
4d03:
, f • !RI . 1 , 4147 .030 ;0:1 	

•

LEARN/ OfAMMING - FOR FU liND THE FUTURE

Vol. 2 	 No 23

BASIC PROGRAMMING 50

YOU HUM IT—I'LL PLAY IT 	 701

How to turn any tune into a computer program

BASIC PROGRAMMING 51

MORE SORTING METHODS

For more speed and efficiency

PERIPHERALS

1111 BULLETIN BOARDS 	 71 .2

The computerized information exchange

GAMES PROGRAMMING 23

ON-SCREEN FLIGHT SIMULATOR 	716

Take over the controls at 2,000 metres up

APPLICATIONS 13

'
DGS, MAPS EA

No messing about with paper—plan them on the screen

MACHINE CODE 24

Special sound effects based on a simple command

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Paul Chave/Ian Stephen. Pages 701, 706, Phil Dobson. Pages 702,
703, 704, 705, 706, Berry Fallon Design. Page 709, Paul Chave/Spectrum. Page
710, Sporting Pictures. Page 712, Will Stephen. Page 715, Kevin O'Brien. Pages
716, 718, Paul Chave/ Ian Stephen. Page 720, 727, Peter Reilly. Page 721, Grant
Simon. Page 723, Grant Simon/Ian Stephen. Page 724, Tudor Artists. Pages
728, 730, Jeremy Gower.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WIV 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).
UK and Republic of Ireland:

INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer,as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries– and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W IV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K,
48K,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ UDRAGON 32 and 64

friM: 	T TANDY TRS80
ZX81 	VIC 20 	COLOUR COMPUTER

MUSICAL NOTATION
A MUSICAL RULER

KEY SIGNATURES
ADDING RHYTHM
PLAYING A TUNE

The real beauty of computer music
is that the machine plays it for you.
Find out how to transcribe any
written music into a program that
remembers your favourite tunes

Music has two main elements—pitch and
rhythm. The first article on music (pages 669
to 675) dealt mainly with pitch, which the
computer provided subject to which keys you
pressed, with you adding a touch of rhythm.
This article not only adds a predetermined
rhythm to the music that the computer plays,
but also explains how you can turn any piece
of sheet music into the DATA that your
computer needs to play the written tunes.

STANDARD MUSICAL NOTATION
Music is usually written on one or two groups
of five horizontal lines, called 'staves' (the
singular is 'staff). Various note symbols are
placed on or between the lines of the staves,
their height indicating the pitch, the order
indicating the order of notes in the piece (they
are played from left to right) and the shape of
the symbols indicating the notes' durations.

Notes which line up vertically are played
together to sound as chords, but the programs
in this article play only one voice at a time and

so cannot play chords. Vertical lines called
`bar lines' divide up the music horizontally
into groups of notes called `bars'; each bar has
the same duration as any other bar, though
each one may be internally divided into any
number of notes, as long as its total
duration is the same as other bars.

PITCH INFORMATION
The keyboard program in the last article
turned the computers' keyboards into some-
thing resembling a musical instrument. While
the programs worked very well, they are
inevitably limited because of the small num-
ber of keys on a computer keyboard compared
with the total number of notes you can use—
not to mention the difficulty of fingering

them. But there is no reason why you should
be confined to the same limits when you use
tunes in your own programs.

You can quite easily convert any piece of
written music into the numbers that your
computer needs for each of these notes with-
out needing very much knowledge of music:
just use the 'musical ruler' described later on
in this article. But, first, here is a brief
explanation of some of the basics behind
written music.

UNDERSTANDING THE NOTES
Fig. 1 shows a typical piece of written music.
This would just play each note available on a
keyboard in a rising succession—a 'chroma-
tic' scale.

The large symbols at the extreme left of the
staves are called 'clefs': the top one is called
the 'treble clef and the lower one the 'bass
clef'. The clefs simply give the note symbols
on the staves a pitch—without a clef, the pitch
of any note on a staff is indeterminate.

Note symbols are placed either between
two lines, or squarely over a line.

Notes above or below the staves are related
to the staves by means of leger lines'; so the
note Middle C lies on a leger line midway
between the two staves, ..nd the three highest
notes in the diagram are on leger lines above
the upper staff, at the righthand end.

It can be very confusing, and time-
consuming, to translate each note on a sheet of
music into the pitch and duration values for
your computer, especially if you cannot read
music. But there is an easy method.

If you look at the diagram, you can see that
pitch values from 1 to 37 are marked beneath
each note. These are the basis for the numbers
you need in your program.

You could refer to this diagram whenever
you wanted to 'transcribe' a tune, but even
that would mean a lot of time spent compar-
ing your sheet music to the diagram and
finding the right note. A much easier method
is to have a measure of some sort which you
can place over any note on a musical staff, and
just read off its pitch value for your computer.

A PITCH RULE
To make this, all you need to do is to mark a
piece of paper with a musical scale. Luckily,
this only takes a minute or so, although you
probably need a different scale for each piece
of music, as the size of the staves can vary.

First, place your paper over the staff, and
copy onto it the staff lines showing the
possible positions of a note. Then all you do is
write the pitch number for each note against
the corresponding mark. This ruler can
trace pitch values directly off the sheet music.

The actual values for each pitch are given

in the table and it's probably easier to use these
for the Spectrum (where the numbers are
simple) or the Dragon and Tandy (which use
letters). The number for the Commodores
and Acorns are more complicated so it's easier
to use the general scale and then convert them
in the program. To find out what to mark on
each line, compare the numbers on the dia-
gram to the table, and read off your
computer's equivalent number.

SHARPS AND FLATS
Unless you convert only pieces of music
written in C Major, you will at some time
need to transcribe sharps and flats—and these
do not have the same pitch as the natural note.

By looking at the key signature, you can see
what, if any, flats or sharps the tune uses (how
to understand key signatures is explained
later in this article). Any sharps or flats mean
you need to change the values on your ruler.

Sharps and flats are the black keys on the
drawing of the keyboard, and their pitch
numbers are provided. So, for example, the
pitch number of the lowest C sharp is 2 (using
the general scale of pitch numbers in the table,
you can see what this is for your micro). This
is the same as the pitch number for D flat, and
is between 1 and 3, the pitch numbers for C
and D.

But sharps and flats are not shown on the

the staff, after the clef. These marks are called
the key signature. (You should note that the
words 'key' and 'scale' mean the same, so the
key of C Major means the same.)

The absence of a key signature indicates
that the key is C Major, which is a kind of
`default' key, but a key signature of one or
more sharps or flats means the piece is in a
different key. In a key signature of one sharp,
the sharp sign is at the position at which the
note F is placed. Its effect is to sharpen all the
Fs, in all octaves, throughout the piece.

You may remember from the earlier article
that it's necessary to sharpen the Fs to obtain
the arrangement of musical intervals for B
Major. The key signature of one sharp
achieves this, and it's known as the key
signature of B Major. So if you're transcrib-
ing a piece that has some sharps or flats just to
the right of the clefs, remember to modify all
the Fs or Cs, or whatever, for the whole piece,
and use the corrected pitch number.

Fig. 4 shows the first few notes of Pop Goes
the Weasel in the key of F Major, that is with a
key signature of one flat. The pitch numbers
are shown: notice that the fourth note is B flat,
with a pitch number of 23 on the general
scale. This is where your ruler comes in again.
If your piece of music contains an F sharp,
instead of writing the pitch number for F next
to the F mark on your scale, you should write
the number for F sharp.

By doing this for any sharps or flats in the
key signature, sharps and flats become just as
easy to transcribe as natural notes.

You should be careful, though: sometimes
you may come across accidental sharps, flats
or naturals—these have priority over a key
signature.

A MATTER OF TIMING
Once you've worked out the pitch of each
note, the next thing is to work out its duration,
or how long it sounds for. You'll also have to

Spectrum Commodore 	Vic 	Acorn 	Dragon/
General 	 High 	Low 	 Tandy
scale 	 byte 	byte

1 	— 12 	8 	97 	192 	5 	C
2 	— 11 	8 	225 	197 	9 	C +
3 	— 10 	9 	104 	200 	13 	D
4 	— 9 	9 	247 	203 	17 	D +
5 	— 8 	10 	143 	206 	21 	E
6 	— 7 	11 	48 	208 	25 	F
7 	—6 	11 	218 	211 	29 	F+
8 	— 5 	12 	143 	214 	33 	G
9 	— 4 	13 	78 	216 	37 	G +

10 	— 3 	14 	24 	218 	41 	A
11 	— 2 	14 	239 	220 	45 	A +
12 	— 1 	15 	210 	222 	49 	B
13 	 0 	16 	195 	224 	53 	C
14 	 1 	17 	195 	226 	57 	C +
15 	 2 	18 	209 	227 	61 	D
16 	3 	19 	239 	229 	65 	D +
17 	4 	21 	31 	231 	69 	E
18 	5 	22 	96 	232 	73 	F
19 	6 	23 	181 	233 	77 	F +
20 	7 	25 	30 	234 	81 	G
21 	 8 	26 	156 	235 	85 	G +
22 	9 	28 	49 	236 	89 	A
23 	10 	29 	223 	237 	93 	A +
24 	11 	31 	165 	238 	97 	B
25 	12 	33 	135 	239 	101 	C
26 	13 	35 	134 	240 	105 	C +
27 	14 	37 	162 	N/A 	109 	D
28 	15 	39 	223 	,, 	113 	D +
29 	16 	42 	62)3 	 117 	E
30 	17 	44 	193 	5) 	 121 	F
31 	18 	47 	107 	15 	 125 	F +
32 	19 	50 	60 	,, 	129 	G
33 	20 	53 	57 	5) 	 133 	G +
34 	21 	56 	99 	,, 	137 	A
35 	22 	59 	190 	,, 	141 	A +
36 	23 	63 	75 	,, 	145 	B
37 	24 	67 	15 	31 	 149 	C

staves in the diagram to prevent it from
becoming too cluttered. A sharpened note is
notated on a staff with its note symbol
preceded by a 'sharp' sign, (which is like the
computer 'hash' character); a flattened note
appears on the staff preceded by a 'flat' sign,
(which is like a lower case t').

Fig. 2 shows how the first few notes from
middle C, including sharps and flats, are
shown on the upper staff. Notice that while C
sharp and D flat share the same pitch number
and the same black key, they appear at
different heights on the staff—since one is a C
that has been raised, and the other is a D that
has been lowered.

Individual notes in a piece may be shar-
pened or flattened, using the appropriate
symbols immediately before the notes to be

altered. A sharp or flat sign used like this is
known as an accidental. Its effect lasts until
the end of the bar it's used in, unless its effect
is cancelled before this point. There's a third
symbol, called a natural, which cancels a
sharp or flat and restores the note to its un-
sharpened and un-flattened state. Fig. 3
shows the first few notes of Oh, I Do Like To
Be Beside The Seaside, including an 'E'
sharpened by an accidental and naturalized a
couple of notes later.

KEY SIGNATURES
Where the scale in which a piece is played
contains a sharp or flat note, this note needs to
be used instead of the natural every time. To
signify that it is always a sharp or flat, the
appropriate sign is marked at the beginning of

note down the duration of rest symbols which
indicate gaps, or periods of silence between
notes. Fig. 5 is a table that shows the note
symbols and corresponding rest symbols,
with their relative durations. It is a very good
idea to use relative durations for notes and
then choose a tempo which defines their
actual durations at a later stage—that way,
you can quickly and easily experiment to find
the tempo which sounds best. You can see
how this works in practise from the program
further on in this article.

Both American and English names for the
symbols are given: American names are more
logical, though they will be less familiar to
British readers. Generally, the stems on the
notes may point upwards or downwards,
whichever direction looks neater.

The two longest rest symbols are little
rectangular blocks which lie above or below
the middle line of the staff. Following a note
or a rest by a dot multiplies its duration by
one and a half; a doubly-dotted note has a
duration one-and-three-quarters the duration
of the undotted note.

The clef at the beginning of a piece of
music is followed by the key signature, if one
is present, then by the time signature. This
consists of two figures placed one above the
other. Essentially, the upper figure shows
how many beats or pulses there are in each
bar, and the lower figure shows the duration
of each of these beats. So 4/4 indicates that
there are 4 crochet beats per bar. Again, you
need not fully understand the significance of
this if you are just transcribing sheet music
into DATA tatements for the music programs,
although you might like to use it as a guideline
for choosing the tempo.

TRANSCRIBING A SIMPLE TUNE
You can now begin to transcribe a piece of
written music into the numbers or letters that
your computer uses to play the tune—both
for pitch and duration.

Fig. 6 shows the rhyme, Three Blind Mice,
written on a musical staff, along with the
numbers and letters which represent the

general pitch. To find the actual pitch num-
bers for each computer you can look at the
table given earlier in the article. It also shows
the relative duration values.

There are several points here about the way
the music is written. Firstly, where three
`quavers' (the table shows what the notes are
called), occur together, as in bars 9 and 11, for
example, their stems have been joined tog-
ether. Small groups of two, three, or four
quavers and semi-quavers are often joined
like this, to make it easier to read the music.
But apart from that, the notes are exactly the
same—the joins do not change the pitch or
duration of the notes.

In bar 8, there is a similar join—but this
time it does change the notes a bit. The join
here is between just two notes and is a curved
line instead of a straight one. What it means is
that the notes should be joined together to
sound like one, longer, note. The join is
known as a tie. You can have ties joining any
number of notes together. To convert them
into computer data, you should add up the
individual durations of the notes to give one
long note.

PROGRAM DATA
The pitch and duration numbers you've
worked out for the tune are put into DATA
statements at the end of the program from
where they are READ and interpreted as the
program runs. The DATA for Three Blind Mice
has been added to the programs in this way.
There is enough DATA in each statement for
two bars except on the Dragon and Tandy.
Some convention of this type is sensible, as it
lets you find the DATA for a given bar easily.

The total duration of each bar should be
the same, 12 units in the example used. So, if
you transcribe a piece of music and the
rhythm doesn't sound right, check that each
bar contains the same number of duration
units, and correct any errors if you find them.
The screen-editing facilities of each computer
allow you to duplicate DATA statements con-
taining bars that are repeated, which can save
a lot of time.

TEMPO
The duration values give the relative duration
of the notes, but they don't dictate its tempo,
or absolute speed. When you RUN the
program, you will be asked to provide a tempo
number which controls this: a small number
will make the tune play fast, a higher number
makes it play slower. In fact, the number you
INPUT is a sort of inverse tempo, since in
music a large tempo number means a fast
speed, not a slow one. An inverse tempo is
used here as it is easier to program.

An important point about the way the
computers operate applies to all the
programs. Suppose one bar contains a single,
long note, and another contains many short
notes. In the second case the lines that READ
and test the DATA will be executed more times
than in the first case, and so the speed at
which they are played will fall a little because
of the extra operating time. Therefore the
speed of execution of these lines should be as
high as possible. This is why there is no test
for the end of DATA.

A convention could be used in which a
negative number, say, signalled the end of the
tune; this would require an extra test in these
crucial lines and would make the tune slightly
uneven. So the program is just allowed to run
out of data, when it stops with an error
message, something that is not normally
considered good practice.

Of course, when you use a tune in your own
programs, you can use a FOR ... NEXT loop to
READ the exact number of pieces of DATA,
which would prevent the error occurring.

Here are the programs to play the tune
Three Blind Mice:

a
10 INPUT "ENTER TEMPO (1 — 50)",t: LET

t=t/100
20 IF t < 0.001 OR t>0.5 THEN GOTO 10
30 FOR n = 0 TO 1 STEP 0: READ a,b: BEEP

a't,b: NEXT n
100 DATA 6,4,6,2,12,0,6,4,6,2,12,0
110 DATA 6,7,4,5,2,5,12,4,6,7,4,5,2,5,10,4,2,7
120 DATA 4,12,2,12,2,11,2,9,2,11
130 DATA 4,12,2,7,4,7,2,7
140 DATA 2,12,2,12,2,12,2,11,2,9,2,11
150 DATA 4,12,2,7,4,7,2,7
160 DATA 2,12,2,12,2,12,2,11,2,9,2,11
170 DATA 4,12,2,7,4,7,2,5
180 DATA 6,4,6,2,12,0

When you type in and RUN this program, you
will be asked to INPUT a number between 1
and 50 for the tempo. As with the other
programs, the value that you enter here is not
actually the tempo, but the inverse tempo.
What the computer does is to multiply the
relative values for duration of each note by
this tempo value—so, a small number gives
you a fast speed, while a large number gives
you a slow speed.

The reason for using inverse tempo is that
it makes the programs simpler, and shorter.
There is an IF ... THEN check to make sure
you INPUT a reasonable value, in Line 20.

