
A MARSHALL CAVENDISH 24 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 2 	 No 24

GAMES PROGRAMMING 24

GET OFF TO A FLYING START 	 733

With your flight simulator graphics programmed in,
now you can set the aeroplane in motion

BASIC PROGRAMMING 52

WHAT GOES UP MUST COME DOWN 	740

Programming the path of a flying projectile, building
up towards a simple shooting game

MACHINE CODE 25
Imans

COMMODORE HI-RES GRAPHICS 	74

The first part of a routine to extend the BASIC with
hires graphics commands

PERIPHERALS 11
DATABASE MANAGEMENT 	

7
-SYSTEMS 	752:

Storing information is one thing—it's when you can
manipulate it that it becomes really useful

APPLICATIONS 14

ADAPTING YOUR

Complete your UDG designer with routines that enable
instant rotation, mirroring, inversing, and more ...

INDEX
The last part of INPUT,Part52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Steve Bielschowsky/Bernard Fallon. Pages 733, 734, 738, Paul
:have/Ian Stephen/ Zefa. Pages 740, 742, 746, Mohsen John Modaberi. Page
748, Steve Bielschowsky/Bernard Fallon. Pages 753, 754, 755, Russell Walker.
?ages 757, 764, Peter Reilly. Pages 758, 760, 762, Andrew MacConville.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES:Whenwriting in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries–and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

ri
a

SPECTRUM 16K, tri7
48K,128, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
MB and 11+ 	DRAGON 32 and 64

a 7181 	VIC 20 IT 1C.OLIOIR
 TRSBO

 COMPUTER

FLYING THE AEROPLANE ON
AUTO-PILOT

NEARING THE RUNWAY
PLOTTING THE COURSE

WORKING DISPLAYS

Start the engines in part two of the
flight simulator, and see your
instrument panel come alive. But
hang on to your hats, because your
auto-pilot has gone crazy!

In the first part of this article, you entered the
lines that recreated the interior of a cockpit on
your screen. And in the case of the Dragon
and the Tandy, you also set your aeroplane
high in the sky, motionless but ready.

In this part, the aeroplane is set in motion
and the instrument panel comes to life, so that
although you are not yet in control, you can
see how the aeroplane's instrument panel
responds to the movements of the craft.

FLYING THE AEROPLANE
This is by far the longest part of the program.
A complex series of interdependent variables

have to be updated constantly to control the
progress of the aeroplane. At the same time,
the instrument panel needs to be redrawn as
the position and height of the aeroplane
change, and the dials monitor the movement.

NEARING THE RUNWAY
A radar image of the runway shows you the
angle at which you are approaching it on the
Spectrum, Acorn and Commodore com-
puters. On the Dragon and Tandy, an image
of the runway itself can be seen through the
window as you approach close enough to land.
The runway 'grows' progressively larger as
you near the ground, using the computers'
ability to draw ellipses.

PLOTTING THE COURSE
Many factors have to be taken into account
before you can plot the position of the
aeroplane accurately. The direction in which

you are flying, for instance, is affected by the
wind direction, and the roll of the aeroplane.
The speed at which you travel forwards
depends partly on the wind speed. The
distance you fall, or climb, is connected to the
speed at which you are flying, and so on.

To update the dials and counters, the
changing variables must be assessed accord-
ing to how they affect the readings: then they
can be redrawn.

2 LET WY =0: LET WX= 0: LET GZ = 0: LET
GY= 0: LET GX= 0

5 LET RW=0: LET Y1=120: LET Y2=120:
LET Y3=40: LET Y4=40: LET POW= 0:
LET GC = 0: LET RB = 0: LET LL= 0: LET
YC= 0: LET AD =0: LET ST=0: LET
RL= 0: LET BC =0: LET NC= 0: LET
PT= 0: LET PX = 0: LET VZ =0: LET
VY = 0: LET VX= 0

500 LET RA = AD•C: LET VX=AS*SIN RA
510 LET VY= AS•COS RA: RETURN
1000 LET PZ= PZ+GZ: LET PY=PY+GY:

LET PX=PX+GX
1025 IF ST=1 THEN PRINT OVER 1;AT

4,12;"SCITLIA111111": LET ST=0:
GOTO 1040

1030 IF AS <30 THEN GOSUB 1500
1040 LET AD =AD + RL: IF AD <0 THEN LET

AD =AD +360
1050 IF AD >359 THEN LET AD =AD-360
1060 LET VZ=AS•SIN (PIT) -10+AS/15
1070 LET GZ=VZ: LET GY=VY+WY: LET

GX=VX+WX
1080 IF VY= 0 THEN LET GD= -P1/2:

GOTO 1100
1090 LET GD= -ATN (VX/VY)/C
1100 GOSUB 500
1110 RETURN
1500 LET ST=1: PRINT OVER 1;AT

4,12;"S ❑ T ❑ A ❑ L ❑ L": FOR M=1 TO
4: FOR N=20 TO -20 STEP -4: BEEP
.01,N: NEXT N: NEXT M

1510 LET RL= INT (RND•21) -9: LET
PT= -21 -INT (RND*5)

1520 RETURN
2180 IF GC< >0 THEN GOSUB 2200
2190 LET AS = AS +16*(TC .30- AS -

8•PT)/AS: GOSUB 2200: GOTO 2205
2200 PLOT 35,50: DRAW OVER 1;15•SIN

(AS*P1/200),15*COS (AS'PI/200): RETURN
2205 IF GC< > 0 THEN PLOT 155,50: DRAW

OVER 1;10•SIN (TN*P1/5),10•COS
(TN*P1/5): PLOT 155,50: DRAW OVER
1;15•SIN (UN'PI/500),15'COS
(UN*P1/500)

2210 LET TN = PZ/1000: LET UN = PZ -
1000•INT TN: PLOT 155,50: DRAW OVER
1;10•SIN (TN*P1/5),10•COS (TN*PI/5):
PLOT 155,50: DRAW OVER 1;15•SIN
(UN•13 1/500),15•COS (UN'PI/500)

2220 IF GC< >0 THEN GOSUB 2230
2225 IF POW= -1 AND TC > .2 THEN LET

TC=TC- .2
2226 IF POW = 1 AND TC <8.8 THEN LET

TC =TC + .2
2228 GOSUB 2230: GOTO 2240
2230 PLOT 215,50: DRAW OVER 1;15•SIN

(TC*P1/5),15•COS (TC*PI/5): RETURN
2240 PRINT AT 21,2;ABS INT AD;" ❑ ❑ "

2250 IF PY =0 THEN LET RB = 0: GOTO 2260
2255 LET RB=ATN (PX/PY)/C: IF PY > 0

THEN LET RB=RB+180
2260 IF RB<0 THEN LET RB=RB+360
2270 PRINT AT 21,10;INT RB;"111111";

