRINT'TAB
10;K;":- ";P$(K): NEXT K

3010 LET B$=1NKEY$: IF B$<"1" OR
B$> "5" THEN GOTO 3010

3020 LET B=VAL B$: INPUT "INPUT
NUMBER OF ❑ ";(PCB)),VL

3040 CLS : PRINT AT 2,4;VL;"0";
PCB);" ❑ EQUALS"

3050 LET T=0: FOR K=1 TO 5: IF K=B
THEN GOTO 3070

3060 PRINT AT K*2 + 4,3;VL*P(K)/
P(B);TAB 18;P$(K): LET T = T +1

3070 NEXT K
3080 LET Z$=1NKEY$: IF Z$="" THEN

GOTO 3080
3090 IF Z$=CHR$ 13 THEN RETURN
3100 CLS : GOTO 3000
3500 PRINT INVERSE 1;AT 0,9;

"OTEMPERATURE0": PRINT AT 3,11;
"CONVERT: -": PRINT "‘ 0 ❑ ❑
CENTIGRADE TO FAHRENHEIT
(C) ❑ ❑ OR FAHRENHEIT TO
CENTIGRADE (F)"

3510 LET B$=1NKEY$: IF B$< >"C" AND
B$ < >"F" THEN GOTO 3510

3520 IF B$="C" THEN GOTO 3560
3530 INPUT "INPUT DEGREES

FAHRENHEIT",VL
3540 CLS : PRINT AT 1,2;VL;

"0 DEGREES FAHRENHEIT EQUALS"
3550 PRINT 'TAB 2;(VL - 32) .5/9;

" 0 DEGREES CENTIGRADE": GOTO 3590
3560 INPUT "INPUT DEGREES

CENTIGRADE",VL
3570 CLS : PRINT AT 1,2;VL;

" ❑ DEGREES CENTIGRADE EQUALS"
3580 PRINT 'TAB 2;32 + VL*9/5;

"0 DEGREES FAHRENHEIT"
3590 PAUSE 0: LET Z$=1NKEY$: IF Z$ =

THEN GOTO 3590

3600 IF Z$=CHR$ 13 THEN RETURN
3610 CLS : GOTO 3500

ECK
The Commodore program works on both the
Commodore 64 and the Vic 20—but the
program needs more than 3f K of memory to
RUN so the Vic needs a memory expansion
pack.

Since the program works on both Commo-
dore computers, the Commodore 64 is for-
matted to use only the left-hand part of the
display: only the first 22 characters in each line
on the screen are used, as the Vic only has 22
characters in its lines.

10 DIM L(7),L$(7),A(6),A$(6),V(6),
V$(6),M(5),M$(5),P(4),P$(4)

20 FOR K=0 TO 7:READ L(K),L$(K): NEXT K
30 DATA 1,INCHES,12,FEET,36,YARDS,

63360,MILES,.03937,
MILLIMETRES,.3937

35 DATA CENTIMETRES,39.37,METRES,
39370,KILOMETRES

40 FOR K=0 TO 6:READ A(K),A$(K): NEXT K
50 DATA 1,SQ INCHES,144,SQ FEET,

6272640,ACRES,4.0145E9,SQ
MILES,.155

55 DATA SQ CMS,1550,SQ METRES,
1.55E7,HECTARES

60 FOR K=0 TO 6:READ V(K),V$(K):
NEXT K

70 DATA 1,CUBIC INCHES,1728,CUBIC
FEET,34.67,PINTS,277.36,
GALLONS,.06102

75 DATA CC'S,61.024,LITRES,61024,
CUBIC METRES

80 FOR K=0 TO 5:READ M(K),M$(K):
NEXT K

90 DATA 1,OUNCES,16,POUNDS,35840,
TONS,.03527,G RAMS,35.27,
KILOGRAMS

95 DATA 35270,TONNES
100 FOR K=0 TO 4:READ P(K),P$(K):

NEXT K
110 DATA 1,PSI,51.73,MMHG,6895,N/SQ

METRE,.0681,ATMOSPHERES
115 DATA 68.95,MILLIBARS
120 PRINT "OWHICH CATEGORY (0-5)?"
130 PRINT"gg0 - QUIT PROGRAM":

PRINT"gg1- LENGTH":PRINT
"Ag2- AREA":PRINT"N3- VOLUME"

135 PRINT"gg4- WEIGHT":PRINT
"gg5 - PRESSURE":PRINT
"gg6- TEMPERATURE"

140 GET A$:1F A$<"0" OR A$>"6" THEN
140

150 IF A$="0" THEN PRINT "0":END
160 PRINT "0":0N VAL(A$) GOSUB 1000,

1500,2000,2500,3000,3500
170 GOTO 120
1000 PRINT TAB(7);"a LENGTH":

PRINT "MSELECT ORIGINAL UNITS":FOR
K=0 TO 7

1005 PRINT "gg";K+1;"- ❑ ";L$(K):
NEXT K

1010 GET B$:IF B$<"1" OR B$>"8"
THEN 1010

1020 B =VAL(B$) -1:PRINT "IDINPUT
NUMBER OF ❑ ":PRINT L$(B);

1030 INPUT VL
1040 PRINT "O";VL:PRINT L$(B);

" ❑ EQUALSM"
1050 IF B>3 THEN 1080
1060 FOR K=0 TO 3:PRINT "g1";VIA

(B)/L(K+4);TAB(23);"a";
L$(K+4):NEXT K

1070 GOTO 1090

1080 FOR K=0 TO 3:PRINT "g1";V121_
(B)/L(K);TAB(23);"a";
L$(K):NEXT K

1090 GET A$:1F A$="" THEN 1090
1100 IF A$=CHR$(13) THEN RETURN
1110 PRINT "0":GOT01000
1500 PRINT TAB(7);"aAREA":PRINT

"ggSELECT ORIGINAL UNITS":
FOR K=0 TO 6

1505 PRINT "gg";K+1;"- ❑ ";A$(K):NEXT
K

1510 GET B$:IF B$ <"1" OR B$>"7" THEN
1510

1520 B =VAL(B$) -1:PRINT "OINPUT THE
NUMBER OF ❑ ":PRINT A$(B);

1530 INPUT VL
1540 PRINT "Q";VL:PRINT A$(B);

" 0 EQUALS IC"
1550 IF B>3 THEN 1580
1560 FOR K=0 TO 2:PRINT "gg";VL*A

(B)/A(K+4);TAB(23);"a";
A$(K+4):NEXT K

1570 GOTO 1590
1580 FOR K=0 TO 3:PRINT "gg";VL*A

(B)/A(K);TAB(23);"a";
A$(K):NEXT K

1590 GET A$:1F A$="" THEN 1590
1600 IF A$=CHR$(13) THEN RETURN
1605 PRINT "0":GOTO 1500
2000 PRINT TAB(7);"aVOLUME":PRINT

"NSELECT ORIGINAL UNITS": FOR
K=0 TO 6

2005 PRINT "gg";K+1;"- ❑ ";4(K):
NEXT K

2010 GET B$:IF B$ <"1" OR B$ > "7"
THEN 2010

2020 B =VAL(B$) -1:PRINT "IDINPUT THE
NUMBER OF ❑ ":PRINT V$(B);

2030 INPUT VL
2040 PRINT "0";VL:PRINT V$(B);

"0 EQUALSgr
2050 IF B > 3 THEN 2080
2060 FOR K=0 TO 2:PRINT "gg";VI2V

(B)/V(K+4);TAB(23);"a";
V$(K+4):NEXT K

2070 GOTO 2090
2080 FOR K=0 TO 3:PRINT "gg";VL . V

(B)/V(K);TAB(23);"a";V$(K):
NEXT K

2090 GET A$:1F A$="" THEN 2090
2100 IF A$=CHR$(13) THEN RETURN
2105 PRINT "0":GOTO 2000
2500 PRINT TAB(7);"aWEIGHT":PRINT

"]SELECT ORIGINAL UNITS":
FOR K=0 TO 5

2505 PRINT "gg";K+1;"- ❑ ";M$(K):
NEXT K

2510 GET B$:IF B$<"1" OR B$>"6" THEN
2510

2520 B =VAL(B$) -1:PRINT "IDINPUT THE
NUMBER OF ❑ ":PRINT M$(B);

2530 INPUT VL
2540 PRINT "0";VL:PRINT M$(B);

" ❑ EQUALS gg "
2550 IF B > 2 THEN 2580
2560 FOR K=0 TO 2:PRINT "gg";VPM

(B)/M(K+3);TAB(23);"a";
M$(K+3):NEXT K

2570 GOTO 2590
2580 FOR K=0 TO 3:PRINT "Ag";VL'M

(B)/M(K);TAB(23);"a";M$(K):
NEXT K

2590 GET A$:1F A$="" THEN 2590
2600 IF A$=CHR$(13) THEN RETURN
2605 PRINT "D":GOTO 2500
3000 PRINT TAB(7);"aPRESSURE":

PRINT "giSELECT ORIGINAL UNITS":FOR
K=0 TO 4

3005 PRINT "grK+1;"-111";11(K):
NEXT K

3010 GET B$:IF B$ <"1" OR B$>"5"

THEN 3010
3020 B =VAL(B$) -1:PRINT "IDINPUT THE

NUMBER OF ❑ ":PRINT P$(B);
3030 INPUT VL
3040 PRINT "0";VL:PRINT P$(B);

"0 EQUALSg"
3050 T= 0:FOR K=0 TO 4:IF K=B THEN

3070
3060 PRINT "gg";VI2P(K)/P(B);

TAB(23);"a";P$(K):T = T + 1
3070 NEXT K
3080 GET A$:1FA$="" THEN 3080
3090 IF A$=CHR$(13) THEN RETURN
3100 PRINT "0":GOTO 3000
3500 PRINT "D";TAB(5);

"aTEMPERATURE":PRINT
"giCONVERT -"