Line 30 then actually plays the tune. Inside
a FOR ... NEXT loop, it READS two pieces of
DATA for each note—the computer's pitch
value, and a relative duration value. Then, it

BEEPS before READing the next items of DATA.
When you use the routine for your own

tunes, you can change the numbers in the FOR
... NEXT loop so that it READS the correct
number of items of DATA. At the moment, the
FOR ... NEXT loop has a STEP of 0 so it never
reaches the end of the loop and only stops
when the DATA has run out, with an E out of
DATA message.

10 INPUT "TEMPO(30-50)";TP
20 GOSUB 3000
30 GOSUB 4000
100 READ P,D
110 IF P=0 THEN 130
120 POKE SE,EN: POKE SL,HQ%(P): POKE

SI,LQ%(P)
130 FOR DL=1 TO D'TP: NEXT
140 POKE SE,EF
150 FOR DL=1 TO D'TP/3: NEXT
160 GOTO 100
3000 SI = 54272
3010 SL=SI +1: SE=SI + 4: EN = 33:

EF =32
3020 FOR I =SI TO SI +28: POKE 1,0:NEXT I
3030 POKE SI +5,16'1 +9
3040 POKE SI +6,1615+ 9

3050 POKE SI +24,4
3060 RETURN
4000 DIM HQ%(37), LQ%(37)
4010 TMP=2227:P2=21(1/12)
4020 FOR 1=1 TO 37
4030 LQ%(I)=TMP-256'INT(TMP/256):

HQ%(I) =TMP/256
4040 TMP=TMP*132
4050 NEXT: RETURN
10000 DATA 17,6,15,6,13,12
10002 DATA 17,6,15,6,13,12
10004 DATA 20,6,18,4,18,2,17,12
10006 DATA 20,6,18,4,18,2,17,10,20,2
10008 DATA 25,4,25,2,24,2,22,2,24,2,25,

4,20,2,20,4,20,2
10010 DATA 25,2,25,2,25,2,24,2,22,2,24,

2,25,4,20,2,20,2,20,2,20,2
10012 DATA 25,4,25,2,24,2,22,2,24,2,25,

2,20,2,20,2,20,4,18,2
10014 DATA 17,6,15,6,13,12

This program uses pitch values from 1 to 37,
and then changes them into SID chip values
in the subroutines starting at Lines 3000 and
4000. You could, if you wished, just use the
correct DATA to start with and then miss out
the calculation. This is, however, slightly
more difficult to work out.

Line 10 lets you INPUT the tempo value:
values of 30-50 are about right. The subrout-
ine at 3000 initializes the SID chip, and the
one at 4000 sets up arrays HQ% and LQ% for
the 37 pitches, and fills them with the values
for the high and low bytes which have to be
PO KEd into the SID chip. The loop from 100
to 160 is responsible for READing and inter-
preting the DATA statements containing the
music information at 10000 onwards.

Line 100 reads the current pair of pitch
and duration values into variables P and D.
Line 120 switches on the envelope for voice 1,
and POKES the values for the specified pitch
into the SID chip (variables SE, EN, SL and SI
are used for speed: they are initialized in the
subroutine at 3000). Line 110 tests the pitch
and bypasses this line if the pitch is 0,
signifying the note is a rest.

Line 130 is a delay loop which gives the
length of the note: the delay depends on the
tempo and the duration value. Line 140
switches the envelope off, and Line 150 is
another delay loop to give the 'breaks' be-
tween notes. The 'off ' time given is a third of
the length of the 'on' time. If the first value in
this FOR ... NEXT loop is altered, the ratio of
`on' to 'off' time can be altered, making the
notes more separate if the off time is length-
ened or flow together more if the off time is
shortened.

The upper limit of both FOR . . . NEXT loops
should be derived from D'TP to ensure that
both the 'on' and `off' times are related to the
tempo and the duration parameter. The at-
tack, decay, sustain and release values set in
Lines 3030 and 3040 also affect the 'shape' of
the notes which controls the quality of the
sound.

CKI
10 INPUT "TEMPO(30 —60)"; TP
20 GOSUB 4000
30 RV =36874:K0 = 0:K1=1
40 POKE 36878,4
100 READ P,D

5
Note symbol 	European name 	American name 	Rest symbol 	Relative duration 	Duration if dotted

CI■ 	 Semibreve 	 Whole note 	 70- 	 16 	 24

J Minim 	 Half note 	 AM_ 	 8 	 12

dJ 	
Crotchet 	 Quarter note 	 4 	 6

47 	 2 	 3
iii 	

Quaver 	 Eighth note

iii 	
Semiquaver 	Sixteenth note 	 1 	 1.5

110 IF P= KO THEN 160
120 RG = RV
130 IF P>13 THEN P=P-12:

RG =RG + K1
140 IF P>13 THEN P=P-12:

RG =RG + K1
150 POKE RG,TA%(P)
160 FOR I= KO TO TrD:NEXT
170 POKE RG,K0
180 FOR I = KO TO TP/3*D:NEXT
190 GOTO 100
4000 DIM TA%(37)
4011 FOR 1=1 TO 13: READ

V:TA%(I) =255— V: NEXT
4020 RETURN
4030 DATA 90,85,80,76,72,67,64,60,57,

54,51,48,45
10000 DATA 17,6,15,6,13,12
10002 DATA 17,6,15,6,13,12
10004 DATA 20,6,18,4,18,2,17,12
10006 DATA 20,6,18,4,18,2,17,10,20,2
10008 DATA 25,4,25,2,24,2,22,2,24,2,25,

4,20,2,20,4,20,2

10010 DATA 25,2,25,2,25,2,24,2,22,2,24,
2,25,4,20,2,20,2,20,2,20,2

10012 DATA 25,4,25,2,24,2,22,2,24,2,25,
2,20,2,20,2,20,4,18,2

10014 DATA 17,6,15,6,13,12

As in the Commodore 64 program, the first
line reads in the tempo value, which should be
between 30-60 for the tune given. The
subroutine at 4000 initializes the array TA% to
hold values to be POKEd into the VIC chip's
sound registers.

The loop from 100 to 190 is responsible
for READing and interpreting the DATA state-
ments containing the music information at
10000 onwards. Line 100 READS the curren
pitch and duration values into variables P an
D. Line 110 tests for a rest, and bypasse
Lines 120-150, which handle the VIC chip
values, if it detects one.

To obtain the 3 octave range, all three
sound voices of the VIC chip are used: the
same number POKEd into the three registers ,

produces three different notes, each an octave
above or below the others. So the three
octaves of the range are each handled by a
different VIC sound voice. This may seem
awkward, but it enables you to produce better
tuning than is otherwise possible.

The three pitch numbers in the range 1 to
37 are reduced to numbers in the range 1 to
13, and the correct pitch value is then taken
from the array TA% and POKEd into one of the
three sound-controlling registers. Lines
120-140 transform the pitch numbers to fall
within this range and also select the correct
sound-controlling register, whose address is
left in the variable RE. (The register for the
lowest octave is at 36874, the middle one is at
36875 and the upper one is at 36876). Line
160 contains a delay loop governing the note's
`on' time, and Line 180 is a loop controlling
its `off' time; the logic is similar to that of the
Commodore 64 program above. Line 150
switches the note on by poking the correct
value into the chosen VIC sound register, and
Line 170 switches it off, after the first delay
loop, by setting this register to 0.

The variables KO, Kl, RV, RG are used to
shorten the time taken to process the main
loop, so as to achieve as regular a rhythm as
possible.

10 I N PUT"TEM PO (20-30)",TP
20 TP =TP/20
90 ENVELOPE1,1,0,0,0,0,0,0,30,

— 2,0, — 5,100,50
95 ENVELOPE2,1,0,0,0,0,0,0, — 127,

—127,-127,-127,0,0
100 READ P,D
110 IF D*TP > 254 THEN D =254/TP
120 IF P=0 THEN SOUND1,2,0,

D'TP:GOTO 100
150 SOUND1,1,49+ P*4,0*TP

200 GOTO 100
10000 DATA 17,6,15,6,13,12
10002 DATA 17,6,15,6,13,12
10004 DATA 20,6,18,4,18,2,17,12
10006 DATA 20,6,18,4,18,2,17,10,20,2
10008 DATA 25,4,25,2,24,2,22,2,24,2,25,4,

20,2,20,4,20,2
10010 DATA 25,2,25,2,25,2,24,2,22,2,24,2,

25,4,20,2,20,2,20,2,20,2
10012 DATA 25,4,25,2,24,2,22,2,24,2,25,2,

20,2,20,2,20,4,18,2
10014 DATA 17,6,15,6,13,12

The first line lets you INPUT the tempo; a
value 20 to 30 is about right for the tune given.

Line 90 sets up ENVELOPE number 1,
which the program uses for playing notes; it
has an attack segment (attack rate is 30), a
decay segment (decay rate is — 2), a sustain
segment (where the volume remains steady)
and a final release segment (release rate is
—5). The peak volume is 100 units, and the
sustain volume is 50 units. These values are
provided by the last 6 parameters of the
ENVELOPE command. Don't worry if you
don't understand how the ENVELOPE com-
mand works, there'll be more on this in a later
article.

Line 95 sets up ENVELOPE 2, which is used
when the program is instructed to 'play' a
rest. It's a kind of 'null' envelope, which
doesn't actually let any sound through. The
reason the program uses an ENVELOPE and a
SOUND command to play a rest is so that the
timing, whether of notes or of rests, is all
taken care of by the system of queuing notes.

The rate at which notes are played is not
governed by the execution time of the
programs, but by the computer's internal
queuing system. If you tried to produce rests
with delay loops, the queuing system would
handle all the notes and feed them out to the
sound chip, but the delay loops would occur
out of sequence and would effectively be lost.
So the program uses a SOUND command both
for notes which sound and for rests and the
two kinds of event are then handled similarly

by the queuing system.
Line 100 reads in the current pitch and

duration pair. Line 110 tests for a rest. If one
is called for, it executes a rest of the required
duration (D times tempo) using the 'null'
envelope so no sound is made, and returns to
Line 100. Line 150 plays an ordinary note.
The expression 53 + (P —1)'4 converts the
pitch numbers 1-37 into the form expected by
the SOUND command: 1 is converted into 53,
2 into 57, 3 into 61, and so on.

If you prefer, you need not perform this
calculation on the DATA—by using the con-
version table of pitch values earlier in this
article, you could use the correct DATA to start
with, instead.

MIA
10 INPUT"TEMPO (1 — 50)1=1";TP
20 IF TP<1 THEN 10
30 READ A$,D
40 PLAY"T" + STR$(1NT(1 + 255/

(TM))) + "03" +A$
50 GOTO 30
1000 DATA E,6,D,6,C,12
1010 DATA E,6,D,6,C,12
1020 DATA G,6,F,4,F,2,E,12
1030 DATA G,6, F,4, F,2, E,12
1040 DATA 04C,4,04C,2,B,2,A,2,B,2,

04C,4,G,2,G,4,G,2
1050 DATA 04C,2,04C,2,04C,2,B,2,A,

2,B,2,04C,2,G,2,G,2,G,2,G,2
1060 DATA 04C,4,04C,2,B,2,A,2,B,2

04C,2,G,2,G,2,G,4,F,2
1070 DATA E,12,D,12,C,12

The Dragon and Tandy program begins by
letting you INPUT a value which the program
uses to determine the speed of the tune, its
tempo. Line 20 checks to see whether the
value you INPUT is less than 1, which is too
small, and if it is, the computer returns to
Line 10 for you to enter a new value.

Line 30 READS two variables—one for the
pitch (the letter) and one for the duration of
the note. To enter sharps add a plus or hash
sign, and for flats a minus sign, after the note.

Then, in Line 40, the computer plays the
note, using the PLAY command. The T, in
quotes, indicates that the next string in the
line is a number between 1 and 255 (not 155 as
indicated in the Dragon manual), which sets
the actual tempo of the tune. The value you
INPUT at the beginning of the program is
inverted, and then converted into a string by
the function STR$.

The "03" after this in the same line sets the
computer to octave 3, while the last part of the
line (+ A$) sets the pitch of the note.

Once the computer has PLAYed the note, it
goes back to Line 30, to READ the next note's
DATA—unless, of course, the tune is over, in
which case there will be no more DATA, and so
the computer stops with an error message, as
explained earlier in the article.

Here we look at how you can make
small improvements to standard sort
routines to increase their speed. And
give details of one routine that beats
the lot hands down!

All techniques used for sorting data into a
predefined order come to grief because of
time or memory restrictions. Some sort of
compromise has to be established so that the
most efficient sorting method can be used for
a particular application. No single sorting
method is ideal for every application.

We've already looked at some of the
popular sorting techniques and here are a few
more, some of which add only minor refine-
ments but nevertheless return much better
sorting speeds.

DELAYED REPLACEMENT
The exchange (bubble) sort has one signifi-
cant handicap when more than a few items are
to be sorted—it is extremely slow. But a very
small improvement can be made to the stan-
dard algorithm to virtually halve the sorting
time.

A good proportion of the time taken by the
exchange sort is spent, on each pass, finding
the highest incorrectly placed value and then
comparing it in turn with each number next in
line until a higher one is found. Exchanges
take place many, many times—there's a lot of
time-consuming shuffling along the line.

The delayed replacement sort works in a
similar fashion but differs in that no exchange
actually occurs until a pass has been com-
pleted. Let's look at an example, using a
similar sequence of numbers to those used to
illustrate the workings of the bubble sort on
page 394:

top 	 bottom
67 	35 	72 	19 	47 	38 	11 	86

The first value is 67. This is compared but not
exchanged with 35 (as it would be in a
standard bubble sort), nor is it with the first
higher number it gets to-72. The latter is
taken as the new high number and compared
with 19, 47, 38 and 11 before resigning to the
highest value in the sequence, 86. This just
happens to be last and so remains in place.
The list below shows the procedure step by
step. Items enclosed are those identified as the
highest incorrectly positioned value in each
pass. They are subsequently exchanged with
the value which occupies their slot. Thus, in

the second row, value 72 is identified as the
highest incorrectly placed value, exchanging
with 11 by the third row.

top 	 bottom
67 35 	72 	19 47 	38 	11 [86]
67 	35 [72] 19 	47 	38 [11] 86
[67] 35 	11 	19 	47 [38] 72 	86
38 	35 	11 	19 [47] 67 	72 	86
[38] 35 	11 [19] 47 	67 	72 	86
19 [35] [11] 38 	47 	67 	72 	86

[19] [11] 35 	38 	47 	67 	72 	86
11 	19 35 38 47 67 72 86

The actual number of comparisons made is
the same as with a standard bubble sort but
the number of exchanges is very much less.

Key in the following program—a large part
of it is exactly the same as appeared on page
395. Either make amendments to your exist-
ing program, or add Lines 4000 onwards to a
recording of the core program.

Be careful not to confuse capital I with the
number 1 when keying in these programs!
Acorn, Dragon and Tandy users should note
the amendments to the core program—these
follow the module listing.

You might also like to add the timing
routine at Line 90 (page 395) to make
comparisons.