AT 21,18;ABS INT PX;"1D
2280 PRINT AT 21,25;INT (SQR

(PY•PY + PX•PX));"
2290 IF ()I< =110 AND Y2< =110) OR

(Y1> =130 AND Y2> =130) THEN
GOTO 2300

2295 IF GC< >0 THEN PLOT OVER
1;X1,168-Y1: DRAW OVER 1;X2 - PEEK
23677,168 - Y2 - PEEK 23678

2300 LET YC =120+ (PT/3): LET X1=80:
LET X2=110: LET Y1 = YC +17•TAN
(RL*2•C): LET Y2=VC-17•TAN (RL•2•C)

2310 IF (YC<110 OR YC>130) AND RL=0
THEN GOTO 2376

2320 IF Y1 <110 THEN LET X1 =95-
(95 -X1)*(110-YC)/(Y1 -YC): LET
Y1=110: GOTO 2340

2330 IF 111 >130 THEN LET X1 =95-
(95- X1)•(130-YC)/(Y1 -YC): LET
Y1=130

2340 IF Y2<110 THEN LET X2=95-
(95 - X2) . (110 - VC)/(Y2 -YC): LET
Y2=110: GOTO 2360

2350 IF Y2>130 THEN LET X2=95-
(95 - X2)*(130 - YC)/(Y2 - VC): LET
Y2=130

2360 IF X1 <80 OR X2 >110 THEN GOTO
2376

2370 PLOT OVER 1;X1,168-Y1: DRAW OVER
1;X2 - PEEK 23677,168-Y2-PEEK 23678

2376 IF (RL = RR AND PP=PT) THEN GOTO
2500

2377 IF (Y3< =2 AND Y4< =2) OR (Y3>
=90 AND Y4> =90) THEN GOTO 2380

2378 IF GC< >0 THEN PLOT OVER
1;X3,176-Y3: DRAW OVER 1;X4 - PEEK
23677,(176 - Y4) - PEEK 23678

2380 LET YC =33 + PT•4: LET X3=11: LET
X4=244: LET Y3 = YC + 118*TAN
(R122•C): LET Y4 = YC -118•TAN
(RL•2•C)

2390 IF (YC <2 OR YC > 90) AND RL = 0
THEN GOTO 2450

2400 IF Y3<2 THEN LET X3=128-
(128 - X3)•(2 - YC)/(Y3 - VC):
LET Y3 = 2: GOTO 2420

2410 IF Y3>90 THEN LET X3=128 -
(128 - X3)*(90- YC)/(Y3 - YC):
LET Y3=90

2420 IF Y4<2 THEN LET X4=128-
(128 - X4)*(2 - VC)/(Y4 - VC):
LET Y4=2: GOTO 2440

2430 IF Y4 > 90 THEN LET X4=128-
(128 - X4)*(90 - YC)/(Y4 - VC): LET
Y4=90

2440 IF X3<11 OR X4>244 THEN GOTO
2500

2445 OVER 1: PLOT X3,176-Y3: DRAW
X4- PEEK 23677,(176-Y4) - PEEK
23678: OVER 0

2500 GOSUB 8000
2505 IF GC = 0 THEN LET GC = 1
2510 LET RR =RL: LET PP=PT: RETURN
5080 LET GZ=VZ: LET GY=VY+WY: LET

GX=VX+WX
5090 LET TC= 5
5100 LET RT-= 3: LET TP=5: LET WR =50

5500 IF INT (RND*5) =1 THEN LET
RL=RL+ INT (RND*5)-2: IF INT
(RND*5) =1 THEN LET PT= PT+ 3 - INT
(RND*2) +1 *2

5510 GOSUB 1000: IF PZ <0 THEN GOTO
5530

5520 GOSUB 2180: GOTO 5500
5530 GOTO 5500
8000 IF GC< >0 THEN PLOT 127,174:

DRAW OVER 1;OX,OY
8010 LET OX=16'SIN (RB*(PI/180)): LET

OY= - (16•ABS COS (RB*(PI/180)))
8020 PLOT 127,174: DRAW OVER 1;OX,OY
8025 LET WB = AD: IF AD >180 THEN LET

WB = WB -360
8026 IF RB >180 THEN LET

WB=WB +360- RB: GOTO 8040
8030 LET WB = WB - RB
8040 IF RW=1 THEN PLOT OVER

1;RDX,175-RDY
8050 LET RW=0: IF ABS WB> 57 THEN

RETURN
8060 LET RDX= X3+ INT

(((X4 - X3)/2) - SIN
(WP(P1/180))*(X4-X3)•.6)

8070 LET RDY = Y3 + ((Y4 - Y3)*
((RDX - X3)/(X4 - X3)) + 2)

8080 IF RDY<2 OR RDY>90 OR RDX<11
OR RDX > 244 THEN RETURN

8090 LET RW=1: PLOT OVER
1;RDX,175-RDY

8100 RETURN

The POKE in Line 1 sets the computer to print
in upper case letters. Line 5 sets all the
variables to 0. Line 110, which you entered
last time, sends the program to 5000 and
draws the cockpit of the aeroplane, then Line
5080 sets the variables that control the po-
sition of the aeroplane in the sky: GZ refers to
the distance the aeroplane is along the Z
axis—its height up or down; VZ is the velocity
along the same axis; VY refers to the velocity of
the plane forwards or backwards—that is,
along the Y axis; WY is the windspeed in the
same direction. GX, VX and WX correspond to
the distance moved, velocity and windspeed
along the X axis, which runs right to left.

Line 5090 sets the rev counter, and Line
5100 defines the limits of the roll (RT), the
pitch (TP) and the width of the runway (WR).

Line 5500 is the temporary command
standing in for the main control routine,
which you will enter in the next part.

Line 5510 sends you to the subroutine that
begins at Line 1000 and ends at Line 1110.
This subroutine updates all the variables as
the aeroplane flies. Lines 1025 and 1030
check to see whether you have allowed your
aeroplane to stall by letting its speed drop
below 30 metres per second. If so, it sends
you to the subroutine 1500 to 1520, which
recreates the effect of a stall. Line 1510 makes
sure that you won't know quite what will
happen when you go into your stall—you

could just drop straight out of the sky, or spin
wildly as you fall.

The subroutine to which you are sent by
Line 1100, contained in Lines 500 and 510,
works out the angle at which you are flying.

The next major subroutine, starting at
Line 2180, and ending at Line 2510, redraws
the dials and counters when the information
they record is updated. Line 2180 checks the
GC Counter to see if there is an image that
needs to be replaced. The subroutine con-
tained in the Line 2200 draws the new
position of the hand of the airspeed dial.
Lines 2205 and 2210 calculate and redraw the
new position of both hands on the altitude
dial. Line 2230 moves the hand on the new
counter using the calculations made in Lines
2225 and 2226.

The rev counter is updated by Line 2240.
Lines 2250 to 2270 calculate the new runway
bearing and drift, while the distance is cal-
culated and printed by Line 2280.

The artificial horizon in the second dial is
calculated, and is drawn, by Lines 2280 to
2370.

The line of the actual horizon is checked by
Line 2376, and Lines 2377 to 2445 calculate
and redraw it if it can be seen through the
cockpit window.

The subroutine that starts at 8000 and
ends at 8100, to which you are sent by Line
2500, calculates and draws the radar image of

the runway, which you see at the top of your
screen, and also the dot of the runway that
appears just below the horizon line through
the cockpit window, when it is in view.

10 GOTO 5000
500 RA = AD*C:VX = AS*SIN(RA)
510 VY=AS'COS(RA):RETURN
1000 PZ= PZ+GZ:PY= PY+GY:

PX= PX+GX
1010 PT=PT+NC:RL=RL+ BC
1020 AS = AS +16*(TC*30 — AS —8*PT)/AS
1030 IF SL =1 THEN TEXT 60,50,

"STALL",0,3,8:SL = 0:GOT01050
1040 IF AS <30 THEN GOSUB 1500
1050 AD=AD+RL:IF AD<0 THEN

AD =AD +360
1060 IF AD >359 THEN AD =AD —360
1070 VZ=AS*SIN(PT*C) —10 +AS/15
1080 GZ=VZ:GY=VY+WY:GX=VX+WX
1090 IF VY= 0 THEN GD= — n/2:GOTO

1110
1100 GD= —ATN(VX/VY)/C
1110 GOSUB 500
1120 RETURN
1500 SL =1:TEXT 60,50,"STALL",1,3,8
1510 RL=INT(RND(1)*21)-9:PT=

21 —INT(RND(1)*5)
1520 RETURN
2000 LINE 20,150,20 +13*SIN(AS*70200),

150 —13*COS(AS*70200),4
2010 TN = PZ/1000:UN = PZ —1000'

INT(TN)
2020 LINE 100,150,100 +6*SIN(TN*705),

150 —6*COS(TN*n/5),4
2030 LINE 100,150,100 +13*SIN(UN*

n/500),150 — 13*COS(UN*n/500),4
2040 LINE 140,150,140 +13*SIN(TC*

n/5),150 —13*COS(Tnt/5),4
2050 TEXT 0,190,STR$(ABS(INT(AD))),

4,1,7:RETURN
2060 IF PY = 0 THEN RB = 0
2065 IF PY< > 0 THEN RB=ATN

(PX/PY)/C:IF PY> 0 THEN RB= RB +180
2070 IF RB<0 THEN RB=RB+360
2075 GOSUB 7000
2080 TEXT 35,190,STR$(INT(RB)),

1,1,7:TEXT 70,190,STR$
(ABS(INT(PX))),1,1,7

2090 TEXT 110,190,STR$(INT(SQR
(PY*PY+ PX*PX))),1,1,7

2095 S1= INT(RB):S2=ABS(INT(PX))
2096 S3 = INT(SQR(PY* PY+ PX*PX))
2098 IF KJ =1 THEN LINE X1,Y1,X2,Y2,4
2100 KJ = 0:YC =150 + (PT/3):X1 =50:

X2 = 70:Y1 =YC +17*TAN(RL*2*C):
Y2 = YC —17*TAN(RL*2*C)

2110 IF (YC<137 OR YC>163) AND RL=0
THEN 2320

2120 IF Y1 <137 THEN X1=60—

(60 —X1)*(140—YC)/(Y1 —YC):
Y1 =140:GOTO 2140

2130 IF Y1 >163 THEN X1 =60=60—(60—Xi)
*(160 —YC)/(Y1 —YC):Y1 =160

2140 IF Y2<137 THEN X2=60 —
(60 —X2)*(140 —YC)/(Y2—YC):
Y2 =140:GOTO 2160

2150 IF Y2 > 163 THEN X2=60 — (60 — X2)
*(160 — YC)/(Y2 — YC):Y2 = 160

2160 IF X1 <50 OR X2> 70 THEN 2190
2170 LINE X1,Y1,X2,Y2,4:KJ =1
2190 IF RL= RR AND PP= PT THEN 2290
2200 IF HF =1 THEN LINE X3,Y3,X4,Y4,0
2210 HF = 0:YC = 33 + PT*4:X3-= 0:X4=

159:Y3 = YC + 59*TAN (R L*2•C):
Y4 =YC —59•TAN(RL•2*C)