3505 PRINT "MCENTIGRADE TO":
PRINT "FAHRENHEIT (C)"

3506 PRINT " gg FAHRENHEIT TO":

PRINT"CENTIGRADE (F)"
3510 GET B$:IF B$ < >"C" AND

B$ < >"F" THEN 3510
3520 IF B$="C" THEN 3560
3530 PRINT "ggINPUT DEGREES":INPUT

"FAHRENHEIT";VL
3540 PRINT "0";VL;"DEGREES":PRINT

"FAHRENHEIT EQUALS"
3550 PRINT "gg";(VL-32)*5/9:PRINT

"DEGREES CENTIGRADE":
GOTO 3590

3560 PRINT "ggINPUT DEGREES":INPUT
"CENTIGRADE";VL

3570 PRINT "0";VL;"DEGREES":PRINT
"CENTIGRADE EQUALS"

3580 PRINT "g1";32 + VL*9/5:PRINT
"DEGREES FAHRENHEIT"

3590 GET A$:1F A$="" THEN 3590
3600 IF A$=CHR$(13) THEN RETURN
3610 PRINT "D":GOTO 3500

5 MODE6
10 DIML(7),L$(7),A(6),A$(6),V(6),

V$(6),M(5),M$(5),P(4),P$(4)
20 FORK = OT07:READ L(K),L$(K):NEXT
30 DATA 1,INCHES,12,FEET,36,YARDS,

63360,MILES,.03937,
MILLIMETRES,.3937,CENTIMETRES,
39.37,METRES,39370,KILOMETRES

40 FORK = OT06:READ A(K),A$(K):NEXT
50 DATA 1,SQ INCHES,144,SQ FEET,

6272640,ACR ES,4.0145E9,SQ
MILES,.155,SQ CMS, 1550,SQ
METRES,1.55E7,HECTARES

60 FORK= 0T06:READV(K),V$(K):NEXT
70 DATA 1,CUBIC INCHES,1728,CUBIC

FEET,34.67,PINTS,277.36,
GALLONS,.06102,CC'S,61.024,
LITRES,61024,CUBIC METRES

80 FORK= 0T05:READM(K),M$(K):NEXT
90 DATA 1,0UNCES,16,POUNDS,35840,

TONS,.03527,GRAMS,35.27,KILOGRAMS
,35270,TONNES

100 FORK =0T04:READP(K),P$(K):NEXT
110 DATA 1,PSI,51.73,mmHG,6895,

N/SQ METRE,.0681,
ATMOSPHERES,68.95,MILLIBARS

120 CLS:PRINT"WHICH CATEGORY (0-6) ?"
130 PRINTTAB(10,6)"0) QUIT PROGRAM"

TAB(10,8)"1) ❑ LENGTH"TAB(10,10)
"2) 0 AREA"TAB(10,12)
"3) 0 VOLUM E"TAB(10,14)
"4) ❑ WEIG HT"TAB(10,16)
"5) ❑ PRESSURE"TAB(10,18)
"6)0TEMPERATURE"
140 A$=GET$:IF A$<"0" OR A$>"6'
THEN 140

150 IF A$="0" THEN CLS:END
160 CLS:ON VAL(A$) GOSUB 1000,1500,

2000,2500,3000,3500

170 GOTO 120
1000 PRINT"`LENGTH'"'"SELECT ORIGINAL

UNITS":FOR K=0 TO 7:PRINT
TAB(10,6 + 2 . 10;K + 1;") ❑ ";L$(K):
NEXT

1010 B$=GET$:IF B$<"1" OR B$>"8"
THEN 1010

1020 B=VAL(B$)-1:CLS:PR1NT"INPUT
NUMBER OF ❑ ";14(B)

1030 INPUT VL
1040 CLS:PRINT"'VL;" ❑ "L$(B);

" 0 EQUALS"
1050 IF B>3 THEN 1080
1060 FORK = OT03:PRINTTAB(5,10 +K*2)

VL*L(B)/L(K+4)TAB(25,10 +K*2)
L$(K +4):NEXT

1070 GOTO 1090
1080 FORK = OT03:PRINTTAB(5,10 + K*2)

VLI(B)/L(K)TAB(25,10 +K*2)
L$(K):NEXT

1090 A$=GET$
1100 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 1000
1500 PRINT"`AREA'"'"SELECT ORIGINAL

UNITS":FOR K=0 TO 6:PRINT
TAB(10,6 + 2*K);K + 1;") ❑ ";A$(K):
NEXT

1510 B$=GET$:IF B$ <"1" OR B$>"7"
THEN 1510

1520 B = VAL(B$) -1:CLS:PRINT" ❑ INPUT
THE NUMBER OF ❑ ";A$(B)

1530 INPUT VL
1540 CLS:PRINT"'VV ❑ "A$(B);

" ❑ EQUALS"
1550 IF B>3 THEN 1580
1560 FOR K = OT02:PRINTTAB(5,10 + K*2);

VL*A(B)/A(K + 4)TAB(25,10 + K'2)
A$(K + 4):NEXT

1570 GOTO 1590
1580 FOR K=0 TO 3:PRINTTAB(5,10 +

K'2);VL'A(B)/A(K)TAB(25,
10+ K*2)A$(K):NEXT

1590 A$ = GET$
1600 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 1500
2000 PRINT"`VOLUME"""SELECT ORIGINAL

UNITS":FOR K=0 TO 6:PRINT
TAB(10,6 + 2*K);K + 1;") ❑ ";V$(K):
NEXT

2010 B$=GET$:IF B$<"1"ORB$>"7"
THEN 2010

2020 B =VAL(B$) - 1:CLS:PRINT" 0 INPUT
NUMBER OF ❑ ";V$(B)

2030 INPUT VL
2040 CLS:PRINT'VL;" ❑ "VCB);

"LI EQUALS"
2050 IF B>3 THEN 2080
2060 FORK = 0T02:PRINTTAB(5,10 + K*2);

VL*V(B)/V(K + 4)TAB(25,10 + K'2)
V$(K+4):NEXT

2070 GOTO 2090

2080 FORK= 0T03:PRINTTAB(5,10 + K*2);
VL*V(B)/V(K)TAB(25,10 + K*2)
V$(K):NEXT

2090 A$=GET$
2100 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 2000
2500 PRINT"`WEIGHT'""`SELECT ORIGINAL

UNITS":FOR K=0 TO 5:PRINTTAB(10,6
+2*K);K+1;1 ❑ ";M$(K):NEXT

2510 B$=GET$:IF B$<"1" OR B$>"6"
THEN 2510

2520 B=VAL(B$)-1:CLS:PR1NT" 0 INPUT
NUMBER OF ❑ ";M$(B)

2530 INPUT VL
2540 CLS:PRINT'"VL;" ❑ "M$(B);

" 0 EQUALS"
2550 IF B > 2 THEN 2580
2560 FOR K=0 TO 2:PRINTTAB(5,10 +

K*2);VL*M(B)/M(K+3)TAB(25,
10 + K*2)M$(K + 3):NEXT

2570 GOTO 2590
2580 FOR K=0 TO 2:PRINTTAB(5,10 +

K*2);VL*M(B)/M(K)TAB(25,
10 + K*2)M$(K):NEXT

2590 A$= GETS
2600 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 2500
3000 PRINT"`PRESSURE'SELECT

ORIGINAL UNITS":FOR K=0 TO 4:PRINT
TAB(10,6 + 2*K);K + 1;") 0";
P$(K):NEXT

3010 B$=GET$:IF B$<"1" OR B$ > "5"
THEN 3010

3020 B=VAL(B$)-1:CLS:PR1NT" 0 INPUT
NUMBER OF ❑ ";P$(B)

3030 INPUT VL
3040 CLS:PRINT"'VL;" ❑ "P$(B);

" 0 EQUALS"
3050 T= 0:FOR K=0 TO 4:IF K=B THEN

3070
3060 PRINTTAB(5,10 +K*2);VVP(K)/

P(B)TAB(25,10 + K'2)P$(K)
3070 NEXT
3080 A$=GET$
3100 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 3000
3500 PRINT"`TEMPERATURE'CONVERT

CENTIGRADE TO FAHRENHEIT (C) OR
FAHRENHEIT TO CENTIGRADE (F)"

3510 B$=GET$:IF B$="C" THEN 3560
3520 IF B$ < >"F" THEN 3510
3530 INPUT"INPUT DEGREES

FAHRENHEIT ❑r,VL
3540 CLS:PRINT';VL;" ❑ DEGREES

FAHRENHEIT EQUALS"
3550 PRINT;(VL - 32)*5/9;" ❑ DEGREES

CENTIGRADE":GOTO 3590
3560 INPUT"INPUT DEGREES

CENTIGRADE 0 ",VL
3570 CLS:PRINT';VL;" ❑ DEGREES

CENTIGRADE EQUALS"

3580 PRINT;32 + VL*9/5;" 0 DEGREES
FAHRENHEIT"

3590 A$=GET$
3600 IF A$=CHR$(13) THEN RETURN ELSE

CLS:GOTO 3500

NCIHI
10 DIML(7),L$(7),A(6),A$(6),V(6),

V$(6),M(5),M$(5),P(4),P$(4)
20 FORK = OT07:READ L(K),L$(K):NEXT
30 DATA 1,INCHES,12,FEET,36,YARDS,

63360,MILES,.03937,
MILLIMETRES,.3937,
CENTIMETRES,39.37,METRES,
39370,KILOMETRES

40 FORK= 0T06:READA(K),A$(K):NEXT
50 DATA 1,SQ INCHES,144,SQ FEET,

6272640,ACR ES,4.0145E9,SQ
MILES,.155,SQ CMS,1550,SQ
METRES,1.55E7,HECTARES

60 FOR K=OT06:READV(K),V$
(K):NEXT

70 DATA 1,CUBIC INCHES,1728,CUBIC
FEET,34.67,PINTS,277.36,
GALLONS,.06102,CC'S,61.024,
LITRES,61024,CUBIC METRES

80 FORK = OT05:READM(K),M$(K):NEXT
90 DATA 1,0UNCES,16,POUNDS,35840,

TONS,.03527,GRAMS,35.27,
KI LOG RAMS,35270,TON N ES

100 FORK = 0T04:READP(K),P$(K):NEXT
110 DATA 1,PSI,51.73,mmHG,6895,N/SQ

METRE,.0681,ATMOSPHERES,
68.95,MILLIBARS

120 CLS:PRINT" ❑ ❑ ❑ WHICH CATEGORY
(0 - 6) ?"

130 PRINT@72,"0- ❑ QUIT PROGRAM":
PRINT@136,"1 - ❑ LENGTH":
PRINT@200,"2- ❑ AREA":
PRINT@264,"3- ❑ VOLUME":
PRINT@328,"4- El WEIGHT":
PRI NT@392,"5 - ❑ PRESSURE":
PRINT@456,"6- ❑ TEMPERATURE"