10 POKE23658,8: LET T=0: INPUT
"NUMBER OF ITEMS D";AA: IF AA<2
THEN GOTO 10

15 DIM A(AA)
20 PRINT:PRINT "UNSORTED TABLE": PRINT
30 FOR Z=1 TO AA
40 LET A(Z) = INT(RND*100) +1
50 PRINT TAB T; A(Z);:LET T = T + 4: IF

T>30 THEN LET T=0
60 NEXT Z
70 PRINT: PRINT: PRINT "PRESS S FOR

SORT"
80 LET K$=1NKEY$: IF K$ < >"S" THEN

GOTO 80
90 GOSUB 4000
100 PRINT: PRINT "SORTED TABLE": PRINT
110 LET T=0: FOR Z=1 TO AA
120 PRINT TAB T;A(Z);: LET T=T+4: IF

T>30 THEN LET T=0

130 NEXT Z
140 GOTO 10
3999 REM DELAYED REPLACEMENT SORT
4000 FOR 1=1 TO AA-1
4010 LET K=1
4020 FOR J=1+1 TO AA
4030 IF A(J)<A(K) THEN LET K=J
4040 NEXT J
4050 IF I< >K THEN LET T=A(K): LET

A(K) =A(I): LET A(I) = T
4060 NEXT I
4070 RETURN

rill IKE EI 	Itill
10 PRINT: PRINT: INPUT "NUMBER OF

ITEMS"; AA: IF AA<2 THEN 10
15 DIM A(AA)
20 PRINT: PRINT "UNSORTED TABLE":PRINT
30 FOR Z=1 TO AA
40 A(Z)=INT(RND(1)*1 00) +1
50 PRINT A(Z),
60 NEXT Z
70 PRINT: PRINT: PRINT "PRESS S FOR

SORT"
80 GET K$: IF K$ < >"S" THEN 80
90 GOSUB 4000
100 PRINT: PRINT: PRINT "SORTED TABLE"
110 PRINT: FOR Z=1 TO AA
120 PRINT A(Z),
130 NEXT Z
140 RUN
3999 REM DELAYED REPLACEMENT SORT
4000 FOR 1=1 TO AA-1
4010 K=1
4020 FOR J=1+1 TO M
4030 IF A(J) < A(K) THEN K=J
4040 NEXT J
4050 IF I< >K THEN T=A(K): A(K) =A(I):

A(I) =T
4060 NEXT I
4070 RETURN

El
To make the INPUT routines work, use a
comma in place of a semicolon after the prompt
in Line 10 and change Lines 40 and 80:

10 INPUT 'NUMBER OF ITEMS",AA: IF
AA<2 THEN 10

40 A(Z) = RND(100)
80 K$ = GET$: IF K$ < >"S"THEN80

DELAYED REPLACEMENT SORT
-A REFINED BUBBLE SORT

THE SCATTER SORT-
COPYING WHAT YOU MIGHT

DO BY HAND

QUICK AND SIMPLE-THE
CARD PLAYER'S OR

INSERTION SORT
THE QUICKSORT-FASTEST OF

THE LOT, BUT AT A PRICE

40 A(Z) = RND(100)
50 PRINT A(Z);
80 K$=INKEY$: IF K$< >"S" THEN 80
120 PRINT A(Z);

THE SCATTER SORT
The scatter sort is another of the routines
which makes use of the speed of the exchange
(bubble) sort when it is used for partially
ordered lists. A subsidiary array is created for
a preliminary 'rough' sort. Target first and
last values are established initially and further
items are added to the list only once this has
been sorted.

Although this is a relatively speedy rout-
ine, the use of a separate storage array is a
drain on available memory.

Note that you have to specify the max-
imum value. This is done in Line 5010 and is
taken to be 100 with this example as that is the
random number limit specified in Line 40.

90 GOSUB 5000
4999 REM SCATTER SORT
5000 DIM B(1.2*AA+ 30)
5010 FOR J=1 TO AA: LET

K=INT(A(J)*AA/100) +1
5020 IF B(K) = 0 THEN LET B(K) = A(J):

NEXT J: GOTO 5040
5030 LET K= K +1: GOTO 5020
5040 LET J=1: FOR K=1 TO 1.2 .AA + 30:

IF B(K) =0 THEN NEXT K: GOTO 5060
5050 LET A(J)-=-B(K): LET J =J +1: NEXT K
5060 FOR J =AA-1 TO 1 STEP —1: LET

F= —1
5070 FOR K=1 TO J
5080 IF A(K) >A(K + 1) THEN LET F=0: LET

T=A(K): LET A(K)=A(K + 1): LET
A(K+1)=T

5090 NEXT K: IF F=0 THEN NEXT J:RETURN

90 GOSU8 5000
4999 REM — SCATTER SORT ***
5000 DIM B(1.2*AA + 30)
5010 FOR J=1 TO AA: K = INT

(A(J)'AA/100) +1
5020 IF B(K) = 0 THEN B(K) =A(J): NEXT:

GOTO 5040
5030 K= K +1: GOTO 5020
5040 J=1: FOR K=1 TO 1.2 .AA + 30: IF

B(K) =0 THEN NEXT: GOTO 5060
5050 A(J) = B(K): J=J+1: NEXT
5060 FOR J =AA-2 TO 1 STEP —1:

F= —1
5070 FOR K=1 TO J +1
5080 IF A(K) > A(K + 1) THEN F=0:

T=A(K): A(K)=A(K+1): A(K+1)=T
5090 NEXT: IF F = 0 THEN NEXT:RETURN

The value 1.2 in Line 5000 can be adjusted to
provide sufficient room for the array. The
scatter sort mimics, in some respects, how you
might sort something yourself. Everything's
laid out. The lowest and highest (start and
finish) limits are set. And then everything is
positioned according to priority.

INSERTION SORT
An improvement for many applications is the
insertion sort. Lay out these playing cards left
to right in front of you in the order shown:

Left 	 Right
9 	4 	5 	7 	2

The sort process starts from the left (or, in
other words the first number to be sorted by a
program). It looks for the first occasion when
a lower number is out of order. A quick scan of
the line shows that card 4 is out of place. So
this is repositioned—inserted—before card 9
to give the new order:

Left 	 Right
4 	9 	5 	7 	2

Cards 4 and 9 are in order but then we come to
5, 7 and 2 which are not. In each instance, the
card is picked out and inserted in its correct
position, so at each subsequent pass the order
of cards is as follows:

Left 	 Right
4 	9 	5 	7 	2
4 	5 	9 	7 	2
4 	5 	7 	9 	2
2 	4 	5 	7 	9

So you can see that there is no chopping up of
groups or ordered, pair by pair comparison as
with most other sorting methods. The sorted
cards from left to right (effectively the num-
bers that are first to last in a program)
proceed rightwards on each pass.

When you think about it, the process is not
unlike that used by a card player when
inspecting and then rearranging a hand of
cards. In fact, the insertion sort is sometimes
known as the card player's sort because of this
procedure.

In the sort routine itself (see below), the
sorted list is actually expanded downwards
until the insertion position is found. Let's
look at a slightly larger group of numbers and
take a stage where some of these have already
been sorted correctly:

Unsorted group 	Sorted group

34
47
59
87

l 02 >>>>>>>>
26 	 144
73 	 167

193

Value 102 is inserted in correct position and
the sort routine proceeds in turn through the
remaining values:

Unsorted group 	Sorted group

26 >>>>>>>>
73 	 34

193 	 47
59
87

102
144
167

And then the value 73 is inserted into the
correct position leaving only one value
unsorted:

26
34
47
59

73 >>>>>>>>
193 	 87

102
144
167

And to complete the sort:
26
34
47
59
73
87

102
144
167

193 >>>>>>>>

Add the following lines to the sorting de-
monstration program to compare the speed of
this particular sorting routine:

90 GOSUB 6000
5999 REM INSERTION SORT
6000 FOR 1=1 TO AA-1
6010 LET K=A(I +1)
6020 FOR J=1 TO 1 STEP —1
6030 IF K> =A(J) THEN GOTO 6070
6040 LET A(J +1) = A(J)
6050 NEXT J
6060 LET J =0
6070 LET A(J + 1) = K
6080 NEXT I: RETURN

90 GOSUB 6000
5999 REM "' INSERTION SORT
6000 FOR 1=1 TO AA-1
6010 K=A(I+1)
6020 FOR J=1 TO 1 STEP —1
6030 IF K> =A(J) THEN 6070
6040 A(J +1) =A(J)
6050 NEXT J
6060 J = 0
6070 A(J + 1) = K
6080 NEXT I: RETURN

The value of variable K is the next item to be
compared from the unsorted list. The outer
loop starting at Line 6000 scans the sorted list
upwards from the lowest values to find the
place where K has been inserted. Then the
routine from Lines 6020 to 6050 'expands'
the sorted list to make room for the new item.
The program continues until the entire list of
unsorted values has been scanned.

THE QUICKSORT
Fast though the insertion sort may be, it in no
way compares with what is the technique
preferred for many commercial programs: the
Quicksort. The major drawbacks of Quicksort,
though, are its programming complexity and
memory requirements—so you don't often see
it in programs specially designed for the limited
memory of home computers.

But the Quicksort is unquestionably the
fastest of the routines we've examined beyond
a simple exchange sort comparison. It's well
worth trying out! The algorithm of the Quick-
sort is fiendishly complex and impossible to
explain simply. But basically, it uses one of
two stacks and passes values to these depend-
ing on the value of that item when compared
to a separate, arbitrary value.

90 GOSUB 7000
6999 REM QUICKSORT
7000 LET K=0: LET 1=0: DIM S(AA)
7010 LET S(I +1)=1: LET S(I+2)=AA
7020 LET K= K +1
7030 IF K=0 THEN RETURN
7040 LET K = K — 1: LET I =K+ K
7050 LET A= SO +1): LET B = S(I +2)
7060 LET Z=A(A): LET U=A: LET L= B +1
7070 LET L=L-1
7080 IF L=U THEN GOTO 7150
7090 IF Z< =A(L) THEN GOTO 7070
7100 LET A(U)=A(L)
7110 LET U=U+1
7120 IF L=U THEN GOTO 7150
7130 IF Z> =A(U) THEN GOTO 7110
7140 LET A(L) =A(U): GOTO 7070
7150 LET A(U)=Z
7160 IF B—U> =2 THEN LET I = K+ K: LET

S(I +1) = U+ 1: LET S(I+2) = B: LET
K = K +1

7170 IF L—A> =2 THEN LET I = K + K: LET
S(I+1)=A: LET S(I+2)=L-1: LET
K= K +1

7180 GOTO 7030

14Z
90 GOSUB 7000
6999 REM 	QUICKSORT "'
7000 K=0: 1=0: DIM S(AA)
7010 S(I+1)=1: S(I+2)=AA
7020 K= K +1
7030 IF K=0 THEN RETURN
7040 K=K-1: 1=K+K
7050 A=S(I+1): B=S(I+2)
7060 Z =A(A): U = A: L= B + 1
7070 L= L-1
7080 IF L=U THEN 7150
7090 IF Z< =A(L) THEN 7070
7100 A(U) =A(L)
7110 U=U+1
'120 IF L=U THEN 7150
1130 IF Z> =A(U) THEN 7110
7140 A(L) =A(U):GOTO 7070
7150 A(U)=Z
7160 IF B—U> =2 THEN I=K+K:

5(1+1)=U+1:S(1+2)=B: K=K+1
7170 IF L—A> =2 THEN I=K+K:

S(I+1)=A: S(I+2)=L-1: K=K+1
7180 GOTO 7030

You too can share business and
hobby information by linking your
home computer by phone to any one
of an ever-increasing number of
computer-run noticeboards

If your phone bill can stand it, you can dial up
the world through your computer and
modem. On a more homely level, you can link
up to fellow enthusiasts and join one of the
booming areas of home computing—
communication via bulletin boards.

A bulletin board is, at its simplest, just
what it sounds like—the electronic equivalent
of a club's notice board on which anyone can
pin notices to be read by other members of the
club. All you need to read what's on these
bulletin boards and to write your own notices
is a modem (see pages 618 to 621), some
relatively simple terminal software, a tele-
phone and, of course, the telephone number
of a bulletin board. Access to bulletin boards
is now relatively cheap—often the cost of a
local phone call alone—and many modems are
coming onto the market at very attractive
prices.

Although bulletin boards, or `BBs' as they
are commonly known, have been around for a
couple of years—especially in the USA—it's
only recently that they have become popular
in the UK. But there's every indication that
BBs are set to mushroom. Already they are
growing at the rate of several a month.

UP LO ADING/DOVVNLOADING

Computer owners with something in
common—the same model of computer, for
instance, or simply an interest in computer
communications—can communicate with
each other over long distances. BBs are not
just used as simple notice boards. It is
possible to upload and download software via
a bulletin board. Many people are excited
about the prospects for making superficially
incompatible computers much more compat-
ible by using these methods.

The principle behind this particular idea is
that all characters are converted to their
ASCII codes which are, of course, standard to
the majority of computers. These in turn are
converted into binary analogue signals.

In rather the same way that the dots and
dashes of Morse Code represent the same
characters in any language so the 'modulated'
signals from a computer represent the same
characters as far as just about every other
computer is concerned. In the USA they are

already talking about network software and
hardware packages which will enable ma-
chines using the same operating system to
upload and download software directly—no
matter how different the machines.

The empty bulletin board upon which
notices are pinned is the memory of a com-
puter or, more usually, the computer's
storage system. Obviously the storage system
for a BB of any size must be at least a floppy
disk drive. Anything smaller would simply be
too small and would also probably be much
too slow.

Anyone who has the correct equipment and
software, knows the telephone number and, in
some cases, the right password can read
what's on the bulletin board and can write
their own notices. What those who use a
bulletin board are doing is reading from or
writing to another computer's memory or
storage system.

Most of the BBs springing up around the
country have been set up by volunteers. In the
tradition of grassroots computing, BBs are
usually free—although there are those who
charge a subscription. One of the problems, of
course, is keeping non-members out. The
usual security is a password, but if the huge
mainframe computers of the US Defence
Department cannot keep 'hackers' out then
what chance has a small club of keeping out
unwanted intruders. In fact, most BBs wel-
come intruders!

STANDARDS
Distance is no object, of course. One com-
puter can communicate with another com-
puter anywhere else in the world as long as
they are using compatible modems. With the
right equipment it is possible to gain access to
more than a thousand BBs in the USA and
Canada. Unfortunately you will need special
equipment to get through to North America,
since manufacturers do not conform to the
European CCITT standard for modems.

CCITT is usually known in English as the
Consultative Committee on International
Telegraphy and Telephony but the real name
of this United Nations agency is the Comite
Consultatif International Telephonique et
Telegraphique. The organization sets stan-

dards for international communications. In
many spheres, such as computers, this effec-
tively means that standards are set for inter-
nal, domestic communications, too. This is
welcome news for computer owners who
consequently have the opportunity of com-
municating with other owners throughout
Europe. In the UK, modems must also be

USES OF BULLETIN BOARDS
ABILITY TO UPLOAD AND

DOWNLOAD
COMMON STANDARDS

BITS AND BAUD SPEEDS

FULL OR HALF DUPLEX
-WHICH WILL SUIT YOU?

ACCESS BY MENUS
EXPLORING THE NETWORK

TERMINOLOGY USED

passed by the British Approvals Board for
Telecommunications (BABT).

TRANSMISSION SPEED
International and national agencies still leave
plenty of room for manoeuvre on the part of
manufacturers. Modems can operate at differ-
ent 'speeds', for example. The vast majority

of BBs operate at 300 baud which means that
they send and receive data at 300 bits per
second—or one bit every 3.3 milliseconds.
Most commercial systems such as Prestel or
Micronet send and receive information at
1200/75 baud. This means that they send
data at 1200 bits per second, but that the user
can only transmit data at 75 bits per second.

Baud rates go up in steps: from 300 to 600,
from 600 to 1200, 1200 to 2400 and so on,
doubling every step up to 9600 baud.

On most computers, according to the
CCITT standards for the RS232 interface,
the voltages used to represent 0's and 1's are
+ 12v and — 12v. But some computers, such
as the Commodore 64, for instance, use + 5v

and 0 v and a low cost converter may be
necessary.

BITS AND BAUD RATES
Each byte is usually made up of a start bit,
data bits, a parity bit for error checking and
stop bit(s). Although there will be a natural
logical sequence for the bits, it does not really
matter how they are arranged—or even how
many there are—as long as both the trans-
mitting and receiving computers 'know' and
`agree' beforehand. Both computers must also
be able to receive data at the speed at which it
is being transmitted and to transmit data at
the baud rate appropriate to the receiver.

There is a good reason why the BB baud
rate should be that much slower than the baud
rate used by the big commercial networks.
BBs' resources are obviously much less than
those of a big network company, and the
equipment that's used would not seem out of
place in the home of any micro owner. The
slower the baud rate, the less chance there is
of picking up unwanted signals. At fast baud
rates, the slightest crackle could be mistaken
for a bit. At slower baud rates, the pulse
which indicates each bit can last much longer
and can be much more well defined. This cuts
down the chances of errors due to noise and
reduces the need for sophisticated equipment.

Noise can sometimes be a big problem, and
many are looking forward to the day when
fibre optic cables become generally available.
Fibre optics offer very 'clean' and very fast
channels of communication.

DUPLEX
It's not just the baud rate that varies from one
modem to another. A modem can be either
full duplex or half duplex. Full duplex means
that a modem can send and receive data at the
same time, while half duplex means that a
modem can only send or transmit at any one
time—never both.

Half duplex is fine most of the time for
home users, and may even be suitable for
some business users. Unfortunately, mistakes
can be time consuming and irritating. If you
have asked the host computer to send you
something, once it starts to transmit the data
you must wait until the end of the trans-
mission before being able to send a message to
the host computer to say you have made a
mistake! This can be very inconvenient for a
business user.

BBs have been made possible by increasing
sophistication in communications hardware
and software. The big step forward as far as
BBs are concerned was the introduction of
auto-answering facilities on modems. Calls
made to the bulletin board number are auto-

When you're buying a modem, be certain
that it is in fact suitable for use with your
computer. Additional interfaces may be
required, as may be leads and terminal
software. Remember it is illegal to connect
a modem to the public telephone network
if it has not received official approval, an
often long drawn out process which forces
some manufacturers to anticipate approval
but otherwise does not restrict sales. 'Ap-
proval pending' or similar such wording is
a tell-tale sign that the unit is, at present,
illegal to use.