2220 IF (YC<0 OR YC>109) AND RL= 0
THEN 2290

2230 IF Y3 < 0 THEN X3=80 — (80 — X3)*
(—YC)/(Y3—YC):Y3= 0:GOTO 2250

2240 IF Y3 >109 THEN X3=80— (80 — X3)*
(109 — YC)/ (Y3 — YC):Y3 =109

2250 IF Y4 < 0 THEN X4=80 — (80 — X4)*
(—YC)/(Y4—YC):Y4=0:GOTO 2270

2260 IF Y4> 109 THEN X4=80 — (80 — X4)*
(109 — YC)/(Y4 — YC):Y4 =109

2270 IF X3 < 0 OR X4 >159 THEN 2290
2280 HF =1:LINE X3,Y3,X4,Y4,3
2290 WB =AD:IF AD >180 THEN

WB=WB-360
2300 IF RB>180 THEN WB=WB+

360 — RB:GOTO 2310
2305 WB=WB — RB
2310 IF ABS(WB) > 60 AND ABS

(PY) >1000 THEN 2350
2320 AN =59/(60•SQR((X3 — X4)*(X3 —

X4) + (Y3 — Y4)•(Y3 —Y4)))
2325 X5= (X3+ X4)/2 + SGN(X3 —

X4) +WB*AN*(X3+ X4)
2330 Y5= (Y3 + Y4)/2 + 2 + WPAN•

(Y3— Y4)
2335 IF X5<0 OR X5>159 OR Y5<0 OR

Y5>109 THEN 2350
2340 IF ABS(PY) <1000 THEN

R =8—Y5/10: GOTO 2350
2345 R =4000/ABS(PY): IF 13•10 + Y5 > 80

THEN R=8—Y5/10
2350 GOSUB 8000
2370 RR =RL:PP= RT:RETURN
5000 PRINT "Ok":NRM:COLOUR

6,6:PP= —1:RR= —1
5010 C=ir/180:PY = — 20000:PZ = 2000:

AS =150
5020 PRINT " El INPUT WIND SPEED

(111 —50k) M/S"
5025 PRINT "AND DIRECTION

(U0 -359p) DEGREESgr:FLASH
5,10

5030 INPUT X0,X1:IF X0>50 OR X0<1 OR
X1 <0 OR X1 > 359 THEN 5000

5040 X0=X0/3:OFF:POKE 650,128

5050 PRINT AT(0,20)"WIND SPEED
❑ =";3*X0;"M/S":PRINT
"111 DIRECTION ❑ =";Xl;
"DEGREES"

5060 WY= — XO*COS(Xl•C)
5070 WX = — XO*SIN(X1•C)
5080 GZ = VZ:GY = VY + WY:

GX =VX +WX
5090 TC =5:RT = 3:TP 5:WR =50:

PAUSE 2
5500 GOSUB 2000: IF INT(RND(1)•10) =1

THENRL= RL+SGN(TL)*INT
(RND(1)*4)-1

5510 IF INT(RND(1)•10)=1 THEN
PT= PT+3 —INT(RND(1)*4+1)*2

5520 GOSUB 1000:IF PZ< =0 THEN 5540
5530 GOSUB 2000:GOSUB 2060:GOTO 5500
5540 GOTO 5540
7000 TEXT 35,190,STMS1),2,1,7:

TEXT 70,190,STR$(S2),2,1,7
7010 TEXT 110,190,STMS3),2,1,7:

RETURN
8000 IF WO = 1 THEN LINE 78,0,OX,OY,0
8010 WQ=1:0X=78—(16*SIN(R13*

(7/180))): OY = (16*ABS(COS
(R13*(7r/180))))

8020 LINE 78,0,OX,OY,2
8025 WB =AD:IF AD >180 THEN

WB=WB-360
8026 IF RB>180 THEN WB=WB+

360— RB:GOT08040
8030 WB =WB — RB
8040 IF RW=1 THEN PLOT G1,G2,0
8050 RW= 0:IF ABS(WB) >57 THEN

RETURN
8060 RX = X3 +INT(((X4 — X3)/2) —

SIN(WB*(n/180))*(X4—X3)*.6)
8070 RY = Y3+ ((Y4—Y3)*((RX-

X3)/(X4 — X3)) + 2)
8080 IF RY<0 OR RY>109 OR RX<0 OR

RX>159 THEN RETURN
8090 RW =1:PLOT RX,RY,2:G1 = RX:G2-= RY
8100 RETURN

The program jumps to Line 5000 as soon as it
is RUN. Lines 5000 and 5010 initialize a range
of variables which control the position of the
aeroplane in the sky. Initially, the aircraft is
set 20,000 metres from the runway, and
2000 metres from the ground.

Lines 5020 to 5030 allow the pilot to
choose the wind strength and direction, and
check if the inputs are within the permitted
range. The values are PRINTed in Line 5050,
before Lines 5060 and 5070 calculate the
wind speed in the forwards direction and the
wind speed in the left to right direction. WX
and WY are then used in Line 5080 to adjust
the position of the aeroplane.

Line 5090 sets the rev counter (TC), the
limits of the roll (RT) and the pitch (TP), and

the runway width (WR).
Line 5500 calls the subroutine starting at

Line 2000, and ending at Line 2050. The
subroutine updates the dials in the cockpit
display. Lines 2000, 2020, 2030 and 2040
draw each of the needles in turn, according to
the speed and position of the aeroplane.

RETURNing to Line 5500, the remainder of
the line and the whole of Line 5510 act as a
stand-in for the control routine which you'll
be adding in the next part of this article.

Line 5520 calls the subroutine starting at
Line 1000. The subroutine updates all the
variables as the aeroplane flies. Lines 1030
and 1040 checks for stalls—if you have
allowed the aeroplane to drop below 30
metres per second. If the airspeed has
dropped, the program jumps to the subrout-
ine starting at Line 1500, which displays the
stall message on screen, and sets the roll and
pitch randomly to simulate losing control of
the aeroplane. Line 1110 calls the subroutine
at Line 500. Lines 500 and 510 simply work
out the speed of ascent or descent and the
speed from left to right.

RETURNing from Line 1120 to Line 5520,
the program checks if the aeroplane has
touched down, and jumps to Line 5540 if it
has. Line 5540 is just a stop put here
temporarily.

Line 5530 calls the subroutine at Line
2000 to update the dials. Next, the subroutine
at Line 2060 is called. Lines 2060 to 2070
update the runway bearing before the last
three numerical displays are deleted by the
subroutine at Line 7000 onwards. The new
readings are displayed by Lines 2080 and
2090. New values for Si, S2 and S3 are
calculated in Lines 2095 to 2096—these are
used in Lines 7000 and 7010.

The artificial horizon is drawn by the LINE
in Line 2098—the corresponding erasing
statement is at Line 2170 and KJ is simply a
flag so that the computer knows when to draw
a new artificial horizon. Lines 2100 to 2160
update the control variables. The lines from
2200 to 2280 deal with the actual horizon in
exactly the same way.

The new position of the runway is cal-
culated by Lines 2290 to 2370, using the
subroutine between Lines 8000 and 8100 to
draw the runway in the appropriate position.

After the horizon has been redrawn, the
display has been fully updated, and Line 5530
sends the program back to Line 5500. Notice
how the main loop of the program is just these
four lines.

15 GOTO 1150
380 DEF PROCWORKOUT

390 AS2 = AS:TN2 =TN:UN2= UN
400 PZ= PZ+ GZ:PY= PY+ GY:

PX= PX+GX
410 AS =AS +16 . (TC*30 — AS —

8*PT)/AS
420 IF ST=1 THEN PRINTTAB (15,10)

"DO 0111111":ST=0:GOTO 440
430 IF AS <30 THEN GOSUB 520
440 AD=AD+RL:IF AD<0 THEN

AD =AD +360
450 IF AD >359 THEN AD = AD-360
460 VZ =AS*SIN(PT*C) —10 + AS/15
470 GZ=VZ:GY=VY+WY:GX=VX+WX
480 IF VY= 0 THEN GD= —PI/2 ELSE

GD= —ATN(VX/VY)/C
490 RA AD . C:VX=AS'SIN(RA)
500 VY=AS'COS(RA)
510 ENDPROC
520 ST =1:PRINTTAB(15,10)"STALL"
530 RL=RND(21)-10:PT---= —20 —RND(5)
540 RETURN
550 DEF PROCINIT
560 MOVE190,250:DRAW 190 + SIN

(ASTI/200) .80,250 + COS
(AS•P1/200) .80:TN=PZ/1000:
UN = PZ-1000'INT(TN):
MOVE790,250:DRAW 790 +SIN
(TNTI/5) .40,250 + COS
(TN'PI/5)'40

570 MOVE790,250:DRAW 790+SIN
(UNTI/500) .80,250 + COS
(UN TI/500) '80:MOVE1090,250:
DRAW 1090+ SIN(TC'PI/5)'80,
250 +COS(TC . 13 1/5)*80