140 A$=INKEY$:IF A$<"0" OR A$>"6"
THEN 140

150 IF A$="0" THENCLS:END
160 CLS:ON VAL(A$) GOSUB1000,1500,

2000,2500,3000,3500
170 GOTO 120
1000 PRINT@12,"length":PRINT@37,

"SELECT ORIGINAL UNITS":FOR
K = OT07:PRINT@136 + 32*K,K + 1;
"- ❑ ";LCK):NEXT

1010 B$=INKEY$:IF B$<"1" OR B$>"8"
THEN 1010

1020 B = VAL(B$) -1:CLS:PRINT" ❑ INPUT
NUMBER OF ❑ "0(B)

1030 INPUT VL
1040 CLS:PRINTVL;L$(B);

" ❑ EQUALS 0 "
1050 IF B>3 THEN 1080

1060 FORK = OT03:PRINT@96 + K*64,
VL*L(B)/L(K+4),L$(K+4):NEXT

1070 GOTO 1090
1080 FORK = OT03:PRINT@96 + K*64,

VL*L(B)/L(K),L$(K):NEXT
1090 A$=INKEY$:1F A$="" THEN 1090
1100 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOT01000
1500 PR1NT@13,"area":PRINT@37,

"SELECT ORIGINAL UNITS":FOR
K = OT06:PRINT@136 + 32*K,K + 1;"—
❑ ";A$(K):NEXT

1510 B$= INKEY$:IF 6$<"1"ORB$>"7"
THEN 1510

1520 B = VAL(B$) —1:CLS:PRINT" 0 INPUT
THE NUMBER OF ❑ ";A$(B)

1530 INPUT VL
1540 CLS:PR1NTVL;A$(B);" ❑ EQUALS"
1550 IF B>3 THEN 1580
1560 FORK = OT02:PRINT@96 + K*64,

VL*A(B)/A(K +4),A$(K +4):NEXT
1570 GOTO 1590
1580 FORK = OT03:PRINT@96 + K*64,VL*

A(B)/A(K),A$(K):NEXT
1590 A$=INKEY$:1F A$="" THEN 1590
1600 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOTO 1500
2000 PRINT@12,"volume":PRINT@37,

"SELECT ORIGINAL UNITS":FOR
K=OT06:PRINT@136 + 32*K,K +1;
"— ❑ ";V$(K):NEXT

2010 B$ =IN KEY$:1 FB$ < "1"ORB$ > "7"
THEN 2010

2020 B = VAL(B$) — 1:CLS: PRINT" 0 INPUT
NUMBER OF ❑ ";V$(B)

2030 INPUT VL
2040 CLS: PR1NTVL;V$(Br ❑ EQUALS 0 "
2050 IF B>3 THEN 2080
2060 FORK = OT02:PRINT@96 + K*64,

VL*V(B)/V(K+4),V$(K+4):NEXT
2070 GOT02090
2080 FORK = OT03:PRINT@96 + K*64,

VVV(B)/V(K),V$(K):NEXT
2090 A$ =1NKEY$:IF A$="" THEN 2090
2100 IF A$=CHR$(13)THEN RETURN

ELSECLS:GOTO 2000
2500 PRINT@13,"weight":PRINT@37,

"SELECT ORIGINAL UNITS":FOR
K = OT05:PRINT@136 + 32 . K,K + 1;
"— ❑ "; MCK):NEXT

2510 B$=INKEY$:1F B$<"1"ORB$>"6"
THEN 2510

2520 B = VAL(B$) — 1:CLS: PRINT" ❑ INPUT
NUMBER OF ❑ ";M$(B)

2530 INPUT VL
2540 CLS:PR1NTVL;M$(B);" 0 EQUALS"
2550 IF B>2 THEN 2580
2560 FORK = OT02:PRINT@96+ K*64,

VL*M(B)/M(K+3),M$(K+3):NEXT
2570 GOTO 2590
2580 FORK = OT02:PRINT@96 + K*64,

VL*M(B)/M(K),M$(K):NEXT
2590 A$=INKEY$:1F A$="" THEN 2590
2600 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOT02500
3000 PRINT@11,"pressure":PRINT@37,

"SELECT ORIGINAL UNITS":FOR
K = OT04:PRINT@136 + 32*K,K +1;
"— ❑ "; P$(K):NEXT

3010 B$=INKEY$:1F B$ <"1"ORB$ > "5"
THEN 3010

3020 B = VAL(B$) — 1:CLS:PRINT" 0 INPUT
NUMBER OF ❑ ";P$(B)

3030 INPUT VL
3040 CLS:PR1NTVL;P$(B);" 0 EQUALS"
3050 T= 0:FORK= OT04:IF K= B THEN 3070
3060 PRINT@96 + T*64,VL*P(K)/P(B),

P$(K):T = T + 1
3070 NEXT
3080 A$=INKEY$:1F A$="" THEN 3080
3090 IF A$=CHR$(13) THEN RETURN

ELSECLS:GOT03000
3500 CLS:PRINT@10,"temperature":

PRINT@37,"CONVERT —":

PRINT" ❑ CENTIGRADE TO FAHRENHEIT
(C) OR FAHRENHEIT TO CENTIGRADE
(F)"

3510 B$= 1NKEY$:IFB$ < >"C" AND
B$< >"F" THEN 3510

3520 IF B$="C" THEN 3560
3530 PRINT" 0 INPUT DEGREES

FAHRENHEIT":INPUT VL
3540 CLS:PRINT@33,VWDEGREES

FAHRENHEIT EQUALS"
3550 PRINT@97,(VL — 32)*5/9;

"DEGREES CENTIGRADE":
GOTO 3590

3560 PRINT" ❑ INPUT DEGREES
CENTIGRADE":INPUT VL

3570 CLS:PRINT@33,VL;"DEGREES
CENTIGRADE EQUALS"

3580 PRINT@97,32+VL*9/5;
"DEGREES FAHRENHEIT"

3590 A$=INKEY$:1F A$ =
"" THEN 3590

3600 IF A$=CHR$(13) THEN RETURN
ELSECLS:GOTO 3500

Here are two more characters—a
snake and a monkey—to complete
your jungle scene, plus some
ideas on how to animate the
picture and how to save memory

In earlier parts of this feature, you have already
seen how to define large numbers of characters
on your computer, and started to use this to
build a picture of a jungle scene.

The jungle scene program was made up of a
number of sections, each one defining the
UDGs (except on the Dragon and Tandy, see
page 489). Each section made part of the
picture—the crocodile, elephant, trees and so
on. The second half of the program, which
follows, adds a snake and a monkey and finishes
the background.

If you SAVEd the last half on tape or disc you
can LOAD it back again, as this program needs
the first half to RUN. If you have an Acorn
computer, type this line before loading in the
old program, as you did last time. Then type
NEW and RETURN I.
PAGE = PAGE + &600

The additional data lines you need to define the
images are printed after the main programm-
ing. Type these lines in first:

130 REM poke snake data
140 POKE 23676,254
150 FOR n=USR "a" TO USR "r" +7: READ

a: POKE n,a: NEXT n
160 POKE 23676,253
170 FOR n=USR "a" TO USR "j" +7: READ

a: POKE n,a: NEXT n
180 REM poke monkey data
190 POKE 23676,252
200 FOR n=USR "a" TO USR "u" + 7:

READ a: POKE n,a: NEXT n
210 POKE 23676,251
220 FOR n=USR "a" TO USR'"u" +7:

READ a: POKE n,a:NEXT n
230 POKE 23676,250
240 FOR n=USR "a" TO USR "g" +7:

READ a: POKE n,a: NEXT n
500 REM print snake
510 INK 1
520 POKE 23676,254
530 LET z=144: FOR n=2 TO 7: FOR m=16

TO 18: PRINT AT m,n;CHR$ z: LET
z=z+1: NEXT m: NEXT n

540 POKE 23676,253
550 LET z -= 144: FOR n=8 TO 12: FOR

m=17 TO 18: PRINT AT m,n;CHR$ z: LET

z=z+1: NEXT m: NEXT n
600 REM print monkey
610 INK 0
620 POKE 23676,252
630 PRINT AT 0,30;CHR$ 144;AT 1,24;CHR$

145;CHR$ 146;AT 1,28;CHR$ 147;CHR$
148

640 PRINT AT 2,23;CHR$ 149;CHR$ 150;
CHR$ 151;CHR$ 32;CHR$ 152;CHR$ 153

650 PRINT AT 3,23;CHR$ 154;CHR$
155;CHR$ 32;CHR$ 32;CHR$ 156;CHR$
157;CHR$ 158

660 PRINT AT 4,24;CHR$ 159;CHR$
160;CHR$ 32;CHR$ 161;CHR$ 162;CHR$
163;CHR$ 164

670 POKE 23676,251
680 PRINT AT 5,24;: FOR n =144 TO 151:

PRINT CHR$ n;: NEXT n
690 PRINT AT 6,24;CHR$ 152;CHR$

153;CHR$ 153;CHR$ 153;CHR$ 153;CHR$
154;CHR$ 155;CHR$ 156

700 PRINT AT 7,23;CHR$ 157;CHR$
158;CHR$ 159;CHR$ 32;CHR$ 32;CHR$
160;CHR$ 161;CHR$ 162;AT 8,22;CHR$
163;CHR$ 164;

710 POKE 23676,250
720 PRINT CHR$ 144;CHR$ 145;CHR$

32;CHR$ 32;CHR$ 146;CHR$ 147;AT 9,24;
CHR$ 148;CHR$ 149;AT 10,24;
CHR$ 150

850 REM sun
855 INK 6
860 FOR n=0 TO 2*PI STEP .05: PLOT

70,150: DRAW SIN n"12,COS n'12:
NEXTn

870 FOR n=0 TO 21)1 STEP PI/4: PLOT
70,150: DRAW COS n'20,SIN n'20:
NEXTn

970 INK 0

The additional data lines you need to define
the images are printed after the main
programming.

51 FOR Z=144 TO 759: READ X:
POKE 13312 + Z,X:NEXT Z

100 M$="ggaPJEI/OPIPJ
12 0.Aggli 111111111i
IIIH HIV

110 MS=M$+".12113451.167

11111111111189PJP1;<
111111111111 = > WHOM
g111111111111111=-11n ❑ ZLI
LEDEIN1111111111111111
MN"

120 ms=ms+".SPJPJEILLL

II -Toi=mactrupgamil
11 1111111111oxlmiNIES
ER glgq1111111111111:1111g111

140 PRINT"ggigiAMEIN
PJaRuX[t !"CS"PJPJIllia
SVYE 41-"CHR$(34)"S&C,"C$
"PJP.111PJairWZiEl#V)+ — "

155 POKE 1088,81
175 TT = T:PRINT"g"TAB(T)"A"

M$:FORD = 1T050: PO KE55360,
RND(1)*7 1:NEXTD

180 PRINT"ErTAB(T)"."M$

The additional data lines you need to define the
images are printed after the main program.