Bear in mind that no model made up from
a kit of parts will ever receive the necessary
official approval.

If you're an absolute newcomer, seek
advice from a knowledgeable dealer or
approach the modem manufacturer direct.
Also check with fellow enthusiasts what
they are using. Try to avoid the same
teething problems they had when setting
up. The biggest of these teething problems
will be actually getting used to the proce-
dures involved in using a modem and
establishing contact.

matically answered and a line is then opened
up between the two computers.

Terminal software falls into two
categories—dumb and smart. Smart software
will enable you to download software and save
messages from other computers—essential if
you want to operate a bulletin board—while
dumb software lets you communicate with a
BB but does not enable you to save software
or messages from the BB.

The central function of the program that
enables your micro to act as a terminal is to
send any characters that are typed on the
keyboard to the appropriate port on the
computer and so send data received through
the same port to the screen. Each computer is
told, by this communications program, how
to send data out and what to do with data
coming in.

This sort of software is relatively simple,
and even the sort of software that enables such
functions as auto-answer is not particularly
complex. In this instance, the program would
simply look for an incoming message in the
same way that other programs might look for
a keypress.

ACCESS BY MENUS
Many people are puzzled to discover that one
model of computer can apparently under-
stand another completely different model.
After all, computer manufacturers are const-
antly being criticized for failing to adopt
common standards that would make commu-
nicating between computers easier. It some-
times seems, for instance, that one computer
is able to send the other computer commands.
This is not really so. Most BBs enable the user
to find what they are looking for by using
menus.

Within these menus, you are asked to
choose an option by pressing the appropriate
key or typing in the appropriate word. Super-
ficially, this sometimes looks like one com-
puter sending a command to another. But all
that's happening is that the program in the
host computer or in the modem looks for the
characters sent by the guest computer. The
ASCII code is used to transmit the characters
so each one needs no more than seven bits.

It should be remembered that you are
communicating with just one central com-
puter. It's really this host computer that does
most of the work.

EXPLORING BULLETIN BOARDS
The first step towards exploring the new and
ever growing world of BBs is the purchase of a
modem. The vast majority of BBs operate at
300 baud and most in Europe adhere to the
CCITT standards. Access to the many BBs in
North America is only possible through a
special Bell standard modem. Prestel and
other commercial networks operate on a baud
rate of 1200/75, but there are switchable
modems which offer a number of baud rates.

The second step will be to purchase or
write the terminal software necessary for your
computer to send and receive ASCII codes
through a serial interface. The software usu-
ally comes with the modem, but be careful
over your choice of dumb or smart software.

The third step is to find out the telephone
numbers and technical details of BBs. These
are printed in many of the computer maga-
zines. BBs often show the telephone numbers
of other BBs and there is an organization
called AFPAS—Association of Free Public
Access Systems.

After running the terminal software you
will be able to call up and communicate with a
bulletin board. If your modem has an auto-
dial facility you will probably be connected
automatically. If not you must dial the num-
ber yourself, listen for the carrier tone and
then place the handset in the rubber cups on
the modem in the case of an acoustic coupler

or, in the case of a direct-connect modem,
flick the appropriate switch.

Note that some BBs require you to dial the
number, let the phone ring once and then
redial. This is so that the appropriate connec-
tion can be made.

Most BBs operate in a very similar way, so
the procedure is roughly the same for each
one. You should first of all see a greeting and a
request for information displayed on your
screen. This is the stage at which passwords
and identification numbers are needed if the
BB is one that requires a subscription. Some
such BBs will not simply dismiss you. They
may have special facilities for guests, inform-
ation about the service and a limited amount
of time and space on a special BB.

Free BBs will usually ask you for your
name and home town and some technical
specifications of your computer, the screen
size, for example. The technical details are
necessary to enable the host to set up the
system to function properly with your
computer.

You will then be given some technical
information—the times during which the BB
is available and a time limit for your call,
perhaps. It is important to take note of the
times during which the BB operates, because
many are run on a purely voluntary basis and
calling outside those times—especially in the
middle of the night—might cause a lot of
inconvenience.

Is there any way I can protect 1.11
messages I have left on a bulletin
board?
The answer is, in theory, yes, in practice
usually not. In some instances it is very
easy to bypass preliminary password
controls.

The very nature of a bulletin board is
that it is open to public inspection—it is,
in effect, a notice board which, almost
by definition, means that information
placed on it is intended for public
scrutiny. But writing to it usually does
mean password acceptance.

Some bulletin boards delve into areas
which perhaps may be more closely
linked to electronic mail—essentially
private communications between
individuals at personal or business
level. Here, the use of passwords
is very much the norm. Try
to choose a novel password.

Like most viewdata services BBs are menu
driven. Calling up one of the optiotis on the
main menu will probably lead you to another
menu, which may in turn lead you to another
menu, and so on until you eventually arrive at
the option you require. Many BBs have a 'new
user' section and that will be indicated on the
main menu. The 'new user' section enables
you to register with the BB. You are asked for
your name and address and you can choose a
password for use in future calls. Other options
may include a technical information section, a
`Utilities' section which tells you the duration
of your call so far and displays information
about other services.

The heart of the BB is the actual bulletin
board itself, which contains public notices
which other people have put there for anyone
to read. Often there is also a section for private
messages. This really consists of smaller BBs
to which access is limited by a password.
Individuals can leave messages for other
individuals, or groups can form their own
bulletin board within the main bulletin board.

TERMINOLOGY
There are many technical terms used in
computer communications which are not
used very often in other branches of comput-
ing. This sometimes leads to confusion about
the meaning of some terms. Here is an
explanation of some of those terms which are
likely to lead to confusion.

Teletext—Information services which in-
volve broadcasting pages of information and
displaying them using the 'spare' lines on a
television set. The communication is one way
only and users cannot transmit. Examples are

CEEFAX, run by the BBC, and ORACLE,
run by the independent television companies.

Viewdata—A similar service to Teletext but
with two way communication possible. Pre-
stel is an example of a Viewdata service.
Communication is usually, though not neces-
sarily, as many people think, by way of
telephone lines.

Videotex—This is a generic term used to
describe all forms of computer generated
information services and covers both Teletext
and Viewdata.

Bulletin boards also fall under the generic
heading of Videotex as they are really a form
of Viewdata. Some confusion arises because
BBs have begun to develop and grow into
something more than simple boards on which
notices can be written and read. Some of them
offer an information service.

Network—Strictly speaking, this refers to
the direct linking up of a number of com-
puters in a limited group for a specific
purpose usually in a business or research
environment. The main distinction between a
network and other forms of computer com-
munication is that a network involves direct
connections between computers and/or peri-
pherals. The purposes of networking com-
puters is so that they can share facilities such
as databases or printers rather than pool
resources.

The meaning of the word network is,
however, gradually being degraded and it
now sometimes refers to any grouping of
computers even if the connection between
them is a central computer as in Viewdata.

This flight simulation program is
similar to those used in flying
schools to teach pilots how to fly
using their instruments alone: the
first part reproduces the cockpit

Games programs vary from sheer fantasy,
which involves you entering an imaginary
world and taking part in an adventure, to
simulations of real-life situations. These allow
you to test your capabilities in a potentially
dangerous situation without causing harm to
yourself or writing off millions of pounds
worth of equipment.

Flight simulation programs have an ele-
ment of fantasy—alone in the cockpit, all the
crew stricken by a mysterious illness, you,
single-handed, bring the aeroplane in to land.
But sophisticated programs of this type have
real practical use—so much so that most
major airline companies and flying schools
use them regularly.

TRAINING SIMULATORS
At the top end of the scale there is total
simulation—Phase 3' in the jargon of the
Federal Aviation Administration (America's
civil aviation governing body), which allows
you to experience everything that the pilot in
a real aeroplane does. You see what he sees
through the cockpit window (including a
slightly differently angled view for the co-
pilot); you feel what he feels on take-off and
landing, and during turbulence; and you hear
what he hears, including air traffic control
commands. Theoretically, a pilot can com-
plete all his training in one of these, and
obtain his licence without once leaving the
ground.

TABLE-TOP SIMULATORS
At the other end of the scale, the flight
simulation programs are very similar to the
one that follows.

Table-top units that can be 'flown' in the
classroom are good for teaching cockpit pro-
cedure, and developing the reflex speeds of
the pilot.

They are essential for learning instrument
flying, a technique that allows the pilot to
navigate solely by referring to the instrument
panel—something that every pilot has to do
when the weather conditions are bad.

WHAT THE PROGRAM INVOLVES
The flight simulation program in this three
part article assumes that you have taken over

the controls when the aeroplane is 2000
metres in the air and 20,000 metres away
from the target runway. Through the cockpit
window you can see little—just the horizon,
when it is in view, and the distant dot of the
runway—so like a seasoned pilot you must
rely on your expertise at responding to the
instrument panel to bring you and all your
passengers safely in to land.

THE INSTRUMENTS
There are four dials on your instrument
panel. The first one tells you your airspeed.
This varies according to whether you are
diving (your speed increases), climbing (your
speed falls off) and changing engine power. A
counter underneath the airspeed dial tells you
your compass bearing.

The second dial shows you where the
horizon is in relation to your aeroplane. This
means that even when the horizon is not in
view through the cockpit window, you still
know where it is. The counter underneath
this dial gives you the bearing of the runway.

The third dial gives you an altitude read-
ing. This has two hands, one for thousands,
and the other for hundreds. The counter
underneath calculates the drift of the
aeroplane—as the runway is 100 metres wide,
a drift of over + 50 or — 50 will cause you to
miss it altogether.

The last dial tells you the engine speed in
revolutions per minute. The counter beneath
lets you know the distance you are from the
centre of the runway.

LANDING THE AEROPLANE

In the case of the Dragon and Tandy, the
picture through the cockpit window becomes
cleaner as you approach your destination—you
can see the runway as you guide your aeroplane
towards it. With the other computers you must
centre the radar image of the runway.

When you assume the controls, weather
conditions are fair, and the runway is due
north. Landing like this is not hard, and the
game would quickly lose its fun if you could
not vary this. To add difficulty, you can
specify the speed and direction of the wind:
for instance, a howling gale from the side will
make your job very much harder.

EXPLAINING FLIGHT
SIMULATION

TRAINING PROGRAMS
LEARNING TO LAND

INSTRUMENT FLYING

THE INSTRUMENT PANEL
RECREATING AIRCRAFT

MOVEMENT
STALLING THE AIRCRAFT

A FLYING SCHOOL AT HOME

MOVING THE AEROPLANE
The range of controls you have closely approx-
imates to the controls of the aeroplane—
though you are pressing keys, rather than
using a joystick.

In a real aeroplane, to control pitch—the
up and down movement—the joystick is
moved backwards or forwards, thereby mov-
ing the elevators on the tailplane upwards or
downwards. You will be using two keys to
create the same effect, and in the third section
of the article you will enter the part of the
program that does this.

The roll of the aeroplane—the side to side
movement—is controlled by moving the joy-
stick from side to side. This moves the
ailerons—the control surfaces on the wings.
Again you'll be using two keys to turn you
either to the right or the left.

Your last two controls enable you to speed
up or slow down the engine, essential for
finely timing your landing, or making sure
that you do not stall.

STALLING SPEED
Aeroplanes stall when they fall below a certain
speed, which means that they literally drop
from the sky. In this program, if your air-
speed falls below 30 metres per second, the
aeroplane will start to dive steeply, turning to
one side as it plummets. If you've got enough
height, quick action may save you, but a stall
is dreaded by every pilot.

DIVIDING THE PROGRAM
The program is too long and complex to be
given all at once, and so it has been split into
three parts.

In this first part what you are doing is
setting up the screen to show the interior of
the cockpit, with its window, the four dials,
which are labelled, and the labels for the
counters.

The commands this involves will be fam-
iliar to most of you from other programs.
Dragon and Tandy users, however, will come
across a command that they may not have had
to use before, PCOPY—unique to these
computers—which will be explained in detail
later.

In part two, the section of the program
entered enables the dials and counters to
become sensitive to the movement of the
aeroplane, and a temporary command causes
the aeroplane to fly randomly, without a pilot
at the controls, so that you can watch the
instrument panel functioning. The final sec-
tion allows you to take control of the aero-
plane, and assesses your landing technique so
you can judge your progress.

DRAWING THE COCKPIT
To draw your cockpit, enter the first part of
the program into your computer.

a
1 POKE 23658,8
110 GOTO 5000
5000 LET PP= —1: LET RR= —1
5010 LET C= PI/180: LET PY= —20000:

LET PZ = 2000: LET AS=150
5110 PLOT 10,175: DRAW 235,0: DRAW

0, — 90: DRAW — 235,0: DRAW 0,90
5120 FOR K=0 TO 3: CIRCLE

35+K'60,50,20: NEXT K
5130 PRINT AT 12,2;"SPEED ❑ El ❑

HORZN ❑❑ 1] ALT 0 ❑ ❑ 0 RPM"
5150 PRINT AT 20,0;"BEARING ❑ ❑

RUNWAY 0 ❑ DRI FT 0 0 DISTANCE"
5170 PLOT 87,50: DRAW 5,0: DRAW 3,-3:

DRAW 3,3: DRAW 5,0
5180 LET X=35: LET Y=50: GOSUB 7000:

LET X=155: GOSUB 7000: LET X=215:
GOSUB 7000

6900 STOP
7000 FOR K=0 TO 213 1 STEP PI/5: PLOT

X+17'SIN K,Y+17*COS K: DRAW 2*SIN
K,2*COS K: NEXT K: RETURN

The POKE in Line 1 sets the computer to
upper case mode. Lines 5000 and 5010 place
the aeroplane in its position in the sky: 2000
metres up in the air, 20,000 metres from its
destination, motionless; next week you will
enter the lines that will make it move.

Line 5110 draws the cockpit window, and
the dials beneath are drawn by Line 5120,
using a FOR ... NEXT loop. The labels for the
dials and counters are printed by Lines 5130
and 5150. Line 5170 draws a diagrammatic
aeroplane in the horizon dial—the artificial
horizon will not be drawn until the next part.
Line 5180, and the GOSUB routine 7000, set
the centres of the dials and draw the in-
dicators round the three dials that need them:
Airspeed, Altitude and RPM, using SIN and
COS as explained on page 250.

If you RUN the program now, your simu-
lated cockpit will appear on the screen.

To enable you to access the Commodore 64's
high resolution graphics, this program is
written in Simons' BASIC. This means that
you cannot run it on the standard Commo-
dore unless you fit a Simons' BASIC cartrid-
ge. But those of you who don't have a
cartridge shouldn't despair. A machine code
program that allows you to run these
programs will be given soon in INPUT.
Then you can enter and RUN any program

written for Simons' BASIC, including this
one. The only minor modification you will
have to make is to preface each graphics
command with a @.

5100 A$ = "AIRSPEED ❑ HORIZON ❑

ALTITUDE LI ❑ RPM"
5110 B$="BEARING ❑ RUNWAY ❑

DRIFT 0 DISTANCE"
5120 HIRES 0,1:MULTI 4,0,5:

COLOUR 0,1
5130 BLOCK 0,110,160,200,2
5140 TEXT 0,120,A$,3,1,5:

TEXT 0,175,B$,1,1,5
5150 LINE 0,171,160,171,0:

LINE 0,200,160,200,0
5160 FOR Z=0 TO 3:CIRCLE 20+Z'40,

150,15,15,0
5170 IF Z=1 THEN TEXT 57,146,"E",

0,1,1:NEXT Z
5180 FOR K=0 TO 9:PLOT (20 +Z*40)+

17*SIN(rn/5),150 —19*COS
(K*7r/5),0:NEXT K,Z

A$ and B$, as defined in Lines 5100 and
5110, contain the labels for the dials and
counters. Line 5130 draws a black block
underneath the cockpit window, to contrast
the dark interior of the aeroplane with the
light blue window. Line 5140 positions the
labels, and Line 5150 draws two lines to
suggest that the labelled counters are set in a
separate panel from the dials. Line 5160
draws the circles for the dials (actually some-
what elliptical because of the way the graphics
screen works), and the diagram of an aero-
plane in the horizon dial. Line 5180 draws the
indicators around the other three dials.

So far, this program will show you a
simulated flight deck. In the next part you
will enter the part of the program that enables
your aeroplane to fly. Line 5190 must be
deleted before adding this next section.