580 ENDPROC
590 DEF PROCINFO
600 MOVE190,250:DRAW 190 + SIN

(AS2'P1/200)•80,250 + COS
(AS2'PI/200)'80

610 MOVE190,250:DRAW 190+SIN
(ASTI/200) . 80,250 + COS
(AS'PI/200)'80

620 MOVE790,250:DRAW 790+SIN
(TN2 . P1/5) .40,250 + COS
(TN2'PI/5)'40

630 TN = PZ/1000:UN = PZ— 1000'
INT(TN):MOVE790,250:DRAW
790 +SIN(TN . P1/5) .40,250+ 1111
COS(TNTI/5) .40

640 MOVE790,250:DRAW 790+SIN
(UN2TI/500) .80,250 +COS 	" 4 11
(UN2'PI/500)'80 	111111 	II 1

650 MOVE790,250:DRAW 790+SIN 4"
(UW1;1/500) .80,250 + COS
(UN'PI/500)'80

660 MOVE1090,250:DRAW 1090 +SIN
(TC2*P1/5) .80,250 + COS
(TC2 . P1/5) .80

670 MOVE1090,250:DRAW 1090 +SIN
(TC . P1/5) .80,250 + COS
(TC.P1/5).80

680 IF PY= 0 THEN RB= 0 ELSE
RB=ATN(PX/PY)/C:IF PY > 0
THEN RB=RB+180

690 IF RB<0 THEN RB=RB+360
700 PRINTTAB(4,30);INT(AD)

"111 ❑ ";TAB(14,30);INT(RB)
"El ❑ ";TAB(23,30);INT(PX)
"E111111111";TAB(33,30);
INT(SQR(PXTX+ PY));"111"

710 RB2= RB:AD2 = AD:IF RB >290 AND
AD <70 THEN AD2 =AD +360

720 IF AD>290 AND RB<70 THEN
RB2=RB+360

730 IF HF3 =1 THEN MOVERX— DRX,
968— DRY:DRAWRX+ DRX,
968 + DRY

740 HF3= 0:1F ABS(RB2 —AD2) > 90 THEN
780

750 RX=TAN(RAD(AD—RB))•250+
640:IF RX <4 OR RX>1276 THEN 780

760 DRX=50'SIN(RAD(RB)):DRY=
50*COS(RAD(RB))

770 HF3=1:MOVERX— DRX,968— DRY:
DRAWRX + DRX,968 + DRY

780 IF HF2 =1 THEN MOVEX1,Y1:
DRAWX2,Y2

790 HF2= 0:YC =250 — PT*4:X1 = 420:
X2 = 560:Y1 =YC+291 -AN(RL*2*C):
Y2 YC — 29`TAN(RL*2*C)

800 IF (YC <180 OR YC > 320) AND RL=0
THEN 1040

810 IF Y1 >320 THEN X1=490—
(490 — X1). (320 — YC)/(Y1 —YC):
Y1 =320:GOTO 830

820 IF Y1 <180 THEN X1 =490-
(490 — X1) . (180 —YC)/(Y1 —YC):
Y1=180

830 IF Y2 > 320 THEN X2=490—
(490 — X2) . (320 — YC)/(Y2 —YC):
Y2 = 320:GOTO 850

840 IF Y2<180 THEN X2=490 —
(490 —X2) . (180 —YC)/(Y2—YC):
Y2=180

850 IF X1 <420 OR X2> 560 THEN 870
860 HF2=1:MOVEX1,Y1:DRAWX2,Y2

b870 IF HF =1 THEN MOVEX3,Y3:
DRAWX4,Y4

1[

880 HF 0:YC =- 750 — PT•20:X3 104:
X4=1176: Y3 = YC + 200 .TAN(R122•C):
Y4=YC-200*TAN(RL•2*C)

890 IF HF4 =1 THEN PLOT69,RUX,RUY
900 HF4 = 0
910 RUX= (RX — 640) .2 + 640
920 RUY= (Y4 — Y3)/(X4 X3)*RUX +

Y3 — 24
930 IF RUX>100 AND RUX<1180 AND

RUY>500 AND RUY<900 THEN
PLOT69,RUX,RUY:HF4 =1

940 IF (YC > 896 OR YC < 504) AND RL=0
THEN 1010

950 IF Y3 > 896 THEN X3=640—

(640 — X3)*(896— YC)/(Y3—YC):
Y3 = 896:GOTO 970

960 IF Y3 < 504 THEN X3=640—(640—X3)
*(504 — YC)/(Y3 —YC):Y3 = 504

970 IF Y4 > 896 THEN X4=640-
(640— X4)' (896 — YC)/(Y4 — YC):
Y4 = 896:GOTO 990

980 IF Y4<504 THEN X4=640—(640—X4)
•(504 — YC)/(Y4 — YC):Y4 = 504

990 IF X3<104 OR X4>1176 THEN 1010
1000 HF=1:MOVE X3,Y3:DRAW X4,Y4
1010 WB=AD: IF AD>180 THEN

WB WB — 360
1020 IF RB>180 THEN WB=WB+360—RB

ELSE WB=WB—RB
1030 IF ABS(WB) >60 AND

ABS(PY) >1000 THEN 1040
1040 RR = RL:PP = PT
1050 ENDPROC
1060 DEF PROCKEY
1070 TC2=TC
1080 IF RND(10)=1 AND TC>.2 THEN

TC=TC— .2
1090 IF RND(10)=1 AND TC<8.8 THEN

TC=TC+ .2
1100 IF RND(10)=1 THEN PT=PT+1
1110 IF RND(10)=1 THEN PT= PT-1
1120 IF RND(10)=1 AND RL> —30 THEN

RL= RL-1
1130 IF RND(10)=1 AND RL<30 THEN

RL=RL+1
1140 ENDPROC
1150 PP= —1:RR= —1:RL=0:PT=0:

AD = 0:HF= 0:HF2= 0:HF3= 0:
HF4= 0

1160 ST= 0:VX= 0:VY= 0:VZ= 0:
BC = 0:NC = 0

1170 C=P1/180:PX=0:PY-= —20000:
PZ = 2000:AS =150

1190 X0= 0:X1 =0
1200 X0=X0/3
1210 CLS
1220 WY= —XO'COS(X1 . C)
1230 WX= —X0"SIN(X1 . C)
1240 GZ=VZ:GY=VY+WY:GX=VX+WX
1250 TC =5
1260 RT= 3:TP = 5:WR =50:HD =30000
1270 PROCSCREEN
1280 AS2 = AS:TC2 = TC:TN2 =

PZ/1000:UN2= PZ —1000 . INT
(PZ):PROCINIT

1290 PROCKEY:PROCWORKOUT:PROCINFO
1300 IF PZ< =0 THEN 1320
1310 GOTO 1290
1320 END

Line 15 sends you to Line 1150, which, with
the next ten lines, sets the variables and the
position of the aeroplane in the sky. Line
1170 starts the aeroplane 2000 metres up in
the sky, and 20,000 metres away from the

target runway. Line 1190 sets the wind speed
and direction to 0—next time you will enter
new commands that allow you to choose the
force and angle of the wind for yourself. Line
1240 sets the variables that control the po-
sition of the aeroplane in the sky according to
its speed in any direction, and the strength
and direction of the wind. PZ tells how far the
aeroplane is along the Z axis—up and down;
VZ refers to the up and down velocity; VY is
the velocity forwards or backwards (along the
Y axis), WY is the windspeed in the same
direction. GX, VX and WX refer to the distance
moved, velocity and windspeed along the X
axis—that is, right to left. Line 1250 sets the
rev counter, and Line 1260 defines the limits
of roll, pitch, and the runway width. Line
1270 sends you to the procedure that draws
the cockpit on the screen.

PROCINIT, which starts on Line 550 and
ends at Line 580 draws the dial pointers on
the screen. PROCKEY, in this part, consists of
temporary random flight commands.

PROCWORKOUT updates the variables as
the aeroplane flies. Lines 420 and 430 check
to see if you have allowed the airspeed to fall
below 30 metres per second—in which case
the aeroplane stalls, and you are sent to
subroutine 520, which ends at Line 540. Line
530 introduces a random element.

PROCINFO redraws the dials and counters
as they need to be updated. Lines 600 to 670,
rub out the hands, and then redraw them in
the new position. Lines 680 and 690 change
the value of the runway bearing, and Line 700
prints out all the new numbers on the coun-
ters. Lines 710 to 770 move the radar image
of the runway, while Lines 780 to 860 draw
the artificial horizon.

The real horizon is drawn by Lines 870,
880, and 940 to 1000. Lines 890 to 930
position the dot that indicates the runway.