180 PROCSNAKE(128,100,146)
190 PROCMONKEY(770,1023,174)
210 COLOUR3:COLOUR128

■ ADDING DATA TO COMPLETE
THE JUNGLE SCENE

■ DRAWING A SNAKE AND A
MONKEY

■ COMPLETING THE BACKGROUND

■ USING HIGH RESOLUTION
GRAPHICS

■ ANIMATING THE CHARACTERS
■ SAVEING THE DATA AS

MACHINE CODE

220 VDU 31,35,4:PRINT"HI"
230 VDU 31,34,5:PRINT"THERE"
410 DEF PROCSNAKE(X,Y,Z)
420 VDU 5
430 GCOL0,0
440 FOR T=0 TO 17
460 MOVE X + 32*(T DIV 3),Y-32'(T MOD

3):VDU T+Z
470 NEXT
480 FOR T=18 TO 27
490 MOVE X+ 32*(—3 + (T DIV

2)),Y-32*((T MOD 2) + 1):VDU T+Z
500 NEXT
510 VDU 4
520 ENDPROC
530 DEF PROCMONKEY(X,Y,Z)
540 VDU 5
550 GCOL0,3
560 RESTORE 1960
570 FOR T=0 TO 48
580 READ A
590 MOVE 32'(A MOD 10)+X,

Y-32'(A DIV 10):VDU Z+T
600 IF A=63 THEN VDU Z+T,Z+T,Z+T
610 NEXT
620 VDU 4
630 ENDPROC
1160 MOVE420,800
1170 GCOL0,3
1180 FOR T=0 TO PI*2 + .08 STEP

.08:DRAW 300 +120*COS(T),
800 +100*SIN(T):NEXT

1190 FOR T = 700 TO 896:PLOT 77,
300,T:NEXT

1200 FOR T=0 TO PI*2 STEP .3:
MOVE300,800:DRAW 300+500
*COS(T),800+450*SIN(T):NEXT

The Dragon and Tandy jungle

1960 DATA 8,12,13,16,17,21,22,23,25,
26,31,32,35,36,37,42,43,45,46,47,
48,52,53,54,55,56,57,58,59,62,63,
67,68,69,71,72,73,76,77,78,80,81,
82,83,86,87,92,93,102

Owners of a BBC with operating system 0.1
should delete Line 1190 and change Line
1180 to:
1180 FOR T=0 TO Pr2 + .08 STEP

.08: MOVE 300,800: PLOT85,300
+ 120TOS(T), 800 +100•SIN(T):
N EXT

1E1
Type in these data lines to define the shape of
the UDGs.

1400 REM SNAKE
1410 DATA 0,0,0,0,0,0,3,14,31,31,63,67,

65,254,254,225,71,63,0,0,0,0,0,0,0
1420 DATA 0,0,0,0,255,12,28,28,28,254,

143,1,0,4,248,208,224
1430 DATA 0,0,0,0,0,0,0,0,0,0,0,128,240,56
1440 DATA 52,99,225,225,225,96,47,31,14,

6,2,1,0,0,0,0,0,0,0,0,3,15,63,127
1450 DATA 255,225,240,248,252,255,

255,126,60,28,124,247,247,115,
31,1,0,0,0,0

1460 DATA 255,191,159,143,199,194,
127,64,128,128,64,63

1470 DATA 48,112,248,249,253,255,189,255,
0,0,0,0,192,252,190,63,63,24,240

1480 DATA 9,5,7,5,249,67,243,251,255,252,
238,239,255

1490 DATA 192,224,208,223,224,129,
193,227,243,247,255,248,240,224,192

1500 DATA 0,0,0,0,255,129,195,199,199
1510 DATA 239,239,255,0,0,0,0,0,0,0,0,

128,248,31,140,158,191,191,255,
0,0,0,0

1520 DATA 0,0,0,1,15,62,206,30,61,121,
243,247,247,63,15,3,0

1530 DATA 30,127,191,95,93,61,250,240,
194,252,194,192,192,224,224,240

1540 REM MONKEY
1550 DATA 1,2,4,8,16,32,64,128,0,0,0,3,

31,63,127,252,0,0,0,224,248,252,252
1560 DATA 62,3,15,15,15,15,14,14,12
1570 DATA 3,142,240,192,128,0,0,0,1,1,3,

3,3,3,3,3,248,240,224,224,192
1580 DATA 192,192,192,30,14,110,76,56,

0,0,0,0,0,0,0,0,0,0
1590 DATA 1,28,28,56,56,112,112,224,224
1600 DATA 3,3,1,1,1,0,0,0,192,224,224,

240,248,248,252,126,3,7,15,31,63,62
1610 DATA 126,252,192,192,128,0,0,0,3,7,

0,0,0,0,0,0,128,223
1620 DATA 127,63,31,31,15,7,7,3,0,128,128,

192,192,192,224,240,252,126,126,127
1630 DATA 63,63,31,31,15,15,7,3,3,131,

131,131

1640 DATA 255,255,231,231,255,252,
172,183,128,192,224,224,224,
224,224,224

1650 DATA 1,1,0,0,0,1,3,7,248,255,255,
255,255,255,255,255,0

1660 DATA 255,255,255,255,255,255,255
1670 DATA 15,255,255,255,255,255,255,255,

199,255,255,255,255,255,255,255
1680 DATA 223,239,255,255,252,128,0,128,

224,240,248,248,240,96,0,0,0,0,200
1690 DATA 232,248,248,120,112
1700 DATA 7,15,15,31,31,31,63,63,255,255,

255,255,255,255,255,255,192,224,224
1710 DATA 224,224,224,192,192,0,0,1,1,3,

7,14,60,240,224,192,128,128,0,0,0
1720 DATA 0,0,0,0,0,3,15,31,63,63,63,63,

126,254,252,240,191,191,63,63,63

1730 DATA 63,63,63,15,7,7,7,7,7,7,7,192,
131,135,159,191,255,254,252

1740 DATA 252,248,240,224,192,128,0,0,0,
1,3,7,6,6,4,0,127,254,240,224

1750 DATA 64,64,0,0,192,0,0,0,0,1,1,3,63,
31,63,127,254,252,248,240

1760 DATA 7,3,0,0,0,0,0,0,240,192,0,0,0,
0,0,0,7,7,15,31,31,31,23,23,224

1770 DATA 192,128,0,0,0,0,0,7,6,4,0,0,0,0,0

lUril
90 PCLS3
100 DRAW"BM62,1C2DG6LG2LGLUHLGLD

6GDGDGDG7DG2DRD3RD2FDFDL12H
2LULU3HUH4UH2ULU5EUE4R3F3D
2G LHURBD2R2E2U3HUHLH L4G L2G
4DGD7FD2FDFDF2D"

110 DRAW"F2DFD2G3DGDGD2GD5G2L2GL
G2LGLG2D3EUER2ND2RE2R2ER2ER
EREUEUEUERD9FG4DG2DG2D2ND
2R2D5E2U5E8U9E3R17F3D6FR3ER
ERE2RE5UE3UE3UE"

120 DRAW"U2NU2LH2LD3FDGDGDG4LGL
GLG2LG2HU2EUEU4H3E2R4ERFRFE
URUH2U6H3L4GH2L2G2DF2D4G
2L2H2U2HUHUHUEUEUE2UEUEUE
UEU2EUEREUL4D5L3D6L2D3L2D3"

130 DRAW"BM24,16U3NL6DL8D2L2D2
L2D9BM70,43D4G8BM3,64E3BM

10,10D3"
140 PAINT(50,50),2
150 DRAW"BM56,34C1RDBF3DBL7DF

2BE2BU2"
160 GET(0,0)—(76,80),M,G

170 PCLS
180 DRAW"BM13,11C4G3L8H2U2EUE2E

RERER8FR2F3RE3RERER11FR3F2RF
4R12FR3FR4ERER2ERERER3FD
4GBU3GDG2LGFNR3GD2FDFL4"

190 DRAW"H2LH LHLH L18G4LG Ll6H L
3HLH9LHL2HL2G3DFR3BM23,6D3FDF
5R F2R9ER2ER7BM52,8LG L3G2L
11H2UE2R7F4"

200 PAINT(60,10),3,4:PAINT(13,5),3,4
210 DRAW"BM83,8C1 DBL4BG5H3G4H

5G5H4G5H3G4H4G3H8E4F2E2F2E2F
2E2F4BM7,13LH3E6F4E4FDFD
2F9R2FR15E"

220 GET(0,0) — (88,21),S,G
370 CIRCLE(50,30),25,2:PAINT

(50,30),2:DRAW"BM50,30C2NU
30NE6ONR84NF6OND84NG6ONL
84N H30"

430 PUT(10,166) — (98,187),S,PSET
440 PUT(140,0) — (216,80),M,PSET

The additions to each computer fit in exactly
with the last program, and just extend it to
include more characters—although on the
Acorn computers, Dragon and Tandy you
need the lines given below to call up the new
routines. Again, the DATA statements from
Lines 1400 to 1770 are common to the
Spectrum, Commodore and Acorn com-
puters. The Spectrum program starts off by
adding more lines to POKE in the extra DATA,
and the Acorn adds two new PROCedures.

The Commodore listing, too, is just an
extension of the last program: Line 51 adds
another FOR ... NEXT loop to POKE in the extra
DATA for the new characters. Lines 100 to 120
create the monkey, Line 140 creates the snake
and Line 155 places a moon on the screen. The
UDGs for the monkey are put into the string
M$ to save memory.

The Dragon draws the new characters, and
G ETs them into an array in the same way as it
did for the characters in the last program.

Each program also prints the UDGs in the
correct positions to fit in with the picture.

MORE CHANGES
In addition to the extra lines above, the Acorn,
Dragon and Tandy programs need changes to
certain other lines:

50 FOR T=128 TO 251
200 PROCELE (800,460,223)
1090 PROCTREE2 (850 + RND(300),

P + RND (20) — 30,243)
1100 PROCTREE1 (900 + RND(250),

P + RND(20),236)
1140 PROCTREE2 (RND(500),300

+ RND(50),243)

The jungle scene on the Acorn

20 DIMC(59),M(156),S(48),E(17),
T1(1),T2(7),F1(7),F2(7)

For the Acorn, these lines just change the first
character used by the PROCedure, to compen-
sate for the fact that there are now several more
UDGs in memory. The new Line 50 changes
the FOR . . . NEXT loop to define the new
number of UDGs.