10 MODE1
15 PROCSCREEN: END
20 DEF PROCSCREEN

30 X =190:GCOL0,3
40 FOR P = 0 TO 3
50 MOVE X + 100,250
60 FOR T = 0 TO 2'P1+.3 STEP .3
70 DRAW X +100*COS(T),

250 + 100*SIN (T)
80 NEXT
90 X=X+300
100 NEXT
110 X=170
120 FOR P = 0 T03
130 X=190 + P.300
140 FOR T=0 TO PI*2 STEP PI/5
150 MOVE X + 100*SIN(T),

250 + 100*COS(T)
160 DRAW X + 90*SIN(T),

250 + 90*COS(T)
170 NEXT
180 IF P=0 THEN P=P+1
190 NEXT
200 MOVE 420,260:DRAW470,260:

DRAW490,230:DRAW510,260:
D RAW560,260

210 MOVE 100,900:DRAW 1180,900:

DRAW 1180,500:DRAW 100,500:
DRAW 100,900

215 MOVE 0,908:DRAW 1276,908:
DRAW 1276,1020: DRAW 0,1020:
DRAW 0,908

220 VDU 5:MOVE46,400:PRINT
"AIR SPEED"

230 M OVE410,400: PR I NT" H OR IZ"
240 MOVE742,400:PRINT"ALT"
250 M0VE1042,400:PRINT"RPM"
260 MOVE78,100:PRINT"BEARING"
270 M0VE396,100: PR I NT"RUNWAY"
280 M OVE710,100: PR I NT" D R I FT"
290 M OVE1026,100: PR I NT" D 1ST"
300 VDU4:GCOL3,3:ENDPROC

Lines 30 to 100 draw the control dials, using a
FOR ... NEXT loop. Lines 110 to 190 draw the
ten indicators round three of the dials—
Altitude, Airspeed and RPM—the third dial,
which displays the artificial horizon, does not
need the indicators. The diagrammatic aero-
plane, which appears in the horizon screen, is
drawn by the Line 200. The artificial horizon

The instrument panel on the Commodore Flight Simulator ... and how it appears on the Acorn Flight Simulator

itself will not be drawn until the second part
of the program is entered.

Line 210 draws the cockpit window, and
the remaining lines label all the dials and
counters.

RUNning the program at this stage will
show you the interior of the cockpit, but the
aeroplane can't fly, and neither can you
control it yet.

10 PCLEAR8:PMODE4,1
20 DIM LE$(26)
30 FOR K = 0 TO 26:READ LE$(K):NEXT
40 FOR K = 0 TO 9:READ NU$(K):NEXT
50 DATA BR2,ND4R3D2NL3ND2BE2,

ND4R3DGNL2FDNL3BU4BR2,
NR3D4R3BU4BR2,ND4R2FD2GL2BE4BR,
NR3D2NR2D2R3BU4BR2

60 DATA NR3D2NR2D2BE4BR,NR3D4R3U2
LBE2BR,D4BR3U2NL3U2BR2,ND4BR2,
BD4REU3L2R3BR2,D2ND2NF2E2BR2

70 DATA D4R3BU4BR2,ND4FREND4BR2,
ND4F3DU4BR2,NR3D4R3U4BR2,
ND4R3D2NL3BE2,NR3D4R3NHU4BR2

80 DATA ND4R3D2L2F2BU4BR2,BD4R3U2
L3U2R3BR2,RND4RBR2,D4R2U4BR2,
D3FEU3BR2,D4EFU4BR2

90 DATA DF2DBL2UE2UBR2,DFND2EUBR2,
R3G3DR3BU4BR2

100 DATA NR2D4R2U4BR2,BDEND4BR2,
R2D2L2D2R2BU4BR2,NR2BD2NR2BD2
R2U4BR2,D2R2D2U4BR2,NR2D2R2
D2L2BE4,D4R2U2L2BE2BR2,
R2ND4BR2,NR2D4R2U2NL2U2BR2,
NR2D2R2D2U4BR2

110 GOTO 5000
4000 FORK =1TOLEN(A$)
4010 B$ = M1D$(A$,K,1)
4020 IF B$> ="0"ANDB$ < = "9" THEN

DRAWN U$(VAL(B$)):G0T04050
4030 IF B$ = " ❑ " THENN = 0 ELSEN = ASC

(B$) — 64
4040 DRAW LE$(N)
4050 NEXT:RETURN
5000 PP= —1:RR = —1
5010 PI = 4*ATN(1):C = PI/180:

PY = — 20000:PZ =2000:AS =150
5110 PCLS:LINE(10,0) — (245,80),PSET,B
5120 FORK = OT03:CIRCLE(35 + K*60,

120),25,5:NEXT
5130 DRAW"BM18,88S4":A$ = "AIRSPEED":

GOSUB4000:DRAW"BM80,88":
A$ ="HORIZON":GOSUB4000

5140 DRAW"BM140,88":A$ = "ALTITUDE":
GOSUB4000:DRAW"BM208,88":
A$ = "RPM":GOSUB4000

5150 DRAW" BM18,160":A$ = "BEARING":
GOSUB4000:DRAW"BM82,152":
A$ ="RUNWAY":GOSUB4000:
DRAW"BM80,160":A$ = "BEARING":
GOSUB4000

5160 DRAW"BM144,160":A$ = "DRIFT":
GOSUB4000:DRAW"BM200,160":
A$= "DISTANCE":GOSUB4000

5170 DRAW"BM81,118R9F5E5R9"
5180 X = 35:Y =120:GOSUB7000:X =155:

GOSUB7000:X =215:GOSUB7000
5190 PCOPY3T05:PCOPY3T07:PCOPY4T06:

PCOPY4T08:SCREEN1,1
5500 GOTO 5500
7000 FORK = OT09:LINE(X + 24*SIN(K*13 1/5),

Y-24TOS(K*P1/5)) — (X +21*SIN
(K*PI/5),Y— 21*COS(K*PI/5)),PSET:
NEXT:RETURN

The first part of this flight simulator program
includes a command not so far dealt with in
INPUT—PCOPY, which makes sure the
screen image moves smoothly.

Lines 20 to 110 set up the arrays for
writing on the graphics screen, as explained in
detail on page 192, and this is carried out by
the printing subroutine contained in Lines
4000 to 4050.

Lines 5000 and 5010 position the aero-
plane in the sky: 20,000 metres from the
centre of the runway, at a level of 2000
metres, though at this stage it is motionless—
it won't fly until you enter the lines in part
two of the program.

The cockpit window is drawn by Line
5110. The next line, 5120, draws the circles
for the dials, and Lines 5130 to 5160 label
the dials. Line 5170 draws a diagram of the
aeroplane on the horizon dial. The indicators
on the dials are drawn by Line 5180, and the
subroutine in Line 7000.

The PCOPY commands in Line 5190 draw
the graphics onto unseen pages, and then
copy them onto the screen. This aids back-
ground preservation—the background is re-
newed invisibly, and then transferred com-
plete to the screen, so that there is no time lag
when the background is updated. This means
that when the aeroplane is flying and the dials
move, they can all do so simultaneously—
without PCOPY only one dial would move at a
time.

RUN the program so far, and the cockpit
will appear on your screen.

In the next part you will enter the com-
mands that enable the aeroplane to fly,
though, at that stage you will have no control
over it. The aeroplane will be under the
control of a manic autopilot, causing it to dive
and climb randomly. The third part of the
article will install the pilot's controls and you
will finally have the passengers' lives in your
hands.

DESIGNING THE CHARACTERS
STORING UDGS IN A BANK

SAVEING UDGS ON TAPE
OR DISK

CONTROL KEYS

If you're fed up with laboriously
working out UDGs on paper, then
type in this program and take a rest
while the machine does the work
and you plot the shape you want

UDGs are one of the most versatile tools
available to the graphics programmer—and
they have been exploited in numerous
programs in INPUT. But one of the draw-
backs, if you want to design your own, is the
effort that goes into first plotting them on
paper, then working out the DATA, and finally
POKEing into memory so you can display
them on screen. And if you've got it wrong, it

takes a long time to see the results.
So here's a program to change all that. It

replaces the piece of squared paper with a neat
screen display which lets you plot in pixels
where you want them. Instead of you having
to work out the DATA values by hand, it tots
them up automatically.

But the real strength of the program is that
it also lets you see the UDG as it builds up—
life size—and you don't have to bother about
POKEing the DATA into another program.
Various control options let you adapt the
UDG at the touch of a button—perhaps you
would like to see the inverse, or turn it round
from left to right.

When you've created the UDG you're
looking for—and you have nearly 20 million

million million options—you will want to be
able to keep it. So the program lets you store a
bank of completed UDGs that you can call
back when you want them. You can SAVE the
UDGs out of the program and onto tape, and
you can then LOAD them back into any
program for use on screen—or back into the
UDG generator for further editing.

The program is in two parts. The first part
of the listing, which follows, allows you to
create the basic UDG generator. It sets up a
grid on screen, and allows you to move
around the display to plot the pattern of pixels
you want in the finished UDG. In the
following part of the article, you will add the
routines which enable you to modify the
UDG in more subtle ways, and to display it.

You can save having to type it in again next
time by SAVEing it on tape when you have
entered it.

a
When you type in the program and RUN it,
you will see a square 8 x 8 grid in the middle
of the screen. This is the 'graph paper' on
which you are going to plan your UDG. So
you can select which squares to block in,
this sets a pixel.

You have a cursor, which takes the form of
a white square. This square is not printed in a
special colour, but is the BRIGHT version of
whatever it overprints. This is so you can see
it, whether or not the background square has
been set. The program is written so that you
move the cursor with the cursor keys and
press 0 to set, or reset, the pixel.

If you want to change these keys to a more
personally convenient set, simply change the
characters inside the IF 1$ = . .. statements in
Lines 6520 to 6555 to those of the keys you
wish to use.

You can use this method to set the program
up for use with some joystick interfaces, but if
you have a Kempston-compatible interface,
you will need to change these lines even more.
Instead of the I N KEY$ in Line 6510, you need
to use IN, as pages 464 to 469 explain.

Whichever keys you decide to use, you
should be careful not to use the same keys as
the control keys. This part of the program
only uses three control keys (these are ex-

plained further on in the article) but the next
part will use more. Altogether, C, I, M, P, R,
S and T are reserved.

Using either the keyboard or a joystick, the
cursor can move around inside the grid in the
middle of the screen. If you press 'fire', key 0
on the keyboard, then you will see the colour
of the cursor change to indicate that the pixel
`underneath' the cursor is now on. If you
move the cursor away from that position, you
will see that the square is now shaded in.
Carry on in this way to build up your design.

The program has a number of options
which you can access at any time while editing
a UDG. The first of these is to store the
UDG. To get this option, simply press key
S—this is the first of the control keys men-
tioned earlier.

You will then be asked what position in the
UDG bank you wish your present design to
occupy. The UDG bank is represented by the
letters A to U, displayed above the grid.
When you have entered a letter between A
and U to make your choice, there will be a
slight delay while the computer POKEs your
UDG into place, after which you will see it
appear in the bank above the grid. You are
then able to continue.

The next option is to pick up a UDG. This
lets you call up any of the bank of UDGs for
editing. When you choose this option, by
pressing the P key, you will be asked which

UDG you want to pick up. After pressing the
appropriate key, the UDGs you want will
appear in the grid.

SAVEING UDGs ON TAPE
Although the UDG editor is fine as it is, you
need to be able to SAVE your finished designs
to tape for use in your own programs. To
match this, there is a LOAD option so you can
LOAD previously SAVEd UDGs for re-editing.

You can use either the SAVE or the LOAD
facility by pressing the T key. You will be
asked whether you wish to SAVE or LOAD, and
then the computer will do this. When you
SAVE to tape, the bytes of the 21 UDGs
currently stored are SAVEd as a block of
memory—so don't forget to store the UDG
you are working on before SAVEing the bank.

The final part of this article will give you
more information about how you can use
these facilities to design and use lots of UDGs
and includes detailed instructions on how to
call them into another program. It also adds a
number of extra useful features.

5 CLEAR USR "A" —16
6 POKE 23675,PEEK 23675-16
8 BORDER 4: PAPER 7: INK 0: CLS
10 FOR N=USR "A" TO USR "B" +7:

READ A: POKE N,A: NEXT N
15 POKE 23675,PEEK 23675+16
20 POKE 23658,8

30 LET X=11: LET Y=8: LET NX= X: LET
NY =Y

100 LET A$="": FOR N=144 TO 164: LET
A$ = A$+ CHR$ N: NEXT N

110 LET B$="": FOR N=65 TO 85: LET
B$=B$+CHR$ N: NEXT N

1000 FOR N=87 TO 151 STEP 8: PLOT N,48:
DRAW 0,64: NEXT N

1010 FOR N=48 TO 112 STEP 8: PLOT 87,N:
DRAW 64,0: NEXT N

2000 PRINT AT 3,5;A$
2010 PRINT INVERSE 1;AT 2,5;B$
2400 GOSUB 6500
2500 IF INKEY$="P" THEN GOTO 5000
2510 IF INKEY$="S" THEN GOTO 5100
2520 IF INKEY$="T" THEN GOTO 5200
3900 GOTO 2000
5000 INPUT "WHICH CHARACTER (A— U)?",

LINE C$
5010 IF C$<CHR$ 65 OR C$>CHR$ 85

THEN GOTO 5000
5020 LET D = CODE C$ + 79: LET C$= CHR$

D: GOSUB 6000: GOTO 2000
5100 INPUT "STORE IN WHICH CHARACTER

(A— U)?", LINE C$
5110 IF C$<CHR$ 65 OR C$>CHR$ 85

THEN GOTO 5100
5120 PRINT AT 18,10;"STORING NOW"
5130 FOR N=USR C$ TO USR C$+7
5140 LET R=0: LET BIT =128: FOR M=0

TO 7
5150 IF PEEK (18432+ (N — USR

CV32+ M +11)< >1 THEN LET
R=R+BIT

5160 LET BIT= BIT/2: NEXT M: POKE N,R
5170 NEXT N: PRINT AT 18,0;" ❑ "; TAB

31;"0": GOTO 1000
5200 INPUT "L(OAD) OR S(AVE)?", LINE C$:

IF C$< >"L" AND C$< >"S" THEN
GOTO 1000

5220 IF C$= "L" THEN GOTO 5250
5230 INPUT "ENTER FILENAME", LINE N$: If

N$="" OR LEN N$>10 THEN GOTO
5230

5240 SAVE N$CODE USR "A",168: GOTO 104
5250 INPUT "ENTER FILENAME", LINE N$: If

LEN N$ >10 THEN GOTO 5250
5260 PRINT AT 19,0;: LOAD N$CODE USR

"A": PRINT AT 20,0;" ❑ ";TAB 31;" ❑ ":
GOTO 100

6000 LET B=USR "A" + 8*(CODE C$-144)
6010 POKE 23675,PEEK 23675-16
6020 FOR N=0 TO 7
6030 LET V= PEEK (B+N)
6040 LET BIT =128: FOR M=0 TO 7
6050 IF V> = BIT THEN PRINT AT

8+N,11 +M;CHR$ 144: LET V = V — BIT:
GOTO 6060

6055 PRINT AT 8+N,11 +M;CHR$ 145
6060 LET BIT= BIT/2: NEXT M
6070 NEXT N: POKE 23675,PEEK 23675+16:

RETURN
6500 POKE 22528 +32*Y + X,120: PAUSE 0
6510 LET 1$ =1NKEY$
6520 IF 1$= "5" AND X>11 THEN LET

NX= X-1
6530 IF I$="8" AND X<18 THEN LET

NX=X+1
6540 IF 1$ = "6" AND Y<15 THEN LET

NY=Y+1
6550 IF I$="7" AND Y > 8 THEN LET

NY = Y —1
6552 IF 1$ = "0" THEN GOSUB 7000
6555 IF 1$ = "" THEN GOTO 6580
6560 POKE 22528 + Y*32 + X,56
6570 LET X= NX: LET Y= NY
6580 POKE 22528 + Y`32 + X,120
6590 RETURN
7000 POKE 23675,PEEK 23675-16
7010 IF PEEK (18432 + (Y — 8) .32 + X) =1

THEN PRINT BRIGHT 1;AT Y,X;CHR$ 144:
GOTO 7030

7020 PRINT BRIGHT 1;AT Y,X;CHR$ 145

7030 POKE 23675,PEEK 23675+16: RETURN
9000 DATA 85, 171, 85, 171,85, 171,85,

255,1,1,1,1,1,1,1,255

101111■1111 111111
The Commodore and Vic programs both use
the same control keys and work in the same
way. The Vic program is for either an unex-
panded Vic or a machine with 3K expansion.
It will not work on 8 or 16K expanded Vics-
but you can take out the expansion pack, of
course.

When you type in and RUN the Commo-
dore programs, there is a delay of about a
minute while the computer clears the space
for the new characters and PO KEs the existing
set into RAM.

As soon as this has been done, the screen
display changes to give you the grid in which
you can define your characters.