NCI 141
500 RA = AD*C:VX = AS*SIN (RA)
510 VY =AS*COS(RA):RETURN
1000 PZ= PZ + GZ:PY = PY + GY:

PX= PX + GX
1020 AS =AS +16*(TC*30 — AS —

8*PT)/AS
1030 IFST= 1 THENPMODE4,1:

D RAW" BM108,40C0":A$ = "STALL":
G OSU B4000: DRAW"C5":ST = 0:
GOT01050

1040 IF AS <30 GOSUB1500
1050 AD=AD+RL:IF AD<0 THEN

AD = AD + 360
1060 IF AD >359 THEN AD =AD-360
1070 VZ=AS*SIN(PT*C) —10 + AS/15
1080 GZ=VZ:GY=VY + WY:GX =

VX + WX

1090 IF W=0 THEN GD= —P1/2:
GOT01110

1100 GD= — ATN(VX/VY)/C
1110 GOSUB500
1120 RETURN
1500 PMODE4,1:ST=1:DRAW"BM108,

40":A$ ="STALL":GOSUB4000:
PLAY"T20AGFEDCAGFEDC"

1510 RL=RND(21)-10:PT= —20 —
RND(5)

1520 RETURN
2000PCOPY5T07:PCOPY6T08:

PMODE4,5
2010 LINE(35,120) — (35 + 20*SIN

(AS*PI/200),120 — 20*COS
(AS*PI/200)),PSET

2020 TN = PZ/1000:UN = PZ —1000*
INT(TN):LINE(155,120) —
(155 + 15*SIN (TN*13 1/5),120 —
15*COS(TN*13 1/5)),PSET

2030 LINE(155,120) — (155 + 20*SIN
(UN*13 1/500),120 — 20*COS
(UN . PI/500)),PSET

2040 LINE(215,120) — (215 + 20*SIN
(TC*PI/5),120 —20*COS
(TC'PI/5)),PSET

2050 DRAW"BM16,172S8":A$ = STR$
(ABS(INT(AD))):GOSUB4000

2060 IF PY= 0 THEN RB = 0 ELSE
RB = ATN(PX/PY)/C:IF PY > 0 THEN
RB=RB+180

2070 IF RB <0 THEN RB=RB+360
2080 DRAW"BM80,172":A$ = STR$

(INT(RB)):GOSUB4000:DRAW
"BM140,172":A$ = STR$(ABS
(INT(PX))):GOSUB4000

2090 DRAW"BM196,172':A$ = STR$
(INT(SQR(PY`PY+ PX*PX))):
GOSUB4000

2100 YC =120 + PT:X1 = 80:X2 = 110:
Y1 =YC +17*TAN(RL*2*C):
Y2 = YC —17*TAN(R122*C)

2110 IF(YC<105ORYC>135)AND
RL = OTHEN2320

2120 IF Y1 <105 THEN X1 =95—
(95 —X1)*(105—YC)/(Y1 —YC):
Y1 =105:GOT02140

2130 IF Y1 >135 THEN X1 = 95 —
(95 — X1)*(135 —YC)/(Y1 —YC):
Y1=135

2140 IF Y2<105 THEN X2=95—
(95— X2)' (105 — YC)/(Y2 — YC):
Y2 = 105:GOT02160

2150 IF Y2>135 THEN X2=95—
(95— X2)*(135 — YC)/ (Y2 — YC):
Y2=135

2160 IFX1 < 800RX2 >110 THEN2180
2170 LIN E(X1,Y1) — (X2,Y2),PSET
2180 PMODE4,1:IFX5— R >10AND

X5 + R < 245ANDY5 > OANDY5 < 80
THENCIRCLE(X5,Y5),R,0,10,0,.5

2190 IF RL= RR AND PP = PT THEN2290
2200 IFHF =1 THENLINE(X3,Y3)—

(X4,Y4),PRESET
2210 HF = 0:YC =33+ PT*4:X3 =11:

X4 = 244:Y3 = YC + 118*TAN
(RL*2*C):Y4=YC-118*TAN
(RL*2*C)

2220 IF(YC<10ORYC>79)ANDRL= 0
THEN2290

2230 I FY3 < 1TH ENX3 =128 — (128 — X3)*
(1 — YC)/(Y3 — YC):Y3 = 1:GOT02250

2240 IFY3 >79THENX3 =128 — (128 —
X3)*(79—YC)/(Y3 — YC):Y3 =79

2250 I FY4 < 1TH ENX4 = 128 — (128 — X4)*
(1 — YC)/(Y4 — YC):Y4 = 1:GOT02270

2260 IFY4 > 79TH ENX4 =128 — (128 —
X4)*(79 — YC)/(Y4 — YC):Y4 = 79

2270 IFX3<110RX4>244THEN2290
2280 HF =1:LINE(X3,Y3) — (X4,Y4),PSET

2290 WB = AD:IFAD > 180TH ENWB =
WB — 360

2300 I FRB > 180TH ENWB = WB + 360 —
RB ELSEWB = WB — RB

2310 I FABS(WB) > 60 ANDABS(PY)
>1000 THEN2370

2320 AN =118/(60'SQR((X3 — X4) .
 (X3 — X4) + (Y3 — Y4). (Y3 — Y4))):

X5 = (X3 + X4)/2 + SGN(X3 — X4) +
WPAN (X3 — X4)

2330 Y5 = (Y3 + Y4)/2 + 2 + WPAN'
(Y3 —Y4):IFX5 < 110RX5 >244
ORY5 <10RY5 > 79TH EN2370

2340 IFABS(PY) <1000 THENR = 8 —
Y5/10 ELSER = 4000/ABS (PY):
IFR`10 + Y5 > 80 THENR = 8 —Y5/10

2350 IFY5 <10RY5 > 790 RX5 — R
<110RX5 + R > 244TH EN2370

2360 CI RCLE(X5,Y5),R,5,10,0,.5

2370 PCO PY7T03: PCO PY8T04
2380 RR = RL:PP -= PT:RETURN
5080 GZ = VZ: GY = VY + VVY: GX = VX + WX
5090 TC = 5
5100 RT = 3:TP = 5:WR = 50
5500 IF RND(10) =1 THEN RL=

RL—SGN(RL) + (RND(5) —3)
5505 IF RND(10) = 1 THEN

PT= PT + 3 RN D(2)`2
5510 GOSUB 1000: IF PZ < 0 THEN 5530
5520 GOSUB 2000: GOTO 5500
5530 GOTO 5530 ,

The first commands to be followed by the
computer in this part of the program, are
contained in the Lines 5080 to 5530. Line
5080 sets the variables that control the po-
sition of the aeroplane in the sky, according to
its speed in any direction, and the strength

and direction of the wind. GZ tells how far the
aeroplane has moved along the Z (up and
down) axis; VZ refers to the up and down
velocity; VY is the velocity forwards or back-
wards (along the Y axis), WY is the windspeed
in the same direction; GX, VX and WX refer to
the distance moved, velocity and windspeed
along the X axis—that is, right to left.

Line 5090 sets the rev counter, and Line
5100 defines the limits of the roll (RT), the
pitch (TP) and the width of the runway (WR).

The last five lines are the temporary
commands. These cause the aeroplane to fly
rather crazily, as pitch and roll are randomly
calculated.

The subroutine from Line 1000 to 1120
updates all the variables as the aeroplane flies.
Lines 1030 and 1040 check to see if you have
allowed your aeroplane to fall below the
stalling speed of 30 metres per second, and if
so, sends you to the subroutine that runs from
Lines 1500 to 1520, which recreates the effect
of a stall. Line 1510 introduces a random
element into the stall—it could merely plum-
met like a stone to the ground, or go into a
spin as it does so. The subroutine 500 to 510,
to which you are sent by Line 1110, works out
the angle the aeroplane is flying at.

The subroutine that begins at Line 2000,
and ends at Line 2380, makes up the remain-
der of this part of the program. This updates
the screen by adjusting the instrument panel,
which displays the changing position and
movement of the aeroplane.

Line 2000 transfers the original version of
the cockpit elsewhere in memory. The air-
speed dial is updated by Line 2010, while
Lines 2020 and 2030 affect the altitude dial.
The rev counter is changed by Line 2040,
while Line 2050 updates the bearing of the
aeroplane. The runway bearing is changed by
Lines 2060 to 2080, and the next line, 2090,
displays the new value for the distance.

Line 2190 checks to see whether the
horizon should be updated, and Lines 2100 to
2170 draw the new artificial horizon in the
dial, while Lines 2200 to 2280 draw the real
horizon, if it can be seen through the window.

The new position of the runway is cal-
culated by the Lines 2290 to 2360. Line 2350
checks to see whether the runway can be
drawn on the screen yet. The runway in-
creases in size as the aeroplane approaches,
and Line 2180 blots out the previous runway
as the bigger one is drawn.

These changes have been made invisibly,
one by one, on an unseen graphics page. Line
2370 transfers all the redrawn dials and
counters to the screen using PCOPY, so that
they are seen to move and change
simultaneously.

`I shot an arrow into the air,
It fell to earth, I knew not where'
Here's how to get your computer to
find out, plus routines that could
build into exciting action games

There is a particular beauty in watching a
computer plot the path of an object in flight,
and there are many instances—particularly in
games programming—where this type of pro-
gramming is suitable. Without the use of a
computer, plotting such paths would be ex-
tremely tedious and liable to many errors. In
only a few lines of programming, however,
you can get your micro to carry out accurately
the vast number of calculations necessary to
produce startling results.