The Dragon and Tandy just DI Mension two
more arrays, one for each new character.

THE COMPLETE PICTURE
As you can see if you RUN the program, the
screen is now full of characters and the picture
seems complete. The snake, the monkey, and
the sun (or, if you have a Commodore 64, the
moon) are added by the extra lines.

You might equally well have added more
elephants, trees or crocodiles to the picture,
but in any case you now have a whole set of
characters to use in your own pictures.

A HIGH RESOLUTION SUN
Note how high resolution graphics have been
used as well as normal character graphics—
there is no reason why you should not combine
the two, and the mixture gives a surprisingly
good result.

The Spectrum 'fills' its sun by drawing a lot
of radii very close together, while the Dragon
and Tandy are able to use their PAINT com-
mand to fill a circle. The Acorns use a suitable
PLOT command to fill in the circle.

You can alter the picture further with other
high resolution graphics: for example, you
could add more hills, or even draw some lines
to make the ground seem textured or cracked.

The Commodore does not have high reso-
lution graphics commands in BASIC, and it is
difficult to draw the large yellow sun of the
other computers. So an ordinary graphics
character is printed instead—in this case
shaped like a moon.

NEXT STEPS
The range of changes you can make just with
the UDGs is almost unlimited. Apart from
changing the number of trees, snakes, mon-
keys and so on, you can also use the graphics
characters which make up these pictures for
other things.

An obvious example here, is to use the tree-
tops in a different colour (white, if you can
have white as well) for clouds, or as bushes.

You should watch out for colour clashes,
though. Suppose you want to use the tree-tops
as bushes; you would need to place the bushes
at the top of each hill, since the hills are green,
and so the bushes would not show up otherwise
(unless you had red bushes, of course . . .).

ANIMATING THE PICTURE
The advantages of building your picture from
UDGs do not just end with the number of ways
you can rearrange it once it is finished: you can
convert it into a moving picture with very few
changes.

To animate the animals, for example, you
could define one or two extra characters—a
new trunk for the elephant, the snake with its
head rearing up, or the monkey eating a banana
are just a few of the many possibilities.

Whatever you decide to have the animals
doing, once you have defined the extra UDGs,
you can simply follow the procedure for
animation outlined in the articles on pages 350
to 353, and pages 26 to 32.

If you have a Commodore, you can already
see a fairly crude example of this: the monkey
and the crocodile are moved by the last routine
in the program. All this does is PRINT the
characters in the background colour and then
re P RI NT them elsewhere. The moon also
changes colour. You can turn off the animation
by altering Line 190 to GOTO 190.

By using a series of different UDGs for

different positions, and then PR I NTing each
one in turn, the movement can be made much
more realistic, and either amusing or frighten-
ing, or whatever else you wish it to be.

HOW THE UDGs FIT TOGETHER
If you are going to use the UDGs for
animation, or in still pictures of your own, you
can see how the various characters make up the
monkey and the snake from the diagram above
(the last article, on pages 484 to 491 shows how
the crocodile is composed from the UDGs).

The microtip gives some possible replace-
ment DATA for the elephant which you might
like to use for the animation.

While the UDGs for the elephant, croco-
dile, and snake might seem restricted to a
jungle or zoo, you can use the trees (and bushes
or clouds) in almost any picture that you might
want to have in your programs. You should be
able to design just as impressive screen
displays yourself using similar methods.

SAVEING MEMORY
The programs above use a lot of UDGs in
order to show you how to use more than your
computer's limit, and to give you some
characters that you might like to use in your
own pictures.

But you can produce an impressive picture
with far less UDGs, if you need to, by using
each UDG over and over again. For example,
you could create a whole herd of elephants. Or,
if you included a wall in your picture, it could
cover a large proportion of the screen, and yet
only need two UDGs!

By careful planning of what you want to
draw, you can successfully create very interest-
ing pictures with a surprisingly small number
of UDGs. However, as it is quite straightfor-
ward to have large numbers of UDGs, the only
advantages to be gained from 'economising' on

Animate your characters
Here is some DATA which you can incorpo-
rate into the main program to animate the
elephant. It simply gives an alternative
trunk position, so you could switch be-
tween the two to simulate motion. The
Dragon and Tandy have a DRAW com-
mand instead of DATA which you must
GET into an array in the same way as the
program does for the other characters.

a 'IX' El

DATA 0,0,0,0,0,1,3,3
DATA 6,15,15,31,29,25,26,24
DATA 24,24,12,12,6,0,0,0

PCLS: DRAW"BM5,7C2GLFLD5F"

For each computer, you must also change
the relevant FOR...NEXT loops to set up and
print the new UDGs and you need to
DI Mension a new array for the Dragon and
Tandy.

You can improve the animated elephant
by moving it to a more prominent position
than it is in at the moment.

Animation tends to emphasise a charac-
ter, so it is a good idea to use the animated
part of your picture as the principal part.
You can then divert the user's or viewer's
eyes from any weaker parts of the picture.

You can try animating any of the other
characters in the same way.

UDGs are in terms of the time you save by not
typing them in, and the memory taken up by
the DATA. The Spectrum, in particular, uses up
a lot of memory to store its DATA, but there are
ways to make some savings.

You can conserve the computer's memory
by SAVEing the bytes which make up your
UDGs as a block of memory, and then deleting
the DATA statements. Normally the computer
stores each byte of DATA twice: once in the
memory locations you POKE with the DATA,
and again in the DATA statements themselves.

a
To SAVE the DATA as bytes of CODE, use:

SAVE "filename" CODE x,y

where x is the start address of the block of
memory you want to SAVE, and y is the length
of the block.

You should know the start address of the
block of memory, as you need it to either POKE
in the DATA, or to POKE the UDG pointer with
the new start address. The article on pages 450
to 457 explains how to find out what it is.

The length of the block is quite simple: it is
normally the number of UDGs you have in
memory, times 8. In fact the program above
which defines the UDGs for the jungle picture
uses eight banks of UDGs, and starts each
bank 256 bytes apart (instead of the minimum
168 bytes). The reason for this is that it lets you
change the pointer with just one POKE, as
opposed to the normal two. It also means that if
you want to SAVE the bytes as CODE, you must
SAVE a block (256*8) bytes long.

So, this command SAVEs the bytes for the
jungle UDGs:

SAVE"jungle UDG" CODE 63488,2048

To LOAD the bytes back in again, you just type
LOAD""CODE. To LOAD it back to an address
other than where it was SAVEd from, just add
the new start address after the LOAD""CODE.

The Commodore SAVEs machine code, or
bytes of memory, to tape by altering four
pointers to make the BASIC area correspond
exactly with the block of memory you want to
SAVE. It then SAVEs the data as normal.

For example, to SAVE the data from the
UDGs in the program above, first type:

POKE 43,0: POKE44,48: POKE45,230:
POKE 46,55

and press 'RETURN I. Now enter this:

SAVE"UDG DATA",1,1

The computer now SAVEs a block of memory
which starts where your character data begins,

and ends at the end of your data.
The ,1 immediately after the filename tells

the computer that it is SAVEing to tape, while
the second ,1 tells it that it is SAVEing machine
code, or data.

The four POKEs change the addresses which
point to the start and end of BASIC. The
article on pages 450 to 457 explains how this
works for the start of BASIC (for the two
POKEs, 43 and 44) and again with the other
two POKEs, 45 and 46, for the end of BASIC.
To LOAD the data back again, use this:

LOAD"file name",1,1

The Acorn SAVEs data, or any block of
memory, using the command *SAVE, followed
by the file name and two numbers.

The first number is the first address in the
block of memory you wish to SAVE, while the
second number can be one of two things. It can
either be the last address of the block of
memory, plus one, or the length of the block of
memory. If you are using the latter, you should
put a plus sign at the beginning of the number:
this tells the computer to add the number to the
start address.

The data for the characters used by the
programs above are stored in two places; one
for the 'normal' UDGs, and another for the
`extra' characters. Here is the command to
SAVE the first section of data; it uses the end
address, plus one, as its second number.

*SAVE"U DGdata1" El COO ❑ DO0

There are two points you should note from
this: firstly that the numbers are in hexa-
decimal. The second point to watch is that each
hex number is separated by a space.

To SAVE the second block of memory, first
enter this line:

A% =131: PRINT— USR (&FFF4)

Take the middle four digits of the hex number
that is PR INTed on the screen, and use it as the
first number in this command:

SAVE"UDGdata2" ❑ (number) ❑ +600

You can LOAD it back in again using this:

*LOAD"file name"

NCI
These use the DRAW command, so there is no
advantage in CSAVEing DATA.

Computers can be very good card
players if you can program them
correctly—and they never get bored!
Here's how to program the graphics
for a pack of cards

Ostracized by your friends, relatives and
colleagues for milking them of their cash at
cards? Penniless from playing experts? In
either case, over the next three parts of Games
Programming, you'll find the answer. Pro-
gramming your computer to play Pontoon will
give you a willing victim, or a way of playing
without emptying the coffers.

In this first part you'll see how to set up the
graphics routine that makes up your pack of
cards. The remainder of the program—the
game itself—will follow in two sections. But
don't forget to SAVE each section on tape as you
build up the game.