You can move the cursor around inside the
grid using these keys: z is left; x is right; ; is
up; and / is down. When you are over the

 pixel position you want to set, press the SHIFT
 key. You can fill in a lot of pixels quickly by

pressing SHIFT LOCK on, and moving at the
same time.

As well as being able to set pixels, you can
also turn them off again by pressing the
Commodore key.

By moving around inside this grid, setting
the pixels you want, you can create your
UDGs very quickly. But the program helps
you even more by providing a set of extra
facilities. The first of these is the twin line of
characters below the grid. These display the
present bank of UDGs (you can have up to
26) and their positions. The top line is simply
the letters A to Z, while underneath this is a
line of UDGs that starts off as the character
set but can be replaced with your own, new
UDGs. This storage bank is used when it
comes to storing your characters.

HOW TO STORE A UDG
When you are satisfied with the UDG design,
first press the left-arrow key. The computer
will then ask you under which letter yosisiaiiii

your UDG stored. Check the display of the
present bank to see which character you want
to replace with your newly defined UDG.

When you have decided where you want to
put it, press the key for that letter. After a very
brief pause, your character will take its place
in the bank at the bottom of the screen.

Once you have designed and stored a
character in the bank, you can retrieve it onto
the editing grid at any time by pressing the @
key, again followed by the character you want.

There is one more control character in this
half of the program—the key. This gives
you access to the tape mode, so that you can
either SAVE your present bank of characters,
or LOAD in a previously SAVEd one.

After you have pressed this key, the com-
puter asks you whether you want to SAVE or
LOAD. It assumes you have the tape already in
the right place and ready to start
LOADing/SAVEing. When the computer has
finished SAVEing, or LOADing the character
data, the computer returns you to the editing
screen to continue.

The next article in this series will complete
the program, and will use several more con-
trol keys to rotate, mirror, invert, clear the
grid, and print the DATA to a printer. There
will also be instructions on calling up the
UDGs for use within another program.

10 POKE 51,255:POKE 52,47:POKE
55,255:POKE 56,47:CLR

15 POKE 56334,0:POKE 1,51
20 FOR Z = 0 TO 1023:POKE 12288 + Z,

PEEK(53248+ Z):POKE 13312+Z,
PEEK(53248 + Z):NEXT Z

25 POKE 1, 55:POKE 56334,1
30 PRINT "ID M";CHR$(8):POKE 53280,1:

POKE 53281,1:POKE 53272,28

34 PRINT TAB(10);"ACHARACTER ❑❑
GENERATOR"

38 PRINT TAB(10);".2 ❑❑❑❑❑

77
7777E7777 ❑❑❑❑

"

40 A$ = "ABCDEFGHIJKLMNOPQRSTUVW
XYZ"

50 X = 0:Y = 0:Z(0) =128:Z(1) =64:
Z(2) = 32:Z(3)=16:Z(4) = 8:
Z(5) = 4:Z(6) = 2:Z(7) =1

100 PRINT "Eggggigggigggigg
gga ";TAB (12);"12345678"

110 FOR Z=1 TO 8:PRINT TAB(10);Z;
"11.2EFFEEEEE
NEXT

120 PRINT TAB(12);"a=
❑❑❑❑❑❑ ":PRINT "a";
TAB(7);A$:PRINT TAB(7);

122 FOR Z=1 TO 26:PRINT"al -";:
NEXT Z:PRINT:PRINT TAB(7);A$

130 XX = X:YY = Y:C =1396 + X +Y . 40:
CC= PEEK(C)

140 POKE C,233:P=PEEK(197):POKE 198,0
150 IF P=12 AND X>0 THEN X=X-1
155 IF P=23 AND X<7 THEN X=X+1
160 IF P=50 AND Y>0 THEN Y=Y-1
165 IF P=55 AND Y<7 THEN Y=Y+1
170 IF PEEK(653) = 1 THEN POKE C,230:

GOTO 130
180 IF PEEK(653) =2 THEN POKE C,207:

GOTO 130

200 POKE C,CC
250 IF P=57 THEN 1200
280 IF P=46 THEN 1600
290 IF P=48 THEN 1400
300 GOTO 130
1200 GOSUB 1500
1235 FOR Z=0 TO 7:T=0:FOR ZZ=0 TO7
1240 C1 =1396 +ZZ+Z*40:C2= PEEK(C1)
1250 IF C2=230 THEN T=T+Z(ZZ)
1260 NEXT ZZ:POKE 12288 + (A*8) +Z,T:

POKE 12288 + Z,T
1280 NEXT Z:GOTO 130
1400 POKE 198,0:POKE 53272,21:N$="":

INPUT "DENIER NAME";N$:IF N$=`'
THEN 30

1405 PRINT "A(S)AVE OR (L)OAD?":0U =0
1406 GET K$:IF K$="S" THEN

OU=1:GOTO 1410
1407 IF K$< >"L" THEN 1406
1410 PRINT "0":R$=CHR$(13):OPEN

1,1,OU,N$:REM DISK:- OPEN
1,8,0U,"©:"+N$

1413 FOR Z=12296 TO 12504:IF OU=1
THEN Z$=STR$(PEEK(Z)):Z$=
RIGHT$(Z$,LEN(Z$) -1)

1414 IF OU=1 THEN PRINT#1,ZR:
GOT01420

1415 INPUT #1,Z$:POKE Z,VAL(Z$)
1420 NEXT Z:CLOSEl:GOTO 30
1500 PRINT "Iggggggga";TAB(14);

"ENTER LETTER":FOR Z=1 TO 25:NEXT Z

1505 PRINT "®g gg a";TAB(14);
"ClE0E1110111011111100"

1510 GET A$:IF A$<"A" OR A$ >"Z"
THEN 1500

1520 A = ASC(A$) -64:RETURN
1600 GOSUB 1500
1610 FOR ZZ=0 T07
1611 AA= PEEK(12288+ A*8 + ZZ)
1612 FOR Z1=0 TO 7
1614 IF AA -Z(Z1) = >0 THEN AA=

AA -Z(Z1):POKE 1396 + Z1 +ZZ*40,
230:GOTO 1620

1616 POKE 1396+Z1 + Z1 .40,207
1620 NEXT Z1,ZZ:GOTO 130

10 PRINT CHR$(8):POKE 51,255:
POKE 52,27:POKE 55,255: POKE 56,27:CLR

20 FOR Z=0 TO 511:POKE 7168+Z,
PEEK(32768+Z):NEXT Z

30 PRINT "1:1":POKE 36879,25:POKE
36869,255

33 FOR Z=0 TO 7:POKE 7168 +Z,255:NEXT Z
35 PRINT " sip] CHARACTER ❑ ❑

GENERATOR"
38 PRINT "all ❑❑❑❑❑❑❑❑

7777❑❑❑❑❑ "
40 A$ = "ABCDEFGHIJKLMNOPQRSTUV"
50 X= 0:Y=0:Z(0)=128:Z(1)=64:

Z(2) = 32:Z(3) =16:Z(4) = 8:
Z(5) = 4:Z(6) =2:Z(7)=1

100 PRINT "I§Igigggigigingiggal
0012345678"

110 FOR Z=1 T08:PRINT z; " 11
❑❑❑❑❑❑❑ E":NEXT

120 PRINT
"aDOCIMM1777171
":PRINT "a"A$:PR1NT A$

130 XX =X:YY = Y:C =7880 +X + Y'22:
CC = PEEK(C)

140 POKE C,233:P=PEEK(197):POKE 198,0
150 IF P=33 AND X>0 THEN X=X-1
155 IF P=26 AND X<7 THEN X=X+1
160 IF P=22 AND Y>0 THEN Y=Y-1
165 IF P=30 AND Y<7 THEN Y=Y+1
170 IF PEEK(653) =1 THEN POKE C,230:

GOTO 130
180 IF PEEK(653) = 2 THEN POKE C,207:

GOTO 130
200 POKE C,CC
250 IF P=8 THEN 1200
280 IF P=53 THEN 1600
290 IF P=6 THEN 1400
300 GOTO 130
1200 GOSUB 1500
1235 FOR Z=0 TO 7:T = 0:FOR

ZZ = 0 T07
1240 C1 =7880+ ZZ + Z*22:C2 = PEEK(C1)
1250 IF C2 = 230 THEN T = T + Z(ZZ)
1260 NEXT ZZ:POKE 7168 + (Ali) + Z,T:

POKE 7168 + Z,T
1280 NEXT Z:GOTO 130
1400 POKE 198,0: POKE 36869,240:

NS = ":INPUT "DENIER NAME";
N$:IF N$="" THEN 30

1405 PRINT "gi(S)AVE OR (L)OAD?":
OU = 0

1406 GET K$:IF K$="S" THEN OU=1:
GOTO 1410

1407 IF K$< >"L" THEN 1406
1410 PRINT "LT:OPEN 1,1,OU,N$:REM

DISK:— OPEN 1,8,OU,"@:"+ N$
1413 FOR Z = 7176 TO 7352:IF OU=1 THEN

PRINT#1,PEEK(Z):GOTO 1420
1415 INPUT#1,ZZ:POKE Z,ZZ
1420 NEXT Z:CLOSE1:GOTO 30
1500 PRINT"I§IgigMa ❑❑❑❑❑

ENTER LETTER":FOR Z=1 TO 25:NEXT Z
1505 PRINT"l§giggia ❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑ "
1510 GET A$:1F A$ < "A" OR A$ > "V"

THEN 1500
1520 A = ASC(A$) — 64:R ETUR N
1600 GOSUB 1500
1610 FOR ZZ =0 TO7
1611 AA= PEEK(7168 +A*8 +ZZ)
1612 FOR Z1 =0 TO 7
1614 IF AA —Z(Z1) = >0 THEN AA=

AA — Z(Z1):POKE 7880+Z1 + ZZ*22,
230:GOTO 1620

1616 POKE 7880 + Z1 + ZZ*22,207
1620 NEXT Z1,ZZ:GOTO 130

When you type in and RUN the Acorn
program, the computer draws a blank grid
and a line of characters is PRINTed above it.

The grid is the main part of the UDG
generator and represents the 8 x 8 group of
pixels in the UDG. You can move the cursor
around inside it, setting pixels where you
want, to build up your character. You can tell
when a pixel is set, since a filled-in circle is
printed in the grid square to represent a filled-
in pixel—but to start with, the grid is blank.
You can move around with a variety of keys,
depending upon what you want to do.

To move and leave the pixels unchanged,
you can use these keys: P is up; L is down; Z is
left; and X is right. !RETURN also leaves the
pixels unchanged, and at the same time brings
you to the start of the next line.

If you press the 'DELETE! key, the pixel
beneath the cursor is set to 0 (or deleted, if it
had previously been set) and the cursor is then
moved one space to the left. To delete a pixel
and move the cursor to the right, you can
press the space bar.

The full stop key sets a pixel, and moves
the cursor to the right, while the comma key
sets a pixel and moves the cursor to the left.

Using a combination of these keys, you can
quickly and easily move around the grid,
setting various pixels to create your character.
As you build up your UDG, you can see its
actual size from the character above the grid.
This is updated whenever you move.

THE UDG STORE
Once you have finished your design, you can
store it in memory in a bank of 32 UDGs. The
current bank (part of the character set) is
displayed at the top of the screen. It's also
possible to call a UDG back from this store
for further editing, if you wish.

The up-arrow beneath one of the charac-
ters indicates which position in the bank is
currently available. If you store a UDG, the
computer puts it in the position pointed to by
the arrow, and if you take a character from the
bank on to the grid for further editing, you
will get the one above the arrow.

You need to be able to move the arrow to
specify which character you want to use. Press
the semi-colon key to move it to the right. To
move left, press the minus-sign key.

When you have positioned the arrow, to
store a character in the bank, press ICONTROLI
and A. To get a character back into the grid
again from the bank, press 'CONTROLS and G.
(A stands for Assign, and G for Get—it is
often easier to remember the names, rather
than just the letters.)

After you have finished a whole bank, or as
much of a bank as you want to use, you can
SAVE the bank to tape. This facility means that
you have a permanent record of the UDGs
which you can LOAD back into the computer
at any time. The next part of this article will
explain how you call up the UDG for use in
your own programs. For now, you can LOAD it
back into the program, for later editing.

You can use the SAVE facility by pressing
'CONTROL! and S together. To LOAD a previ-
ously SAVEd bank back into memory from the
program, press !CONTROL! and L together.

This half of the program has just one more
control key availableHCONTROL and E. This
ends the program, and returns you to BASIC.
But next time, you'll see how to add extra
facilities, including a print-out routine.

If you use a disk drive, omit Line 20.

10 *FX11,0
15 'FX4,1
20 *OPT2,1
25 *OPT1,1
30 MODE1:DIM A(31),B(31),C(7)
40 VDU 23,95,0,0,0,0,0,0,0,255:

FOR T = 0 TO 31:B(T) = T?&COO:
N EXT:*FX20,0

50 X = 0:Y = 0:PT = 0: PX = 508: PY = 252:
DX = 260:DY = 260

60 PROCASS:VDU23;8202;0;0;0;
70 FOR T=0 TO 23:READ T?&C0O:NEXT
80 CLS:PROCDISPLAY:REPEAT :

PROCINST:UNTIL A$ = CHR$(5)
90 CLS:INPUT""ARE YOU SURE (Y/N)";A$
100 IF A$< >"Y" THEN 80 ELSE END
110 DEF PROCGRID
120 GCOL0,1
130 FOR P = 0 TO 3:MOVE PX — DX*(P = 3),
PY — DY*(P =1):DRAW PX— DX*

(P< >2),PY—DY*(P< >0)
140 MOVE 88 —1040*(P = 3),888 — 48*

(P=1):DRAW 88 —1040*(P < >2),
888 — 48*(P < > 0):NEXT

150 GCOL3,3:ENDPROC
160 DEF PROCINST
170 A$=INKEY$(1):IF A$=" THEN ENDPROI
180 IF A$=";" THEN PROCPOINT(1):

ENDPROC
190 IF A$ = " — " THEN PROCPOINT(—1):

ENDPROC
200 IF A$ = CHR$(7) THEN PROCGET:

ENDPROC
210 IF A$= CHR$(1) THEN PROCASIGN:

ENDPROC
220 IF A$= CHR$(12) THEN PROCLOAD:

END PR OC
230 IF A$= CHR$(19) THEN PROCSAVE:

ENDPROC
290 IF A$ = "," THEN PROCIN:X = X —1:

IF X= —1 THEN Y=Y-1

300 IF A$="." THEN PROCIN:X =X +1:
IF X=8 THEN Y=Y+1

310 IF A$ = "El" THEN PROCDEL:X = X +1:
IF X=8 THEN Y=Y+1

320 IF A$=CHR$(13) THEN X= 0:Y =Y +1
330 IF A$=CHR$(127) THEN PROCDEL:

X=X-1:IF X= —1 THEN Y=Y-1
350 X= (X— (A$="X")+(A$="Z")) AND

7: Y= (Y+ (A$="P")— (A$="L"))
AND 7

360 CALL MC:VDU5:MOVE(16+X)'32,
1023— (16 + Y)'32:VDU224,4

370 ENDPROC
380 DEF PROCDEL:?(&C18+Y)=

?(&C18 + Y) AND (255 — 2 A (7 — X)):
ENDPROC

390 DEF PROCIN:?(&C18+Y)=
?(&C18 +Y) OR 2 A (7 — X):ENDPROC

400 DEF PROCNOS
410 CALL MC:VDU5:MOVE(16+X)'32,

1023— (16 +Y)'32:VDU224,4:
ENDPROC

420 DEF PROCDISPLAY
430 PROCMOVEUDG(1):VDU31,3,3:FOR

T=224 TO 255:VDU T:NEXT:
PROCMOVEUDG(0)

440 VDU5:MOVE(16 + X) .32,1023 —
(16 +Y) . 32:VDU224,4:PROCPOINT(0):
PROCGRID:PROCNOS:ENDPROC

450 DEF PROCMOVEUDG(F)
460 FOR T=0 TO 31: IF F=0 THEN 480
470 A(T)=T?&COO:T?&COO=B(T):

GOTO 490
480 B(T)=T?&COO:T?&COO=A(T)
490 NEXT:ENDPROC
500 DEF PROCLOAD
510 VDU 4: CLS:PROCMOVEUDG(1)
520 INPUT"ARE YOU SURE (Y/N) ",A$:

IF A$< >"Y" THEN 550
530 1NPUT"FILENAME",A$:IF LENA$ > 8

THEN 530
540 H =OPENIN(AS):FOR T= &COO TO

&CFF:?T= BGET # H:NEXT:CLOSE # H
550 PROCMOVEUDG(0):CLS:PROCDISPLAY:

ENDPROC
560 DEF PROCSAVE
570 VDU 4:CLS:PROCMOVEUDG(1)
580 INPUT"ARE YOU SURE (Y/N) ❑ ";A$:

IF A$< >"Y" THEN 610
590 INPUT"FILENAME";A$:IF LENA$ > 8 OR

A$="" THEN 590
600 H = OPENOUT(A$):FOR T= &C00 TO

&CFF:BPUT # H,?T:NEXT:CLOSE# H
610 PROCMOVEUDG(0):CLS:PROCDISPLAY:

ENDPROC
620 DEF PROCPOINT(F)
630 PRINTTAB(3+PT,5)"0":PT= (PT+ F)

AND 31:PRINTTAB(3+PT,5)" A ":
ENDPROC

640 DEF PROCASIGN
650 PROCMOVEUDG(1):FOR T=0 TO 7:

T?(&C00 + PT*8)=A(T+ 24):NEXT
660 PROCMOVEUDG(0):PROCDISPLAY:

ENDPROC
670 DEF PROCGET
680 PROCMOVEUDG(1):FOR T=0 TO 7:

A(T + 24) = T?(&C00 + PT'8): N EXT:
PROCMOVEUDG(0)

690 FOR T=0 TO 7:T?(&C00 + 24) =
A(T+24):NEXT:PROCDISPLAY:
ENDPROC

770 DATA 255,255,255,255,255,255,
255,255,0,0,0,24,24,0,0,0,0,
60,126,126,126,126,60,0

780 DEF PROCASS
790 DIM MC 200:FOR T=0 TO 2 STEP 2:

P%= MC
800 [OPT T
810 LDA # 24:STA &70:LDA # 12:STA &71:

LDY #7
820 .M3: JSR PSN:LDA (&70),Y:LDX

#8:.M4:ASL A:PHA:LDA # 225:ADC #0
830 .M5: JSR &FFEE:PLA:DEX:BNE

M4:DEY:BPL M3:LDA #31:JSR
&FFEE:LDA # 19:JSR &FFEE:LDA
#13:JSR &FFEE:LDA #227:JMP &FFEE

840 .PSN: PHA:LDA #31:JSR &FFEE:LDA
#16:JSR &FFEE:TYA:CLC:ADC #16:JSR
&FFEE:PLA:RTS

850 .ROT:LDY #0:.L2: LDX #7:LDA
&C18,Y:.L3:LSR A:ROR &70,X:DEX:BPL
L3:INY:CPY #8:BNE L2:.L4 LDA
&6F,Y:STA &C17,Y:DEY:BNE L4:RTS

860 .FIN:]:NEXT
870 IF FIN< >MC+101 THEN PRINT

"MACHINE CODE WRONG, CHECK VERY
CAREFULLY":END

880 ENDPROC

When you type in and RUN the program, you
will be presented with two questions, which
determine the sort of UDG you define.

The first of these asks which PMODE you
want to use. PMODE4 gives you high reso-
lution UDGs, but in only either green and
black or buff and black. The second,
PMODE3, gives you half as many pixels across
(the pixels are twice as wide) but allows you to
have four colours.

The second of the INPUTS lets you deter-
mine which colour sets you want. Screen 0 in
PMODE4 gives green and black, while in
PMODE3 it gives red, blue, green, and yellow.
Screen 1 gives you buff and black in PMODE4,
and cyan, magenta, orange and buff in
PMODE3.

After you have made these two choices, you
cannot then change the PMODE without
reRUNning the program but you can change
the screen.

The Spectrum lets you make UDGs

The computer then presents you with the
editing grid which forms the basis for the
UDG design. You can move a cursor around
inside this grid using the cursor keys and, by
moving to the pixel you want, you can change
it, by turning it on or off.

With the cursor positioned over the pixel,
press the ENTERS key to set the pixel. You
delete pixels by plotting them in a different
colour, as explained later in this article.

Using these keys, you can design your
UDGs quickly and easily. Next week the
second half of the program includes, among
other things, an option for joystick.

As you can see, the grid is not the only
square on the screen: there are eight smaller
ones beneath the main grid, and two smaller
ones on the right of the grid.

The two on the right of the grid are actual-
size versions of the UDG you are editing both
normal and reversed. As the pixels are
changed, these two 'models' are updated,
enabling constant monitoring of your design.

The eight squares below the main 'drawing
board' are for storing the current bank of
UDGs, or what you have already defined.
This means that you can define up to eight
UDGs and keep them all in memory at any
time. Some of these are not always visible.
This happens when the colours of the plotted
pixels are the same as the background colour.
These are not updated all the time, but only
when you store the newly edited UDG, as
explained later in this article.

CONTROL KEYS
This program has a number of control keys,
to enable you to use. its numerous options at
the press of a key.

Two of these control keys go hand in hand,
and are fundamental. These are S and G. S
stores the UDG currently in the grid in the
bank. After pressing the S key, the computer
waits for you to press another key—a number
between 1 and 8. This number determines the
position of the UDG in the bank. This

or use the computer's own characters

enables you to replace any of the bank with
updated versions.

G, again followed by a number between 1
and 8, does the opposite-it takes the UDG
out of the bank and places it in the grid.
Although the program uses a machine code
routine, the process takes a few seconds.

Picking up a character like this does not
change the contents of the relevant bank
position-you could pick up the same UDG
as many times as you like, as long as you do
not store a new design in its place.

This part of the program has two more
control keys. If you press C, you can change
the colour. If you are in the four-colour mode,
you can change between any of the four
colours available. If in the two-colour mode
you can switch between either of the two
colours. You might like to do this to rub out
any of the pixels you have set by mistake.
After pressing the C key, tell the computer the
number of the new colour you want.

The last control key in this half of the
program is T. This allows you to either LOAD
in a previously SAVEd bank of UDGs, or to
SAVE the present one.

Ii
If you have a Tandy, you should make these
changes to the following program: change the
number 139 in the DATA statement in Line 50
to 179 (the 139 is in bold type); change the
number 48 in the DATA statements in Line 50
to 237 (the 48 is in bold type); change the
number 223 in Lines 1520 to 1550 into 247
and the 4496 in Line 60 to 4725.

10 CLEAR200,30998:DEFUSR0 = 31000
20 T= 0:FORK = OT043:READN:

T=T+N:POKEK+31000,N:
NEXT:READC:IF T< >C THEN PRINT
"DATA ERROR":END

50 DATA 189, 139, 48,31,3,142,123,12,
230,192,134,8,183,121,68,79,88,
73,122,121,68,125,121,23

The Dragon allows larger UDGs

60 DATA 39,5,88,73,122,121,68,167,
128,125,121,68,38,233,140,125,
76,38,221,57,4496

110 CLS:PRINT" SELECT GRAPHICS MODE
(3 - 4) ";

120 A$= 1NKEY$:IF A$ <"3"ORA$> "4"
THEN120

130 T= 5 - VAL(A$):PR1NTA$
140 PRINT" SELECT SCREEN TYPE (0-1) ";
150 A$=INKEY$:1F A$<"0"ORA$>"1"

THEN 150
160 PRINTA$:ST=VAL(A$)
200 PMODE5-T,1
210 DIMA(14),C1(1),C2(1),C3(1),C4(1)
220 PCLS4:GET(0,0) - (9,5),C4,G
230 PCLS3:GET(0,0) - (9,5),C3,G
240 PCLS2:GET(0,0) - (9,5),C2,G
250 PCLS1:GET(0,0) - (9,5),C1,G
260 PCLS:SCREEN1,ST
270 C= - 1:F = - 2:GOSUB2070
280 FORX=8T0255 STEP32:C= (C +1)

AND3:COLORC + 1:LINE(X,165)
- (X + 23,188),PSET,BF:NEXT:
COLOR6-T

290 FOR X =3T0147 STEPT*6:LINE
(X,3) - (X,147),PSET:NEXT

300 FORY=3T0147 STEP6:LINE(3,Y)
- (147,Y),PSET:NEXT

310 X =12:Y =12
320 X1 = X*6 + 4:Y1 = Y*6 +4
330 PUT(X1,Y1) - (X1 + 5*T- 1,Y1 + 4),

C1,NOT
340 A$=1NKEY$
350 GOSUB 1500
360 IF A$="" THEN 380
370 ON INSTR("PCTRGSMIV",A$) GOSUB

2200,2500,2300,2800,2600,2700,
2900,2100,2400

380 IF Y<0 THEN Y=23
390 IF Y>23 THEN Y=0
400 IF X<0 THEN X=24-T
410 IF X>23 THEN X=0
420 GOTO 320
1500 PUT(X1,Y1)- (X1 + 57-1,Y1 +4),

C1,NOT
1510 IFPEEK(338) =191 GOSUB2000

1520 IFPEEK(343) =223 THENX= X -T
1530 IFPEEK(344) =223 THENX= X +T
1540 IFPEEK(341) = 223 THENY=Y-1
1550 IFPEEK(342) =223 THENY =Y +1
1560 RETURN
2000 GOSUB4000
2010 P =3*Y +INT(X/8):PX =7 -X +

8`INT(X/8)
2020 IF T=2 THEN VL=F-1 ELSEVL=

- (F=1)
2030 PK= PEEK(P+VARPTR(A(0)))
2040 PK= PK AND(255.1 -2TPX):IF T=2

THENPK= P1C:AND
(255.1 -2I(PX-1))

2050 PK= PK FT OR VL. 2i(PX +1 -T)
2060 POKEP+VARPTR(A(0)),PK
2070 PUT(216,10)- (239,33),A,PSET
2080 PUT(216,70) - (239,93),A,PRESET
2090 RETURN
2100 RETURN
2200 RETURN
2300 A$=INKEY$:1F A$ < >"S"AND

A$ < >"L" THEN2300
2310 IF A$="S" THEN 2330
2320 CLOADM:SCREEN1,ST:RETURN
2330 CSAVEM"",6800,7679,6800
2340 SCREEN1,ST:RETURN
2400 ST=1 -ST:SCREEN1,ST: RETURN
2500 A$=INKEY$:1F A$ <"0"ORA$ > "8"

THEN 2500
2510 F= ((VAL(A$) -1)AND3)+1:RETURN
2600 A$=INKEY$:IF A$ <"1" ORA$ > "8"

THEN 2600
2610 J =VAL(A$) -1
2620 GET(J .32 + 8,165) - (J*32 + 31,188),A
2630 GOSUB3000:G0T02070
2700 A$=1NKEY$:IFA$<"1" ORA$ > "8"

THEN 2700
2710 J = VAL(A$) -1
2720 PUT(J . 32 + 8,165) - (J`32+31,188),

A,PSET
2730 RETURN
2800 RETURN
2900 RETURN
3000 CL= F:P0KE30999,T -1:N =USRO

(VARPTR(A(0)))
3010 FORK = OT023:FORJ =01023

STEPT: F = PEEK(31500 + r24/T +
J/T) + 3 - T

3020 X1 =J`6 +4:Y1 = K*6 +4
3030 GOSUB4000:NEXTJ,K:F=CL:

RETURN
4000 ON F GOTO 4010,4020,4030,4040
4010 PUT(X1,Y1) - (X1 + 57-1,

Y1 + 4),C1,PSET:RETURN
4020 PUT(X1,Y1) - (X1 + 5 .T -1,

Y1 + 4),C2,PSET:RETURN
4030 PUT(X1,Y1) - (X1+5 -1-1,

Y1 +4),C3,PSET:RETURN
4040 PUT(X1,Y1)- (X1+57-1,

Y1 + 4),C4,PSET:RETURN

Spectrum sound effects are limited
with the BASIC BEEP command.
But with the machine code out you
can make sirens and laser zaps—as
well as a seven-colour screen border

Normally the microprocessor addresses the
computer's memory. And with many home
micros if you want to access an outside
device—like a printer, a TV or even the
computer's own keyboard—you have to do it
via a memory location which is tied to an
output port. With Z80 micros such as the
Spectrum, though, you can access the ports
directly. It allows you to do this both in
BASIC and in machine code via the BASIC
commands IN and OUT and assembly language
mnemonics in and out.

WHAT IS A PORT?
A port is the channel of communication
between the computer and the outside world,
and here the outside world includes the
keyboard which is a peripheral as far as the
microprocessor and its associated ROM and
RAM are concerned.

You have already seen how the BASIC IN
command can be used to access a joystick (see
page 465) and how the assembly language in
can be used to access the keyboard (see page
482).

The OUT and out commands work in much
the same way, only they send data out to the
peripherals, rather than taking data in from
them. They can be used to control the border
of the TV screen, and both commands can be
used to output sound through the Spectrum's
speaker in a much more adaptable fashion
than the BASIC BEEP command. But here,
the machine code out is under examination, as
the BASIC OUT is rather slow.

You need the speed of machine code
because of the way that out is used to generate
sound. What you are doing is to move the
speaker in and out. If you do this once, it
produces a click, like you sometimes get when
you first switch on a record player. But the
trick is to do this repeatedly, and very
quickly. If the speaker clicks fast enough, a
succession of clicks will blur into a low-pitched
buzz—if it does it faster still the pitch of the
sound will go up.

SOUND OUT
The following assembly language routine
makes a sound whose pitch increases. Type
CLEAR 64599 then enter:

WHAT A PORT IS
SHIFTING AND ROTATING

MAKING THE SPEAKER MOVE
PAUSE LOOPS

SETTING THE PITCH

OUTING TO THE BORDER
SPECIFYING THE COLOUR

GETTING THE TIMING RIGHT
COARSE AND FINE TUNING

DOUBLING THE PITCH

org 64600
Id a,(23624)
rrca
rrca
rrca
Id b,0

loop push bc
xor 16
out 254,a

pause nop
nop
djnz pause
pop bc
djnz loop
ret

It is port 254 that controls the Spectrum's
speaker. But the same port also controls the
TV border colour. When you out a sound you
don't want to change the border colour as
well, so you have to do a little routine to leave
it unaffected.

First, you load the accumulator with the
contents of the system variable in memory
location 23,624. The Spectrum's colours are
specified by a number between 0 and 7.
Normally, the bits that control the border
colour are bits three, four and five. But when
you are controlling it through port 254, it's
bits zero, one and two that temporarily
change the border colour.

So to make sure that the border colour
doesn't change during the sound effect, bits
three, four and five have to be shifted three
places to the right (into zero, one and two).

SHIFTS AND ROTATES
There are several commands that can do this,
but the one selected here is rrca—rotate right,
with carry, on the accumulator. This instruc-
tion moves all the bits in the accumulator one
place to the right. It is called a 'rotate' because
the contents of bit zero are moved round and
put into bit seven. A simple shift moves each
bit one place to the left or right, but fills the
spare bit with a zero. Shifts are used in
arithmetic operations. You can see that a
straight shift to the left multiplies a number
by two, and a shift to the right divides by two.

Here, though, a rotate is used because you
only care about shifting three of the bits. The
contents of the other bits don't matter. The
rrca also copies the contents of the zero bit
into the carry flag. But again, it doesn't matter
what the value of the carry flag is, because it is
not examined.

To shift the border colour's bits three
places to the right, rrca is performed three
times. This effectively divides the border
colour by eight. But then, when the border
colour was stored in bits three, four and five
the colour (normally a number between 0 and
7) is already multiplied by eight.

So now, when the out command is used, it
will specify the same border colour as before
and no change will be detected.

SETTING THE COUNTERS
The B register is going to be used as a double
counter. To start with, it is loaded with 0, and
that value is copied onto the stack by push bc.
The B register cannot be pushed onto the
stack by itself. The stack commands, push
and pop, only work on register pairs, so B has
to be pushed onto the stack together with the
contents of the C register. But as you are not
going to do anything with C it won't effect the
program.

OUTING THE SOUND
Bit four of port 254 command controls the
Spectrum's speaker. By flipping this bit, the

How many ports are there?
Theoretically there are 64K possible
ports—that is the maximum number that
can be addressed by a 16-bit register.
But in practice only a few of the possible
ports are used. Only one port is used
when your Spectrum is in an ordinary
hardware configuration—port 254.

With the in command you have seen
how different parameters feed into the
instruction direct the port to different
areas of the keyboard (page 482). And in
this article, different bits of the machine
code out command can be used to
control the different standard peripheral
devices.

However, if your Spectrum is coupled
to other non-standard devices other
ports can be used. A simple example is
when a Kempston joystick is plugged
into your Spectrum; port 31 is used to
access it (see page 465).

And if you are a dab hand at
electronics you could link up your
Spectrum to control your central
heating system or your
electronic synthesizer
through different ports.

speaker's diaphragm is sent in and out—
creating sound. Bit 4 is flipped by
exclusively-oring it with 16. So if bit four is
set—that is, it's 1—it is reset to 0. If it is reset
to 0, it gets set to 1.