The ways in which objects move can
depend on several factors, and it is important
that at least some of these are taken into
account if an action program is to give a
realistic effect.

One important special case concerns the
motion of an object as it rises from the Earth's
surface and is slowed by gravity—or as it falls
and is speeded up by gravity. This article
shows how to program the motion of
projectiles—objects that move horizontally at
constant speed (ignoring friction in the air)
and vertically under the influence of gravity.

One reason why fighting games set in the
free fall vacuum of space are so common is
that in space you can ignore the effects of
gravity and air friction on the motion of both
space vehicles and shots. That is not to say
there is no gravity in space; there is, but
usually its effects are so small that it can
reasonably be ignored or it can be assumed
that all objects are affected by the same
gravity field.

By contrast, battles on Earth that involve
thrown or shot objects have to take account of
gravity and, often, friction due to air and the
effects of wind. Besides military games, there
are many instances for which a knowledge of
projectile motion is essential for realistic
programming. Among these are many sports
and athletics simulations, including throwing
and kicking balls, diving, darts and all sorts of
jumping.

All the projectiles in these instances
(whether people or things) have one thing in
common—they travel in a trajectory or path
which belongs to a group of curves known as
parabolas. Writing a program to simulate
movement in a parabolic path is not difficult,
requiring only an understanding of the forces

that cause the motion, and the use of some
elementary maths.

Knowing that the motion of a thrown ball,
for example, results from a combination of
motions in two separate directions gives
sufficient clues to solve the problem of pro-
gramming. One of these directions is along
the horizontal or X axis. The other is up and
down the Y axis. Throughout this article, it is
assumed that a projectile moves at constant
speed in the X direction. In fact, an actual
object would be slowed by friction in the air,
but this is a complication best avoided for all
but the most accurate work.

HORIZONTAL MOTION
Enter the first program to simulate horizontal
motion, but do not confuse `I' with '1'. All the
programs are for the machines' standard
BASIC except for the Vic 20 which needs a
Super Expander.

a
100 BORDER 7: PAPER 7: INK 0: CLS
105 POKE 23658,8
110 PRINT INVERSE 1;AT 2,12;"D MENU Ill"
120 PRINT AT 6,5;1:— ❑ PURE

HORIZONTAL MOTION"
130 PRINT AT 8,5;"2:— ❑ PURE VERTICAL

MOTION"
140 PRINT AT 10,5;"3: — EA MIXTURE"
150 PRINT AT 12,5;"4: —

LI ELEVATIONS"
200 LET 1$ =1NKEY$: IF I$="" THEN GOTO

200
205 IF I$<"1" OR 1$ > "4" THEN GOTO

200
210 GOSUB VAL 1$1 000
220 RUN
1000 CLS
1020 LET SP =30
1030 PRINT "HORIZONTAL SPEED M/S..."
1040 FOR R=124 TO 28 STEP —16
1045 LET T=0
1050 PRINT AT 21 — (R/8),O;SP
1060 INPUT "PRESS ENTER TO SHOOT",

LINE Z$
1090 LET X= SP .T: LET T =T +1
1100 PLOT 30 +X,R: BEEP .1,R/4
1110 PAUSE 10
1120 IF 30 + SP`T<250 THEN GOTO 1090

1150 IF R=28 THEN GOTO 1200
1160 INPUT "NEW SPEED (0 END)", LINE 1$
1165 LET SP = VAL 1$
1170 IF SP‹ 0 OR SP>1000 THEN GOTO

1160
1190 IF SP= 0 THEN LET R=28
1200 NEXT R
1210 RETURN

100 DN$="1§giggigAgg
ggigigggigigggigggiggi
gggg":GOSUB 13000

110 PRINT "Cr
120 PRINT SPC(15);"aMENU":PRINT
130 PRINT SPC(8);"1 ❑ PURE HORIZONTAL

MOTIONN"
140 PRINT SPC(8);"2 ❑ PURE VERTICAL

MOTION g"
150 PRINT SPC(8);"3 ❑ A MIXTUREgg"

PLOTTING PROJECTILE
PATHS

EFFECTS OF DIFFERENT
GRAVITATIONAL FIELDS

SIMULATING PARABOLAS

HOW THE PROGRAMS WORK
VERTICAL MOTION

HORIZONTAL MOTION
COMBINING ROUTINES
CHANGING THE ANGLE

160 PRINT SPC(8);"4 ❑ ELEVATIONSg"
170 GET I$:IF 1$<"1" OR I$>"4" THEN 170
180 SYS 832
190 ON VAL(I$) GOSUB 1000,2020,3020,

4040
200 RUN
1000 SP= 30
1010 PRINT "fa HORIZONTAL SPEED":

PRINT "M/S ..."
1040 FOR Y=35 TO 155 STEP 24
1042 T=0
1045 PRINT LEFT$(DN$,Y/8);SP
1050 PRINT DN$;"TYPE RETURN TO SHOOT"
1060 GET X$:1F X$< >CHR$(13) THEN

1060
1070 GOSUB 9000
1090 X=SP7+20:T=T+1
1092 GOSUB 10000
1095 FR =SP/2+50: GOSUB 11000
1100 FOR D=1 TO 50: GET X$: IF X$=""

THEN NEXT
1120 IF SP .T+20<300 THEN 1090
1122 FOR D=1 TO 2000: NEXT D/

1124 GOSUB 9500
1126 IF Y=155 THEN 1200
1130 PRINT DN$;" ❑ ❑ El NEW SPEEDO (0

❑ END)":INPUT"IIID 	1=ID I=1
11111111 iiIiiiiI";SP

1140 IF SP<0 OR SP>260 THEN 1130
1150 IF SP=0 THEN Y=150
1200 NEXT Y
1210 RETURN
9000 POKE 56576,150:POKE 53265,187:

POKE 53272,29:RETURN

9500 POKE 56576,151:POKE 53265,27:
POKE 53272,21:RETURN

10000 BY = 24576+ (YAND248)*40+
(XAND504) + (YAND7):POKEBY,PEEK
(BY)0R2 t (7- (XAND7))

10010 RETURN
11000 POKE 54296,10
11010 POKE 54278,249

11020 POKE 54276,33
11030 POKE 54273,FR
11040 FOR D=1 TO 75: NEXT
11050 POKE 54276,32
11060 RETURN
12000 DATA 169,0,133,251,169,96,133,252,

169,0,168,145,251,200,208,251
12010 DATA 230,252,165,252,201,128,

208,240
12020 DATA 162,0,169,7,157,0,68,157,

0,69,157,0,70,157,232,70,232,208, 241,96
13000 FOR Z=832 TO 875:READ X:POKE

Z,X:NEXT Z:RETURN

100 GRAPHIC 0:PRINT"0":POKE
36878,15:S=36876

110 PRINT TAB(8);"aMENU"
120 PRINT "gsgro - ❑ HORIZONTAL

MOTION"
130 PRINT "g12D - ❑ VERTICAL MOTION"
140 PRINT "gg3E - DA MIXTURE"
150 PRINT "gpo -.111ELEVATIONS"
200 GET I$:IF 1$ <"1" OR 1$ > "4" THEN

200
210 ON VAL(I$) GOSUB 1000,2020,3020,

4000
220 RUN
1000 PRINT "0"
1020 SP = 30

1040 FOR R=1 TO 6:PRINT
"O HORIZONTAL SPEED M/S ...",

1050 PRINT SP:T=0
1060 INPUT "g1HIT RETURN TO SHOOT";Z$
1070 GRAPHIC 2
1090 X = SP*T:T= T + 1
1100 POINT 1,X,500:POKE 36876,128+

(X/10)
1120 IF SP-1<1023 THEN 1090
1130 POKE S,O:FOR Z=1 TO 1000:NEXT

Z:GRAPHIC 0
1150 IF R=6 THEN 1200
1160 1$ ="":INPUT "ONEW SPEED (0

END)";1$
1165 SP =VAL(3):IF LEN(($) =0 THEN 1160
1170 IF SP<0 OR SP>1023 THEN 1160
1190 IF SP=0 THEN RETURN
1200 NEXT R
1210 RETURN

100 MODE1
110 PRINT TAB(15,2);"01E1MENU";

TAB(42);"= = =
120 PRINT" ❑❑❑❑❑❑ 1 ❑❑❑❑

PURE HORIZONTAL MOTION'
130 PRINT" ❑❑❑❑❑❑ 2 ❑❑❑❑

PURE VERTICAL MOTION""
140 PRINT" ❑❑❑❑❑❑ 3 ❑❑❑❑

A MIXTURE""
150 PRINT" ❑❑❑❑❑❑ 4 ❑❑❑❑

ELEVATIONS"
160 REPEAT:1$ = GET$:UNT1L > "0" AND

1$ <"5"
170 GOSUB VAL 1$'1000:RUN
1000 MODE5
1010 VDU19,3,0,0,0,0,19,0,2,0,0,0
1020 SP = 30
1030 PRINT' "HORIZONTAL SPEED'""m/s..."
1040 FOR R=800 TO 200 STEP —96
1045 T=0
1050 PRINT TAB(0,7 + (800 — R)/32);SPIII