If you are not a Pontoon expert, don't
worry. A full set of playing rules will be printed
with the last part of the program. But first you
need to program a pack of cards.

afal
The graphics routine which will enable you to
display cards on the screen looks like this:

1 0 BORDER 4: PAPER 4: INK 9: CLS : POKE
23658,8: LET B=0: LET C=1

20 FOR N=USR "A" TO USR "R" +7:
READ A: POKE N,A: NEXT N

30 DIM C(52): FOR N = C TO 52: LET

C(N)=N: NEXT N
40 DIM A(13,13,2)
50 FOR N=C T010: FOR M =C TO N: READ

A(N,M,C),A(N,M,2): NEXT M: NEXT N
60 FOR N=11 TO 13: LET A(N,C,C) =4: LET

A(N,C,2) =2: NEXT N
70 LET CC= C:LET CP=100
80 GOSUB 5000
500 LET Y=0: LET X=1
525 LET Z= C(CC)
530 GOSUB 5500
540 STOP
5000 CLS : PRINT AT 10,10;

"SHUFFLING NOW"

■ CARD LAYOUTS
■ HIGH RESOLUTION GRAPHICS
■ POSITIONING THE SPOTS
■ DRAWING THE CARDS
■ COMMODORE ROM GRAPHICS

■ SHUFFLING THE PACK
■ DEALING THE CARDS
■ USING UDGS
■ FOUR SUITS, THIRTEEN CARDS
■ PICTURE AND ACE VALUES

5010 FOR N=C TO 100
5020 LET X= INT (RND*52)+ C
5030 LET Y=INT (RND*52)+C
5040 LET Z= C(X): LET C(X) = C(Y): LET

C(Y) =Z
5050 NEXT N
5060 CLS : RETURN
5500 FOR N=Y TO Y + 8: PRINT PAPER 7;AT

N,X;"EJ ❑ ❑ ❑ ❑ " : NEXT N
5510 LET ST=INT ((Z—C)/13)
5520 LET CH =144+ST
5530 LET VA =Z — (13*ST)
5540 IF ST<2 THEN INK 2
5560 LET AC =147 +VA

5600 PRINT PAPER 7;AT Y,X;CHR$ AC;AT
Y,X + 4;CH R$ AC;AT Y+8,X;CHR$ AC;AT
Y+ 8,X + 4;CH R$ AC

5610 FOR N = C TO VA: IF A(VA,N,C) < > B
THEN PRINT PAPER 7;AT Y+A(VA,N,C),
X+ A(VA,N,2);CHR$ CH

5620 NEXT N
5890 INK 9
5900 RETURN
9000 DATA 0,54,127,127,127,62,28,8,0,

8,28,62,127,62,28,8,8,28,62,127,
127,62,8,28,8,28,28,107,127,107,8,28

9010 DATA 0,8,20,34,34,62,34,34,0,28,
34,2,4,24,32,62

9020 DATA 0,28,34,2,12,2,34,28,0,4,
12,20,36,62,4,14

9030 DATA 0,62,32,32,60,2,34,28,0,28,
34,32,60,34,34,28

9040 DATA 0,62,34,2,4,8,16,16,0,28,
34,34,28,34,34,28

9050 DATA 0,28,34,34,30,2,34,28,0,76,
82,82,82,82,82,76

9060 DATA 0,14,4,4,4,4,36,24,0,28,34,
34,34,58,102,30,0,118,36,40,48,40,
36,118

9070 DATA 85,85,85,85,85,85,85,85
9100 DATA 4,2
9110 DATA 2,2,6,2
9120 DATA 2,2,4,2,6,2
9130 DATA 1,1,1,3,7,1,7,3
9140 DATA 1,1,1,3,4,2,7,1,7,3
9150 DATA 1,1,1,3,4,1,4,3,7,1,7,3
9160 DATA 1,1,1,3,2,2,4,1,4,3,7,1,7,3
9170 DATA 1,1,1,3,2,2,4,1,4,3,6,2,7,1,7,3

9180 DATA 1,1,1,3,3,1,3,3,4,2,5,1,5,3,
7,1,7,3

9190 DATA 1,1,1,3,2,2,3,1,3,3,5,1,5,3,
6,2,7,1,7,3

The program works like this:
The border, paper and ink colours

are set up by Line 10 and the
POKE puts the machine into

upper case. The two variables
—B and C—are used instead

of the figures 0 and 1 throughout.
Owing to the way the Spectrum

stores numbers and variables, you
can save six bytes of memory each time

and it allows the program to RUN on the
16K Spectrum.

Line 20 sets up the UDGs for symbols used
for the four suits, and UDGs for numbers and
letters used in the corners of the cards The
DATA for these is held in Lines 9000 to 9070.
Next, Line 30 sets up an unshuffled pack of
cards. Array A, DI Mensioned in Line 40 is filled
with DATA from Lines 9100 to 9190 which
gives the coordinates of the spots on each card.
Line 50 fills part of the array with the positions
of the suit symbols on the number cards. Line
60 fills the remainder of the array with the
position of the picture symbols. It would be
possible to design proper pictures for the
cards, but it would be rather tedious to enter all
the data, and also difficult to fit in the 16K
machine.

Line 70 sets CC to 1, and CP to 100. CC is the
current card, and is the element in the card
array which is being dealt with by the program.
CP is the number of chips in the player's
possession.

Line 80 calls the shuffling subroutine,
starting at Line 5000. The screen is Neared,
and the shuffling message is displayed by Line
5000 itself. The shuffling is done by choosing
two cards at random and swapping their
positions. The FOR . . . NEXT loop between
Lines 5010 sees that 100 swaps are done. The
laws of chance mean that sometimes the same
card will be chosen by Lines 5020 and 5030
and it will be swapped with itself. It doesn't
really matter, though, because a very thorough
shuffle will be given by 100 swaps. If you are
not happy with swapping only 100 times, you
can alter the value in Line 5010, but it'll soon
take a ridiculously long time.

The subroutine ends at Line 5060 which
clears the screen and RETURNS.

Line 525 sets variable Z equal to the value of
the current card in array C, before Line 530
calls the subroutine at Line 5500. This
subroutine is concerned with displaying the
cards on the screen. Line 5500 displays the
cards—only the white background at this
stage, but the symbols and numbers will be
displayed by the rest of the subroutine. Line
5510 works out which suit the chosen card is
in—each of the suits is given a number from
zero to three. Line 5520 works out which
character string the UDG for that particular
suit is stored in. Finally, you'll want to know

THEN Dl$ = "10":D2$ ="10": GOTO
220

210 D2$ 	+ Dl$:D1$ = 01$
" 0"

220 FOR D=1 TO 500:NEXT D:
PRINT"I§CARDM E11111111111111";Z

240 PRINT "Iggg gggg gsgggg Nu"
TAB(T)" r 	-I":
FOR ZZ = 1 TO 9

250 PRINT TAB(T)"al • ❑❑❑❑❑
I":NEXT ZZ

260 PRINT TAB (T)" L 	
DD$="BEI" OR DD$ =

THEN PRINT"i"
PRINT "Eggigggggggggggig"

TAB(T);"INVD1$;
"giggiAggEMECEMPI";p 2$

280 FOR ZZ=1 TO 13:IF MID$
(CC$,ZZ,1) = RIGHT$(D$(Z),1) THEN
JJ=ZZ

290 NEXT ZZ:PRINT "Egigligg
Aggigigg"TAB(T);"11";

300 ON JJ GOSUB 700,520,530,540,550,
560,570,580,590,610,650,670,630

510 GOTO 180
520 PRINT" gg PJ PJ"DDS

"111 gigiggN"DDS:RETURN
530 PRINT"MPIPTDDVIIgggi"

DD$11 gg "DOS:RETURN
540 PRINT" gg PrOD$"11"DD$

"IliiilgOggggi"DDS
"PrD14:RETURN

550 PRINT" gg PJ "DOS" PrIDD$
"Illigig"Dp$"11 II Mgr
DWI] "DDS: RETURN

560 PRINT" gg PJ"DD$11"DD$
"11111111glIgg"DDS"N"

gigg"DD$
"H"DDS:RETURN

570 PRINT" gi PJ" DOS" PJ"DDS
"II II gl"Dn"1111g1"
DDVPJ"DDS"111111111gg
DDS"PJ"DDS:RETURN

580 PRINT" gg Pj"DDS" WOOS

the number of the card within the suit—is it an
ace, a two or perhaps a queen?

Before the suit symbols can be displayed on
the card, the ink colour must be set. Line 5540
sets the colour to red if the suit number is one
or zero, black otherwise.

Line 5600 draws the card's number by
picking out the appropriate UDG from those
set up earlier. The suit symbols are displayed
by Line 5610. The coordinates of each symbol
are picked out from array A, and the UDG is
printed at that position.

Finally, INK 9—the contrast ink—is set, and
the program R ETUR Ns.

[43 ■•■■•■

The program below is the Commodore
graphics routine. If you have a Vic 20, make
sure that you change Line 10 so that it reads as
follows:

10 POKE 36879,30:MU =100:J M = 3:
LE = 21:TX = 6

Commodore owners are very lucky because all
the symbols needed for these card graphics are
already on the machine, so special graphics
routines do not have to be written:

10 POKE 53280,6:POKE 53281,1:
MU =100:JM = 7:LE = 39:TX=15

20 FOR Z=1 TO LE:El$= El $ +"_":
E2$= E2$ + "U":NEXT Z:
E2$= E2$ + "El"

30 DIM D$(52):C$="01ffl* Or:
CC$ = "A234567890JQK"

40 FOR ZZ=1 TO 4:FOR Z=1 TO 13
50 X = X+1:D$(X) = MID$(C$,ZZ,1)

+M1D$(CC$,Z,1):NEXT Z,ZZ:PRINT "Q"
60 FOR X=1 TO 52
70 XX= INT(RND(1) .52) + 1
80 DD$=D$(X):D$(X)=D$(XX):

D$(XX)=DD$:1F RND(1) <.50 THEN 130
90 PRINT "i§gggigggg":T=RND

(1)"3 + TX
100 PRINT TAB(T)"

1": FOR ZZ=1 TO 9
110 PRINT TAB(T)"hill MENNEN

I":NEXT ZZ
120 PRINT TAB(T)"L 	1"
130 NEXT X
140 Z=0
150 PRINT "Elgggigggigaggigg

gggggg"
160 FOR ZZ=1 TO 10:PRINT

"Ka";El$:NEXT ZZ
170 PRINT "EigggiNgg";:PRINT

" 	"E2$;E2$
180 Z = Z + 1:NU = NU +1:1FZ > 52 THEN

Z=1
190 DD$ = LEFT$(D$(Z),1)
200 Dn.= RIGHT$(D$(Z),1):1F D1$ ="0"

"1111g1"Dp$1111g1"
DD$" pJ"DD$" II II gl"
DDriling"DD$`11"
DD$:RETURN

590 PRINT"gg pJ"DD$"PJ"DD$
"11 1111 gg"DDVAI"DD$"11
II gg"DD$11111g1"DDrIJ"
DD$"11 lull grDD$"11"DD$

600 RETURN
610 PRINT "PrDD$"11"DD$

gl"DD$"1111 gg"DD$

DD$"11"DD$1111g1"
DDrIIIIgg";

620 PRINTDDrprDD$:RETURN
630 PRINT"a ❑❑❑❑❑ 11Mgal

11 11 11 11EMEMEgg 111111
11111MODOEM1111111111

o617Vg01111111111M
EIBEIg11111111111
31118110";

640 PRINT"g111111111111

	

D 	• ❑ ":RETURN
650 PRINT"1111116111111Igg

1111 61EME6iggl11111 II II
Mi ❑ iPMg111111111iN ❑
❑❑ ffig11111111111111:0080

660 PRINT"MIIIIIIIIM ❑ . LI"
DDr El ":R ETUR N

670 PRINT" ❑ ZM ❑ •% ❑ ggil
immuisrim ❑ waill
immizmwepori

680 PRINT"%ggIIIIIIIIIIM%
ME
mEIBENgamonna%
EsEEN",.

	

690 	 ar "
DDV ❑ M":RETURN

700 PRINT"PJN"DDS"1111

111111
RETURN

The two PO KEs in Line 10 of the 64 program set
the background and border colours, whilst the
single POKE in the Vic 20 program looks after
the screen colour. MU is the chips that the
player will need later on in the game, J M is used
for displaying the cards on the screen, and TX is
used to centre the cards during the shuffling
display that you'll see when you RUN the
program. LE is length of the Commodore's
screen minus one.