The out 254,a then outs the contents of the
accumulator through port 254. (Note that on
most commercial assemblers in and out in-
structions need brackets round the port num-
ber. So if you are not using the assembler
published in INPUT, this instruction should
read out (254),a.)

SETTING THE PITCH
The instruction nop means no operation. It
does nothing at all and translates into 00 in
machine code hex. The instruction does take
some time to execute though—approximately
1 microsecond, that's a millionth of a second.
The reason it is used here, twice, is to slow the
processor down as it executes this loop. The
speed that the processor goes round the loop
controls how fast the speaker's diaphragm
goes in and out and, consequently, the pitch.

But as you can see the nops are not just
executed twice. The djnz—decrement and
jump if not zero—sends it round and round

the pause loop executing them many times.
The djnz works on the B register. So the

first time round the loop it decrements B from
0 to 255. Then it goes round the pause loop a
further 255 times until it has decremented to
0.

Once it has come out of the pause loop the
last item is popped off the stack, back into the
BC register pair. This restores the value of the
B register, then djnz decrements it again and
sends the processor back round the loop loop
again. This pushes the BC registers back onto
the stack. So each time the processor goes
round this loop the counter on the stack is
decremented and the starting value for the
pause loop in the B register is one less each
time. So the pause is executed one less time
and the pitch increases.

SEVEN - COLOUR BORDER
When you specify the BORDER colour in
BASIC, you assign it a number between 0 and
7. Then the whole border turns that colour.

But the following routine uses the machine
code out command to give a seven-colour
border. It could give you an eight-colour
border but there is no point in having one of
the border colours the same as the screen
colour.

org 64600
redo halt

xor a
loop out 254,a

Id b,205
pause Id e,2
inner dec e

jr nz,inner
djnz pause
Id d,a
Id a,$7F
in a,254
rra
rts nc
Id a,d
inc a
cp 7
jr nz,loop
jr redo

SYNCHRONIZING THE SCREEN
The halt instruction waits for an interrupt to
occur, then sends the processor onto the next
instruction. With the Spectrum the interrupt
occurs in time with the screen scan. So halt
starts this routine off when the scan starts at
the top of the screen, synchronizing the
border bands with the edge of the TV screen.

The xor a exclusively-ors the accumulator
with itself, which is a quick way to set it to 0,
and the 0 is outed through port 254. Zero, in

machine code as well as in BASIC, means
black. So the top part of the screen starts off
black.

ADJUSTING THE PAUSE
In this routine the timing is critical. The
length of the pause will specify the width of
the bands of colour on the border. So the
pause here is controlled by two loops—the
inner loop which sets the delay coarsely and
the outer pause loop which fine tunes the
delay.

The inner loop is performed on the E
register, which is set to 2 by Id e,2, and
decremented by dec e. The jrnz,inner then

makes a relative jump back to the label inner if
the result is not zero. So this inner loop is
performed twice each time the processor goes
round the outer loop.

The outer loop is performed 205 times
with the B register. It is made up of the Id
b,205 which loads the number into the B
register and the djnz which decrements the B
register and jumps if the result is not zero all
in one. There is no similar instruction that
works with the E register. That's why the
decrementing and jump have to be done using
two separate instructions.

If you try altering these two values you will
see how the value put into the E register alters
the width of the bands a lot, while the value
put in the B register only alters it a little.

CHECKING FOR BREAK
At some point you will want to escape from
this routine. And to do that without switching
your computer off you must include an escape
routine.

The one used here checks to see if the
IBREAKI key has been pressed. This is done
using the in instruction.

But first, Id d,a loads the contents of the
accumulator in the D register. The ac-
cumulator is going to be used for something
else for a moment and the D register is doing
nothing, so it can be used as a temporary
store.

The accumulator is then loaded with the
hex number 7F. This number specifies the
bottom righthand corner of the keyboard (see
page 465). Then in a,254 takes the bit pattern
representing the status of the bottom right-
hand section of the keyboard into the
accumulator.

It is bit zero that denotes the state of the
IBREAKI key. If the IBREAKI key is not being
pressed, bit zero is 1, but if it is being pressed
bit zero is 0.

A quick way to check this is to rotate bit
zero—which is at the extreme righthand end
of the register—into the carry flag, then check
on the status of the carry flag. The rra does the
rotation, and the rts nc returns to BASIC
when there is no carry. So when 'BREAK' is
pressed and bit zero is changed from 1 to 0,
the rts instruction breaks out of the routine.
Otherwise it continues. (Note that the con-
ditional return takes the form rts only with
the assembler published in INPUT. Other
Spectrum assemblers use the standard ret
with conditional returns.)

CLOSING THE LOOPS
Once you have a way out of the routine, the
value of the accumulator is restored by Id
a,d—it just loads the number temporarily

stored in D back into A.
Then A is incremented to specify the next

colour. This is compared to the number 7 by
cmp 7. Seven is the number that specifies
white, and white is the colour of the screen.

So if the number in the accumulator is not
that specifying white, the jrnz,Ioop jumps
back to out the colour for the next band. And
when this loop has counted up from 0 to 7, the
processor moves onto the jr redo which takes
it right back to the beginning again to wait for
the next screen scan.

You'll notice that you don't have to worry
about making sounds by accident when
changing the border colour. The routine does
not affect bit four which moves the speaker.
The highest number outed here is 7 and the
lowest number that would affect bit four is 16.

SOUND EFFECTS
The time has come to tackle a more complex
sound effect using the out command. The
following routine makes a Star Wars-style
laser zapping sound using the combination of
a tone of rising pitch and one of falling pitch.

org 64600
Id a,(23624)
rrca
rrca
rrca
Id b,0

loop push bc
xor $10
out 254,a
push af
xor a
sub b
Id b,a
pop af

pausea nop
djnz pausea
xor $10
out 254,a
pop bc
push bc

pauseb nop
djnz pauseb
pop bc
djnz loop
ret

The first four instructions of this program are
exactly the same as the first four in the other
sound out program. Remember that these
preserve the border colour.

The next two—which initialize the two
counters, one in the B register and one pushed
from the B register onto the stack—are the
same as well. And so are the next two which
xor bit four with 16 and out the result through
port 254, though this time the xor is suffixed

Making Music on the Spectrum
Using the machine code out it is possible
to make music on your Spectrum. But
adjusting the pause loop to get the pitch
you require is laborious.

It would be much easier to write a
routine which you could feed two
parameters—related to pitch and
duration—into. Fortunately, this has al-
ready been done for you in the ROM. It is
called the BEEP routine and it starts at
03F8. And there is an additional subrout-
ine at 03B5 called BEEPER which uses the
value in H L to control pitch and the value
in DE to control the duration.

The pitch value you need to put in H L is
given by 437,500/f-30.125, where f is the
note's frequency. Multiply frequency by
duration required to give the number you
put in DE. There is no 10-second limit on
the duration of the note when you are using
this method.

If you call the BEEP routine directly
the same values for duration and pitch
used with the BASIC BEEP should be
pushed onto the stack.

by $10 which is 16 in hex. This makes the
sound.

But then the contents of the accumulator
are pushed onto the stack—along with the
contents of the flag register. Registers have to
be pushed in pairs. The xor a clears the
accumulator and sub b takes the contents of
the B register away from 0—the contents of
A—and stores the result in A. This effectively
inverses the contents of B. When B is 255, the
result of the subtraction is 1. And when B is 1,
the result is 255.

The Id b,a loads the result of the subtrac-
tion back into B. Then the contents of the
accumulator which were stored on the stack
are popped off again, back into the
accumulator.

The contents of the accumulator are
popped back off the stack. Then there's a
pause loop that counts down the contents of
the B register—djnz decrements the B register
and tests for zero, remember. And bit four is
flipped and outed to the speaker.

The initial value of the B register is then
restored by popping it off the stack. But this
value will be needed again later, so once it has

been copied into the B register it is pushed
back onto the stack. Now it is both in the B
register and on the stack.

The next pause loop works on this initial
value of B. Then the initial value of the B
register is popped back off the stack again.
This has to be done every time after a djnz
instruction to restore the value of the B
register. When the processor comes out of a
djnz loop its value must be zero.

The initial value of the B register is then
decremented. If it is not zero, the processor
loops back to the beginning of the loop loop
and the whole routine is performed again with
a lower value of B. And on the 256th pass,
when B is finally decremented to 0, the
processor moves onto ret and returns to
BASIC.

You will see that the pausea loop is perfor-
med 256 times on the first pass, once on the
second pass and then one more time each time
the main loop is executed. But the pauseb loop
is performed 256 times on the first pass and
one less time for each time the main loop is
executed.

ADDING NATURAL TONES
The sounds that computers produce usually
sound very synthetic because they are too
pure. Musical instruments and other devices
that generate sound in the outside world tend
to be rather haphazard in the way they
produce noise. But it is this very randomness
that makes the sound pleasing to the human
ear. An instrument plays not only the funda-
mental pure tone but also harmonies of it.

There is a way to add a random factor to
your sound effects on the Spectrum, though.
The RAM between 16,384 and 32,767 is on
chips that are frequently interrupted by the
Uncomitted Logic Array which looks after
the TV picture and performs other hardware
duties.

Normally, these interruptions are so
quick—typically a couple of microseconds—
they are not noticed. But sounds are so time
dependent that the ear can sense the slightest
variation. So if you put your sound effect
programs in this area they will be given a
more natural, random feel—and they will last
slightly longer.

Unfortunately, the assembler given in
INPUT occupies this area of memory. But if
no printer is being used you can assemble
your sound effects programs in the printer
buffer, if they are short enough. The printer
buffer lies between 23,296 and 23,552. So you
can use 23,296 as your origin. And as the
printer buffer is protected against overwriting
by the BASIC you will not have to do a CLEAR
before assembling.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in

Machine code programming
animation

Vic 20, ZX8I
assembler

Dragon, Tandy
Spectrum

420 	modifying programs for

A
Adventure games,

using the text compressor
	684-689

Applications
CAD
	

566-572,573-577
conversions program
	520-527

extend your typing
	

498-503
UDG designer
	 721-727

ASCII codes
	 420-421

ASCII files
	 622-623

Assembler
Dragon, Tandy
	 440-444

ATTR, Spectrum
	

656-658
Autorun 	 460-461
Axes for graphs
	

415-416,470-471

B
Barchart 	 470-476
Basic programming

bouncing ball graphics 	584-592
Commodore 64
graphics 	 420-421
defining functions 	 578-583
detecting collisions 	656-661
formatting 	 433-439
making more of UDGs

450-457,484-491,528-533
more music 	 701-707
plotting graphs 	413-419,470-476
probability 	 694-700
protecting programs 	458-463
simple music 	 669-675
sort routines 	 708-711
using files 	 622-627
wireframe drawing 	509-513,560-565

605-611,662-668
Bootstrap programs
	459-463

Bug tracing
	 477-483

Bulletin boards 	613,712-715
Bytes, saving

Acorn
	 546-552,593-595

C
Cardgame graphics 	 534-540
Cassette storage 	 504-505
Character sets

redefining 	 450-457
Collisions, detecting 	656-661
Communications 	 612-615
Computer Aided Design,

program 	 566-572,573-577
Control commands,

in wordprocessing 	 545
Conversion program 	520-527

D
Data storage
	 413

Datafiles 	 623-624
Defining functions
	 578-583

Dip switches 	 646
Disk drives 	 506-508

converting programs for,
Commodore 64
	

676-682
Displays, improving
	 433-439

Distribution curves
	 697-700

Drawing in 3D
	

560-561
Duck shooting game 	492-497

E
Editing programs

Commodore 64

	

596-597 	disk, Commodore 64 	 676-682

	

614 	modifying programs for
Spectrum microdrive 	616-621
program squeezer

	

581 	Acorn 	 546-552,593-595

	

646-647 	Dragon, Tandy 	 637-641

	

646 	sound effects, Spectrum 	728-732
Memory

saving, Acorn 	 546-552

	

622-627
	SAVEing on tape 	 532-533

Microdrives 	 505

	

626-627
	saving and loading on 	616-621

	

627
	Modems 	 612-615,712-714

	

626
	Monitors and TVs 445-449

Motion

	

434 	equations of 	 584-592

	

716-720 	Multicoloured background 	490
Music

musical keyboard 	 672-674
scales 	 670-672
transcribing 	 702-703

N
Networks 	 614,715

O
On-board graphics

Commodore 64
	

420
OUT, Spectrum
	

728-732

P
Parameters for functions

	578-583
Pascal's Triangle
	 697

Pie charts 	 474-476
PEEK, Commodore 64

Vic 20, 	 656,658-659
Peripherals

bulletin boards 	 712-715
data storage devices 	504-508
light pens 	 690-693
modems 	 612-615
setting up a printer 	642-647
TVs and monitors 	 445-449
wordprocessors? 	 541-545

Planning screen displays 	433-439

	

492-497 	POINT, Acorn 	 656,659-660

	

464-469 	Dragon, Tandy 	 556,660-661
Pontoon program 	534-540,553-559,

	

468-469
	 598-604

	

485-491
	PPOINT, Dragon, Tandy 	656,660-661

PRINT 	 434-438
Acorn, Commodore 64,
Spectrum, Vic 20 	 434

PRINT AT

	

672-674 	Acorn 	 434
Spectrum 	 434,436

PRINT SPC
Commodore 64, Vic 20 	434-435

PRINT TAB
Acorn 	 434,438
Commodore 64, Vic 20 	 435
Spectrum 	 434

PRINT @
Dragon, Tandy 	 435

PRINT #, Commodore 64, Vic 20 	644
Printers, setting up 	 642-647

control commands 	 644-647
428-432 Program squeezer

Acorn 	 546-552,593-595

	

430-444 	Dragon, Tandy 	 637-641
477-482 Program symbols

Commodore 64 	 420

the last issue of INPUT.
Protecting disks and tapes 	683
Protecting programs
	459-463

Q
Quote mode

Commodore 64
	

420

R
ROM graphics

Commodore 64
	

420

S
Screen pictures

from UDGs
	 484-491

Seikosha codes
	 647

Serial access
tape systems
	

505-506
Sort routines
	

708-711
delayed replacement
	

708-710
insertion
	 710-711

quick
	

711
scatter
	 710

Space station,
drawing a
	 666-668

Speed POKE
Dragon, Tandy
	 444

Spelling-checker
	 543-544

Storage devices
	

504-508
String functions

Acorn, Spectrum
	 581

Stunt rider UDG, Vk 20
	

429
Submarine UDG, Vic 20

	
430

SYS
Commodore 64, Vic 20
	

463

T
Tape storage 	 504-505
Teletext 	 614,715
Text compressor

628-636,648-655,684-689
Tokens

Commodore 64 	 42'
Trace program

Spectrum 	 477-483
Commodore, Vic 20 	 514-519

TVs and monitors 	 445-449
Typing tutor part 4 	 498-503

U
UDGs

animals
	 484-491,528-533

creating extra
	 450

program to design
	 721-727

redefining numbers
	452-457

User defined functions
	578-583

V
Videotex
	 614,715

Viewdata
	 715

Virtual memory
	 545

Volatile storage
	 504

Wireframe drawing,
and colour
	 512

combining images
	 662-668

in 3 dimensions
	 560-565

with perspective
	

605-611
Wordprocessing
	 541-545

Dragon
Electronic mail
Ellipse, drawing a

Commodore 64, Dragon,
Tandy, Vic 20

Epson codes
Escape codes

F
Files, using

commands for
Acorn
Dragon, Tandy
Commodore 64, Spectrum,Vic

FLASH command
Spectrum

Flight simulator

G

J
Joysticks,

duck shooting game
in games

JOYSTK
Dragon, Tandy

Jungle picture

K
Keyboard, as a musical instrument

L
Legends

for graphs
Letter frequency,

for text compressor
Light pens

M

Games programming
adventures, planning your own 422-427
duck shooting game 	492-497
flight simulator 	 716-720
pontoon game 	535-540,553-559
text compressor

628-636,648-655,684-689
Graphics, CAD program 566-572
Graphics, ROM

Commodore 64 	 420
Graphs 	 413-419
Grid, drawing a 	 512-513

H
Histograms and barcharts 	470-476

Imperial to metric
conversions
	 520-527

Interest on savings
program
	 583

Inversing the screen
ZX8I
	

432

416

636
690-693

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

JFind out the BASIC needed to plot the
TRAJECTORIES of flying objects—a
principle with many applications

JComplete your UDG GENERATOR
with new routines to enable quick, easy
manipulation of the finished designs

Discover DATABASE MANAGEMENT
SYSTEMS, and how to make really good
use of your files

_/ Continue the FLIGHT SIMULATOR
program by finding out how to set the
aeroplane in motion

JPlus, a machine code routine for the
COMMODORE 64 to give you BASIC
control of HI-RES GRAPHICS

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