TAB(0,30);"RETURN TO SHOOT";
1060 B =GET
1070 PRINT TAB(0,30);SPC(16)
1080 REPEAT
1090 X = SP*T:T= T + 1
1100 PLOT69,192+X,R —16:

SOUND1, —15,R/4,2
1110 D=INKEY(85)
1120 UNTIL SP7+192

>1100
1130 IF R<250

THEN 1200
1140 D=INKEY(100)
1150 REPEAT

1160 INPUT TAB(0,29)"NEW SPEED(0
END):"I$:PRINT TAB(0,29);SPC(30);

1165 SP =VAL 1$
1170 UNTIL LEN I$>0 AND SP> =0 AND

SP<1000
1190 IF SP=0 THEN R=0
1200 NEXT
1210 RETURN

MIA
100 CLS:PMODE3
110 PRINT@13,"menu"
120 PRINT@131,"1 — PURE HORIZONTAL

MOTION"
130 PRINT@195,"2— PURE VERTICAL

MOTION"
140 PRINT@259,"3— A MIXTURE"
150 PRINT@323,"4— ELEVATIONS"
160 A$=INKEY$:IF A$ <"1" OR A$>"4"

THEN 160
170 ON VAL(A$) GOSUB 1000,2000,

3000,4000
/80 A$=INKEYS

190 IF 1NKEY$="" AND PEEK(65314)
< >7 THEN 190 ELSE RUN

1000 PCLS
1010 LINE(0,0) — (255,191),PSET,B
1020 SP = 30
1030 CLS:PRINT"HORIZONTAL

SPEED":PRINT"M/S ..."
1040 FOR R=39 TO 159 STEP 24:T= —1
1050 PRINT@32'INT(R/12) —1,SP;

"*":PRINT@448,"ENTER TO SHOOT"
1060 IF 1NKEY$< >CHR$(13) THEN 1060
1070 SCREEN1,0
1090 T=T+1:X=SP'T
1100 PSET(30 +X/5,R,2):SOUNDR,1
1105 D=50
1110 IF PEEK(345) = 255 AND D > 0 THEN

D = —1:GOT01110
1120 IF SP'(T+1)/5<223 THEN 1090
1130 IF R>150 THEN 1200
1135 D=200
1139 A$=1NKEY$
1140 IF 1NKEY$="" AND D>0 THEN

D = D —1:GOT01140
1160 PRINT@448,"":PRINT@448,"NEW

SPEED (0 ❑ END) :";:INPUT SP
1170 IF SP<0 OR SP>999 THEN 1160
1190 IF SP= 0 THEN R=160
1200 NEXT
1210 RETURN

RUN the program to see a menu of four
options. As yet, you have only keyed the
routine for the first option, so if you press 2, 3
or 4, you will get an error message. When you
press 1, the program branches to the routine
beginning at Line 1000.

This routine uses a FOR ... NEXT loop
(Lines 1040 to 1200) to let you throw an
object horizontally at six different speeds.
The first time round the loop, a speed of 30
metres per second (m/s) is chosen automati-
cally and simulated as a series of points in a
straight line.

After the first pass round the loop, you are
prompted to enter a different value for speed,
but you can escape from the loop by entering
0, when the program RUNS again and displays
the menu. Enter a value—for example, 60—
and press I RETURN or I ENTER I again to shoot.
You can speed up the action by holding down
or repeatedly pressing this key (the space bar
on Commodores, Dragon and Tandy). Now
compare the result with the 30 m/s line. Enter
and compare five other speeds, after which
the display will return to the menu.

The section of program that PLOTs the
points lies between Lines 1090 and 1120. The
variable T simulates time which, in this case
increases by steps of one second, so the points
are spaced out regularly (necessary for const-
ant speed) in the horizontal (X axis) direction.
The actual separation of points is set by the
term SP'T at Line 1090. This term ensures

that the greater the speed (SP), the greater is
the separation of the points.

You may recognize Sri - as part of the
formula Distance Is Speed times Time, as it is
taught in school physics lessons. From this it
is clear that the program plots distances (the
space between points) to simulate speed.

VERTICAL MOTION
Enter the next few lines, which give you a
routine to simulate motion in the vertical
direction:

2000 CLS
2020 LET G=10: LET SP= 50
2030 PRINT "`GRAN. ACCELERATION:

m/s/s..."
2040 FOR R=3 TO 18 STEP 3
2050 PRINT AT 20,R;"*";AT 21,R;G
2060 INPUT "ENTER TO SHOOT", LINE 1$
2080 FOR T=0 TO 250 STEP .5
2090 LET H 	0.5"G .T . T
2100 IF H>143 THEN BEEP .05,10: PAUSE

50: NEXT T: GOTO 2110
2105 IF H> =0 THEN PLOT R*8+4,H + 32:

BEEP .05,H/4: PAUSE 40: NEXT T
2110 IF R>15 THEN GOTO 2180
2140 INPUT "NEW G (0 END)", LINE 1$
2142 IF LEN 1$= 0 THEN GOTO 2140
2145 LET G =VAL 1$
2150 IF NOT (LEN 1$> 0 AND G> =0 AND

G <400) THEN GOTO 2140
2170 IF G=0 THEN LET R=18
2180 NEXT R
2190 RETURN

2020 G =10:SP = 50
2025 PRINT"DGRAV ACCELERATION: M/S/S

2040 FOR X=40 TO 280 STEP 48
2042 PRINT DN$;SPC(X/8);"'gg 11111";G
2045 PRINT "RETURN TO SHOOT"
2050 GET 1$: IF 1$ < >CHR$(13) THEN 2050
2060 GOSUB 9000
2070 FOR T=0 TO 250 STEP 0.25
2090 H=SP*T-0.5 .GTT
2095 Y=179— H
2100 IF H>0 AND H <180 THEN GOSUB

10000: FR = H/2 + 50: GOSUB 11000
2102 IF H> =180 THEN FR =250: GOSUB

11000
2105 FOR D=1 TO 50: GET X$: IF X$=""

THEN NEXT
2108 IF H <0 THEN T=250
2110 NEXT T
2120 FOR D=1 TO 2000: NEXT
2125 GOSUB 9500
2127 IF X=280 THEN 2170
2130 PRINT DN$:PRINT

2140 PRINT "EDNEW G ❑ (O ❑ END)":
INPUT" ❑ 111 ELIE] Ill El El HUH
1111111111";G

2150 IF G<0 OR G>200 THEN 2130
2160 IF G=0 THEN X=280
2170 NEXT
2180 RETURN

KIK
2020 G =10:SP = 50
2040 FOR R=1 TO 6 KEEP: GRAPHIC 0
2045 PRINT "EIGRAV.ACCELERATION:

❑❑❑❑ misisgg"
2050 PRINT G
2060 INPUT "gg RETURN TO SHOOT";

Z$:GRAPHIC 2
2080 FOR T=0 TO 250 STEP.5
2090 H = 	.5*G . T*T
2100 IF H>1023 THEN POKE S,250:NEXT

T:GOTO 2110
2105 IF H> =0 THEN:POINT 1,512,

1023— H:POKE 36876,128+(H/10):
NEXT T

2110 IF R=6 THEN POKE S,0:GOTO 2180
2140 POKE S,O:FOR Z=1 TO 1000:NEXT

Z:GRAPHIC 0:1$= "":INPUT "ONEW G
(0 END)";I$

2142 IF LEN(3)=0 THEN 2140
2145 G=VAL(I$)
2150 IF LEN(1$) = 0 OR G<0 OR G> 400

THEN 2140
2170 IF G=0 THEN R=6
2180 NEXT R
2190 RETURN

Ell
2000 MODES
2010 VDU19,3,0,0,0,0,19,0,6,0,0,0,24,0;

128;1280;975;
2020 G =10:SP =50
2030 PRINT' "GRAN. ACCELERATION:

m/s/s..."
2040 FOR R =3 TO 18 STEP 3
2050 PRINT TAB(R,28);"*"

TAB(R —1,29);G
2060 PRINT TAB(0,30)"RETURN TO SHOOT":

REPEAT:D = GET:UNTIL D=13
2070 PRINT TAB(0,30);SPC(16)
2080 FOR T=0 TO 250 STEP.5
2090 H = SP -1— 0.5 . G .I'T
2100 IF H>220 THEN SOUND1, —15,