Line 20 is concerned with the graphics used
as a background for the cards—they are
displayed on the screen later on in the program
by Lines 160 and 170.

In Line 30 a string array is DIMensioned,
and two strings are defined. D$ will hold the 52
cards, C$ contains the four suit symbols and
CC$ contains the numbers and letters used in
the corners of the card graphics.

The pack of cards is set up in Lines 40 and
50. Now that the pack has been created in
order, it will have to be shuffled—Lines 60 to

130 take care of this. Lines 100 to 120 show a
screen display of the cards being shuffled.

Once the cards have been put in a random
order by the shuffling routine, they can be dealt
on to the screen. Line 180 increments the card
number within the pack—Z—and the number
of cards so far dealt—NU. The line also sends
the card counter back to the beginning of the
pack once the last card has been reached—
hence the 52 in this line.

Lines 190 to 300 work out which card is at
the top of the pack, and then displays it. The
value and suit of the card are worked out in
Lines 190 to 210. There's a pause before the
card number is displayed by Line 220. The
outline of the card is drawn starting seven lines
down on the screen.

You now have a white rectangle—a naked
card—which needs dressing up with suit
symbols and numbers or letters. Line 270
looks after the numbers and letters—a charac-
ter from ace to king is displayed in the top left-

hand corner of the card, and in the bottom
right.

In order that the correct graphics can be
displayed on the screen the program has to
decide exactly what the card is—is it a 3, an 8 or
a Queen? JJ is a number between 1 and 13,
representing ace to king, and it is used to pick
out the correct line of graphics symbols. These
graphics symbols are written as subroutines
between Lines 510 and 700. Every time DD$
occurs in these lines, the suit symbol is
PR I NTed on screen. Lines 510 to 600 are the
layouts of the spots, and Lines 610 to 700 are
the heads on the picture cards, which are built
up from a combination of the Commodore's
block graphics symbols.

El
The first part of the pontoon program consists
of routines which handle the graphics. Press
BREAKS to clear any old UDGs then enter and
RUN these lines to see the cards:

20 MODE1
30 PROCSCREEN
40 PRINT"HOLD ON WHILE I OPEN THE

CARDS"
50 VDU23,224,8,28,62,127,62,28,8,0
60 VDU23,225,8,28,62,127,127,28,62,0
70 VDU23,226,54,127,127,127,62,28,8,0
80 VDU23,227,8,28,28,107,127,107,8,28
90 VDU23,228,0,76,82,82,82,82,76,0
100 VDU23,229,0,60,100,74,67,100,60,0
110 VDU23,230,20,30,36,84,198,38,54,29
120 VDU23,231,73,107,127,65,85,73,34,28
130 DIM C$(52),V(52)
140 D$ = "A23456789" + CH R$(228)

+ CHR$(229) + CHR$(230) + CHR$(231)
150 3 = "JOK"
160 S$=CHR$(224)+CHR$(225)

+ CHR$(226) + CHR$(227)
170 FOR P=0 TO 3
180 FOR T=0 TO 12
190 C$(P*13+T+1)=M1D$

(D$,T +1,1)

200 V(P'13+T+1)=T+1:IF T>9 THEN
V(P*13+T+1)=10

210 IF T=0 THEN V(P'13+T+1)=11
220 CVP*13+T+1)=C$(P . 13

+T+1)+M1D$(S$,P+1,1)
230 NEXT
240 NEXT
260 PROCSHUFFLE
270 FOR T=1 TO 52
280 PROCCARD (500,700,T)
290 G =GET
300 NEXT
310 GOTO 260
560 DEF PROCSHUFFLE
570 PRINT"I'M SHUFFLING THE CARDS

NOW"
580 CN =1
590 X = 13:Y = RND(52)
600 FOR P =1 TO 250
610 X=Y-1:IF X=0 THEN X=52
620 Y=RND(52)
630 T$ =C$(X):C$(X) =C$(Y):

C$(Y) =T$
640 T=V(X):V(X) =V(Y):V(Y) =T
650 NEXT
660 ENDPROC
670 DEF PROCCARD(X,Y,Z)
680 LOCAL N
690 VDU5
700 GCOL0,3
710 MOVEX,Y:MOVE X,Y + 304:

PLOT85,X+152,Y:PLOT85,
X+152,Y+304

720 S=ASC(RIGHT$(C$(Z),1))
730 IF S=225 OR S=227 THEN GCOL0,2

ELSE GCOL0,1
740 AS = LEFT$(C$(Z),1)
750 MOVEX + 10,Y + 290:PRINTA$
760 MOVEX + 115,Y + 40:PRINTA$
770 N =VAL(A$)
780 IF (N MOD 2=1 AND N< >7) THEN

MOVEX + 60,Y +166: VDU S
790 IF N=2 OR N=3 THEN MOVEX + 60,

Y +270:VDU S:MOVEX + 60,Y +64:

VDU S:GOTO 900
800 IF N =4 OR N =5 THEN NS =2
810 IF N=6 OR N=7 OR N=8 THEN

NS =3
820 IF N=9 OR ASC(A$) =228 THEN

NS =4:GOTO 840
830 IF N = 0 THEN MOVEX +42,Y +286:

PR1NTM I D$(14,ASC(A$) —830,1):
MOVEX +80,Y + 40:PRINTM1D$
(L$,ASC(A$) — 830,1):M OVEX + 60,
Y +166:VDU S:GOTO 900

840 FOR T2=0 TO NS-1
850 MOVEX + 20,Y + 80 + 170/(NS — 1)

*T2:VDUS
860 MOVEX + 100,Y +80 +170/(NS —1)

*T2:VDUS
870 NEXT
880 IF N=7 THEN MOVEX +60,Y +205:

VDU S
890 IF N=8 OR ASC(A$) =228 THEN

MOVEX + 60,Y + 205:VDU S:
MOVEX + 60,Y +120:VDU S

900 VDU4
920 ENDPROC
1400 DEF PROCSCREEN
1410 VDU28,0,18,39,14
1420 VDU19,0,2,0,0,0:VDU19,2,0,0,0,0
1430 ENDPROC

The cards are drawn on a MODE1 screen so
Line 20 sees to this. Line 30 calls PROCSCREEN
which is located at Lines 1400 to 1430. Line
1410 defines a text window in the centre of the
screen, and the colours are set up by Line 1420.

The player is told HOLD ON WHILE I
OPEN THE CARDS. Lines 50 to 120 set up
graphics for the suit symbols along with the
figure 10—set up as one character for ease of
display later on—and the three heads used in
the corners of the J, Q, K cards.

Two arrays are DIMensioned in Line 130-
C$ will hold the suits and the numbers and
letters used in the cards, and V will hold the
values of each of the 52 cards. D$ holds all the
numbers and the heads, whilst L$ holds J, Q,
K. S$ holds the four suit symbols.

Next, C$ and V are filled using the two FOR
. NEXT loops in Lines 170 and 180 and Lines

230 and 240. In the case of C$, Line 190 picks
out the elements from D$ and puts them in the
correct element of the array. The remainder of
the array is filled from S$ by Line 220. The
values of the cards are fed into array V by Line
200—all cards above nine have the value ten,
so the last part of the line looks after that.
Finally, the ace can take two values, 11 as well
as one, so Line 210 checks if the card is an ace
and puts the value 11 into V.

Line 260 calls PROCSHUFFLE, found at
Lines 560 to 660. After the player has been told
I'M SHUFFLING THE CARDS NOW, by

Line 570, the card number CN is set to one by
Line 580. PROCSH U FF LE works by picking two
cards and then exchanging them. The FOR ...
NEXT loop between Lines 600 to 650 shuffles
the cards 250 times. Line 590 starts the process
by picking card 13 and a random card and
swapping them. The shuffle proceeds—Lines
610 to 640—by subtracting one from the last
random position and swapping it with a new
random card. And so on for 250 swaps.

Line 270 sets up a FOR ... NEXT loop which
ensures that 52 cards are dealt. Line 280 calls
PROCCARD which displays the card. The two
numbers ensure that the cards are displayed at
the correct position—X and Y are the coordi-
nates of the bottom left hand corner of the card.
A variable, N, is defined as LOCAL in Line 680.
VDU5 in Line 690 allows text to be printed at
the graphics cursor.

The white background is displayed by Line
710. Line 720 enables you to find out if the
card is a red or a black suit. Line 730 tests the
value of S, and sets either red or black—
G COL0,2 is black, and GCOL0,1 is red. With the
colour set, Lines 750 and 760 place the
characters at the corners of the cards.

The spots are displayed by Lines 770 to
890. Line 770 takes the number of the card in
A$, and then Lines 780 to 890 look at N and
display the spots in the correct positions.

Line 900 switches back to the text cursor.
Line 290 makes the program pause until a

key is pressed, when it displays a new card.
After 52 cards have been dealt Line 310 repeats
the shuffling and dealing loop.

111
The section of program for the Dragon and
Tandy machines which handles the card
graphics is as follows. Type it in and RUN it and
you'll be dealt 52 cards, one at a time:

4C

DMODE3,1
LS:P INT@228,"I'M SHUFFLING THE
A

30 D 	(13):FOR K=1 TO 13:READ
N 	EXT
DATA BD2S4U5ER5FD2NL5D3,RDLDR,
ROW L,D R D U2,N R DRD L, D2R U
RS8DGD,ND2RDNLDL,NDRDNLD,
D2S16BRS12NU2RU2L,S4BD5F2R

1.16L3R4,S4INJ " D6R3NH2NFR2U6,
DNDS8RS12N

50 FORK= 153. 	1536 STEP 32
60 READA,B:P • 	EK +1,B:NEXT
70 DATA 60,224, .4, . ,238,236,187,

184,238,236,187,184,46,224,59,
176,14,192,11,128,2,0

80 DATA 2,0A0,1,1,128,14,192,59,176,
238,236,59,17604;1$2,11,128,3,0,3,0

90 DATA 1,0464Al2%38,96,25,144,

102,100,153,152,102,100,153,
152,34,32,1,0

100 DATA 2,0,9,128,6,64,9,128,34,32,
153,152,102,101,153,152,102,
101,17,16,2,0

110 DIM C(3),D(3),H(3),S(3),SQ(61)
120 G ET(0,0) — (13,10),H,G
130 G ET(0,11) — (13,21),D,G
140 G ET(0,22) — (13,32),S,G
150 G ET(0,33) — (13,43),C,G
160 FORK = 0 TO 51:SQ(K) = K:NEXT
170 SCREEN 1,1
180 GOSUB 1500: N = 0
190 PCLS 6: FOR CX = 6 TO 200 STEP 50:

FOR CY =11 TO 108 STEP 97
200 GOSUB 1000: GOSUB 2000: FOR J=1

TO 500: NEXT J,CY,CX
210 FOR J =1 TO 1000: NEXT: GOTO 190
1000 ST= INT(SQ(N)/13) + 1:NM

=SQ(N)-13"ST+14:N=N +1:
IF N>51 THEN N=0

1010 RETURN
1500 FORX = 52 TO 2 STEP-1
1510 Q= RND(X)
1520 T= SQ(X —1):SQ(X —1) = SQ(Q — 1):

SQ(Q — 1) =T
1530 NEXT
1540 FORX = OT09:SQ(X + 52) = SQ(X):

NEXT
1550 RETURN
2000 LI N E(CX,CY) — (CX + 44,CY + 72),

PRESET,BF
2010 S$ = NU$(NM)
2020 IF ST > 2 THEN COLOR7 ELSE COLOR8
2030 DRAW"S12BM" + STR$(CX + 3) + ","

+ STR$(CY + 2) + S$
2040 DRAW"S12BM" + STR$(CX + 35) + ","

+ STR$(CY + 64) + S$
2050 IF (NM/2 < > INT(NM/2)AND

NM < > 7)ORNM >10 THEN PX =
CX + 16:PY = CY + 31 :GOSU B2500

2060 IFNM =2 OR NM = 3 OR NM=10 OR
NM =8 THENPX=CX+16:PY=CY+19:
GOSU B2500: PY = PY + 24:GOSU B2500

2070 IF NM =7 THEN PX=CX+ 16:
PY = CY + 39:GOSU B2500

2080 IF NM <4 OR NM >10 THEN 2140
2090 IF (NM =10 OR NM =8)THEN

NS= INT((NM —1)/2) ELSE
NS = INT(NM/2)

2100 FOR J = 0 TO NS-1
2110 PX=CX+3:PY.-----CY+12+J .38/

(NS —1):GOSU:
2120 PX = CX + 3 f) •UO2500
2130 NEXT

RETURN
ON ST GOTO . 	 - 530,2540
PUT(PX,PY) — 	,PY + 10),

:RETURN
(PX, PY) — (+ 13, PY + 10),

, :RETURN

2530 PUT(PX,PY) — (PX + 13, PY + 10),
C,OR:RETURN

2540 PUT(PX,PY) — (PX +13,PY + 10),
S,OR:RETURN

A four-colour mode has been chosen so that the
suit symbols can be displayed in blue and red.
Line 10, then, sets PMODE3. Line 20 tells the
player that the cards are being shuffled.

As the cards are drawn on the high reso-
lution screen, no characters are available via the
keyboard. The Ace, King, Queen and Jack
symbols, and the numerals from two to ten are
DRAWn from the DATA in Line 40. The
DRAWing instructions are READ into array N U$
by Line 30.

The symbols for hearts, diamonds, spades
and clubs are POKEd on to the screen from the
DATA in Lines 70 to 90. As soon as the symbols
have been displayed, GET is used to place the
symbols in memory—Lines 120 to 150. The
arrays for the symbols have been DI Mensioned
in Line 110, along with array SQ which is used
for shuffling the cards. Line 160 fills the first
52 elements of SQ with numbers 0 to 51.

Line 180 calls the shuffling subroutine—
Lines 1500 to 1550—which orders the cards
randomly. N is set equal to zero in Line 180 so
that the first card in SQ is being looked at.

Line 190 colours the screen cyan and sets up
two FOR ... NEXT loops using variables CX and
CY, which will be used later for positioning
symbols on the cards.

Line 200 calls two subroutines. Firstly,
Lines 1000 and 1010 calculate the suit—ST-
and the number—N M—of the card in SQ. Lines
2000 to 2140 calculate the positions that the
symbols will have to be PUT on the screen to
represent that card.

The subroutine looks very complicated, but
with the help of a pack of cards you should be
able to understand what is happening. There
are several recurring patterns which make up
the cards—the lower cards just use one pattern,
and the higher cards use a combination of two
or more. The subroutine checks which of the
patterns are needed for the displayed card.

But before the spots are worked out, the
numbers o letters are DRAWn in the two
oppo the card by Lines 2030 and
20 , 	sing the 	mation in array NU$.

positions 	e spots are worked out by
ch: 'ng the val 	t I 	 * I es 2050 to
209.. * 	PY - 	t coo 	.ates and
are wo 	from i e' values o4 	and CY.

• 	d PY have been ca' .ted, the
tine at 	- 	- 	is routine

Ts symbo 	%rr- 	• n the scree
Line 210 	s . 	se before the progr

	

ine 	here the scree
cle. 	. other 	displayed.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete indekin the last issue of INPUT.

	

504 	assembler

	

Dragon, Tandy 	430-444

	

492-497 	Spectrum 	477-482
Memory

	

SAVEing on tape 	532-533

	

Microdrives 	 505

	

420 	Monitors and TVs 	445-449
Multicoloured background 490

A
Adventure stories 	422-424
Animating UDGs 	532
Applications

conversions program 520-527
extend your typing 	498-503

Arrays
in adventure games 	425,427

ASCII codes 	420-421
Assembler

Dragon, Tandy 	440-444
Autorun 	 460-461
Axes for graphs

415-416,470-471

B
Bandwidth

of TVs and monitors 	447
Barchart 	 470-476
Basic programming

Commodore 64
graphics 	 420-421
formatting 	433-439
making more of UDGs 450-457
pictures from UDGs 484-491
plotting graphs 	413-419,

470-476
protecting programs 458-463
wireframe drawing 509-513
pictures from

UDGs-2
	

528-533
Bootstrap programs 459-463
Bug Tracing 	477-483

C
Cardgame graphics 	534-540
Cassette storage 	504-505

recording quality
	

504-505
tapes
	

504
transmission rate
	

505
Character sets

redefining, with UDGs
450-457

Circles, drawing 513
Colour for screen displays

433-434

D
Data storage 	 413
Disk drives 	506-508

operating system
	

508
interfaces
	

508
storage capacity
	

506
Displays, improving
	

433-439
Dragon assembler 	440-444

Drop outs
Duck shooting game

E
Editing programs

Commodore 64

F
FLASH command

Spectrum
	

434
Flashing alien

ZX81
	

430-431

G
Games programming

adventures, planning your own
422-427

duck shooting game 492-497
using joysticks 	464-469
pontoon game 	535-540

Get routines
adventure games 	426

Graphics, ROM
Commodore 64 	 420

Graphs 	 413-419
Grid, drawing a 	512-513

H
Histograms and barcharts

470-476

Imperial to metric
conversions
	

520-527
Interupt driven routines

478-483
Inversing the screen

ZX81
	

432

J
Joysticks,

duck shooting game 492-497
in games
	

464-469
interface, Electron
	

467-468
JOYSTK

Dragon, Tandy
	

468-469
Jungle picture 	485-491

L
Legends

for graphs
	

416

M
Machine code programming

animation
Vic 20, ZX81 	428-432

N
Number keys

redefining
	

450-457

0
Objects in adventures 424,427
On-board graphics

Commodore 64
	

420

P
Pie charts 	 474-476
Peripherals

data storage devices
504-508

TVs and monitors 	445-449
Planning screen displays

433-439
Pontoon program 534-540
PRINT

Acorn Commodore 64,
Spectrum, Vic 20
	

434
PRINT AT

Acorn
	

434
Spectrum
	

434,436
PRINT SPC

Commodore 64, Vic 20 434-435
PRINT TAB

Acorn
	

434,438
Commodore 64, Vic 20 	435
Spectrum
	

434
PRINT @

Dragon, Tandy
	

435
Program symbols

Commodore 64 	 420
Protecting programs 459-463
Pseudo hi-res graphics

ZX81 	 432

Q
Quote mode

Commodore 64

R
Reverse graphics symbols

Commodore 64
ROM graphics

Commodore 64

S
Screen pictures

from UDGs 	484-491
Serial access

tape systems 	505-506
Sine waves 	 415
Speed POKE

Dragon, Tandy 	 444
Stunt rider UDG

Vic 20 	 429
Submarine UDG

Vic 20 	 430
Superexpander cartridge

Vic 20 	 414
SYS

Commodore 64, Vic 20 	462

Tandy assembler 	440-444
Tape storage 	504-505

loops
	

505
Title pages, for games 433-439
Tokens

Commodore 64
	

421
Trace program

Spectrum
	

477-483
using
	

483
Commodore & Vic 20 514-519
using
	

519
TVs and monitors 	445-449
Typing tutor

part 4
	

498-503

U
UDGs

animals 	 491
building up a character
from a number of 	484-491
creating extra 	 450
redefining numbers 	452-457
SAVEing on tape 	532-533
& high resolution graphics 531
storing the data 	451-457

V
Variables, list of

420 	for adventure game 	425-427
Volatile storage 	504

420 Wireframe drawing,
and colour 	 512

420 	Words, in adventures 	424-426

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Li Type in the COMPUTER AIDED
DESIGN program and create detailed
drawings with easy fingertip control

UWith your pack of cards ready and
shuffled, it's time for THE PLAYER'S
TURN AT PONTOON

UNow you have learned to build flat
shapes, it's time to start creating
WIREFRAMES IN 3-D

Li Discover the advantages of WORD-
PROCESSING—the sophisticated office
tool that's finding its way into the home

And for ACORN users, there's a
MACHINE CODE PACKER

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