250,2:D = INKEY(50):NEXT T ELSE
IF H> =0 THEN PLOT69,(R +0.5)
*64,H*4 +128:SOUND1, — 15,H/4,2:
D=INKEY(85):NEXT T

2110 IF R>15 THEN 2180
2120 D=INKEY(100)
2130 REPEAT
2140 INPUT TAB(0,30)"NEW G (0 END):" 1$:

PRINT TAB(0,30);SPC(19)
2145 G =VAL 1$

2150 UNTIL LEN I$>0 AND G> =0 AND
G <400

2170 IF G=0 THEN R=18
2180 NEXT R
2190 RETURN

2000 PCLS
2010 LINE(0,0) — (255,191),PSET,B
2020 G =10:SP = 50:CLS
2030 PRINT@32,"GRAV.

ACCELERATION:":PRINT"M/S/S..."
2040 FOR R=0 TO 25 STEP 5
2050 PRINT@416 + R,""+ MID$

(STR$(G),2);
2060 PRINT@448,"ENTER TO SHOOT"
2065 IF 1NKEY$ < >CHR$(13) THEN 2065
2070 SCREEN1,0
2080 FOR T=0 TO 100 STEP .5
2090 H = Sri — .5 . G . T*T
2095 IF H < 0 THEN T=250:GOTO 2108
2100 IF H>159 THEN SOUND250,1:

D=30 ELSE PSET(10 + R . 8,160 —
H,2):SOUNDH +10,1:D=50

2105 IF PEEK(345) = 255 AND D>0 THEN
D=D-1:GOTO 2105

2108 NEXT
2110 IF R>20 THEN 2180
2115 D=80
2119 A$=1NKEY$
2120 IF 1NKEY$="" AND D>0 THEN

D = D —1:GOT02120
2140 PRINT@448,"":PRINT@448,

"NEW G (0 END):";:INPUT G
2150 IF G<0 OR G>400 THEN 2140
2170 IF G=0 THEN R=26
2180 NEXT
2190 RETURN

RUN the program and this time enter 2 to
select the second option on the menu. Now
press ENTER or RETURN to see a series of
points plotted vertically up the screen. Not-
ice, however, that the points are not equally
spaced, but instead get closer towards the top.

This is because the object is slowed down
by gravity. And this time, the sound helps to
explain what is happening. As the object
ascends, the pitch of the sound rises, and as it
falls the pitch gets lower.

The routine gives you six trials as before
(set at Line 2040) to enter different values for
the effect of gravity. This is the variable G,
which initially is set to 10 (Line 2020) and
used at Line 2090.

This relationship is the formula for the
distance an object falls under gravity. Its
usual form is: s = ut igt2, where s is the
distance (H in this case), t the time and g the
acceleration due to gravity (G). Notice that I'T
is used at Line 2090 instead of T12, because

microcomputers are faster at multiplying than
at squaring numbers.

The acceleration of an object is a measure
of its change of speed with time. Near the
Earth's surface, g has a value approximately
equal to 10 m/s/s. This means that the speed
of a falling object increases by 10 m/s each
second. The speed of an object in ascent
decreases by 10 m/s each second. This is a
negative acceleration. That is why there is a
minus sign (instead of a plus as in the
standard formula) at Line 2090.

The expression of g is commonly used in
relation to space travel. For example, acceler-
ation of a manned spacecraft taking off for
orbit reaches about 10 g. This means that the
craft is increasing speed by 10' 10 m/s/s or
100 m/s/s. A later article will cover the topic
of orbits in more detail.

The first time round the loop starting at
Line 2040, the positions of the object are
plotted at one-second intervals. The initial
speed is 50 m/s and the value for G is 10 m/s/s
(both set at Line 2020). As in the first routine,
you can speed up the action by holding down
or repeatedly pressing 'ENTER or RETURN (or
the space bar). You can then change the value
of G, when prompted on the screen, and
compare the effect of six different values.
Before the loop is complete, you can escape
from it by entering 0, when the program
returns to the menu.

COMBINED MOTION
To simulate the motion of a projectile, you
need only combine these routines so that the
object moves in both horizontal and vertical
directions at the same time. Enter the next few
lines to set up the third routine:

3000 CLS
3020 LET G=10: LET SP = 50
3030 FOR R =1 TO 6
3040 PRINT AT 0,0;"G= ";G;"m/s/s ❑ "'

"SPEED = ";SP;"m/s
3050 INPUT "ENTER TO SHOOT", LINE 1$
3070 FOR T=0 TO 250 STEP .5
3080 LET H=SP . SIN ((PI/180)'45)

'T—.5"G'T . T
3090 LET X = SP . COS ((PI/180)'45)'T
3100 IF H <175 AND X <255 THEN GOTO

3105
3102 IF H>0 THEN BEEP .05,10: PAUSE 25:

NEXT T: GOTO 3110
3103 LET T=250: NEXT T: GOTO 3110
3105 IF H> =0 THEN PLOT X,H:BEEP

.05,H/4: PAUSE 40: NEXT T: GOTO 3110
3106 LET T=250: NEXT T
3110 IF R=6 THEN GOTO 3230
3120 PAUSE 50

3140 INPUT "NEW G (0 END)", LINE 1$
3150 IF LEN I$=0 THEN GOTO 3140
3155 LET G =VAL 1$
3160 IF NOT (LEN I$>0 AND G> =0 AND

G <1000) THEN GOTO 3140
3170 IF G=0 THEN LET R=6: GOTO 3230
3190 INPUT "NEW SPEED", LINE 1$
3195 LET SP =VAL 1$
3200 IF NOT (LEN I$>0 AND SP> 0 AND

SP <1000) THEN GOTO 3190
3230 NEXT R
3240 RETURN

3020 G=10: SP= 50
3030 FOR R=1 TO 6
3032 PRINT "OG="G"M/S/SO ❑ ❑

SPEED =' ;SP;" M/S"
3035 PRINT DN$;"TYPE RETURN TO SHOOT"
3040 GET 1$: IF 1$ < >CHR$(13) THEN

3040
3045 GOSUB 9000
3050 FOR T=0 TO 250 STEP 0.25
3080 H =SP*SIN(45'n/1 80) -1 — 0.5'

G . T'T
3090 X = SP*COS(45 . 7c/180)*T + 20
3091 IF H> =0 AND H <179 AND X<300

THEN Y =179— H:GOSUB10000:
FR = H/2 + 50:GOSUB11000

3092 IF H> =179 THEN FR=250: GOSUB
11000

3093 IF H <0 THEN T=250
3095 FOR D=1 TO 50: GET X$: IF X$=""

THEN NEXT
3100 NEXT T
3103 FOR D=1 TO 2000:NEXT
3105 GOSUB 9500
3110 IF R=6 THEN 3230
3120 PRINT "gigggg": INPUT "NEW GO

(0DEND)111111111111DEE1011 II
1111 11 11 1111";G

3130 IF G <0 OR >1000 THEN 3120
3140 IFG = 0 THEN R =6: GOTO 3230
3150 PRINT lagggigggr: INPUT "NEW

SPEED 0";SP
3160 IF SP<0 OR SP>1000 THEN

3150
3230 NEXT R
3240 RETURN

3020 G =10:SP = 50
3030 FOR R=1 TO 6:GRAPHIC 0
3040 PRINT "OG="G;"M/S/S":PRINT

" gg SPEED = ";SP;"M/S"
3050 INPUT "gg RETURN TO SHOOT";Z$:

GRAPHIC 2
3070 FOR T=0 TO 250 STEP.5
3080 H =SP'SIN((n/180)*45)7 — .5

*G•T'T
3090 X= SP*COS((n/180)*45)7

3100 IF H <1023 AND X<1023 THEN 3105
3102 IF H>0 THEN POKE S,250:NEXT

T:GOTO 3110
3103 T = 250:NEXT T:GOTO 3110
3105 IFH> =OTHEN:POINT1,X,1023—H:

POKES,128+ (X/10):NEXTT:GOTO 3110
3106 T = 250:NEXT T
3110 IF R=6 THEN POKE S,0:GOTO 3230
3120 POKE S,O:FOR Z=1 TO 1000:NEXT

Z:GRAPHIC 0
3140 1$ ="":1NPUT "ANEW G(0 END)";1$
3150 IF LEN(1$)= 0 THEN 3140
3155 G=VAL(I$)
3160 IF LEN(3)=0 OR G <0 OR G >1000

THEN 3140
3170 IF G= 0 THEN R=6:GOTO 3230
3190 1$ ="":INPUT "CINEW SPEED";1$
3195 SP = VAL(1$)
3200 IF LEN(($) =0 OR SP <1 OR

SP >1000 THEN 3190
3230 NEXT R
3240 RETURN

3000 MODE5
3010 VDU19,3,3,0,0,0,19,0,4,0,0,0,24,0;

128;1280;900;
3020 G = 10:SP = 50
3030 FOR R =1 TO 6
3040 PRINT TAB(0,1);"G=";G;

"Om/s/s'"'"SPEED=";SP;"Orn/s"
3050 PRINT TAB(0,30)"RETURN TO

SHOOT ❑ ":D=GET
3060 PRINT TAB(0,30);SPC(16)
3070 FOR T=0 TO 250 STEP.5
3080 H =SP*SIN RAD 45*T —

0 .5*G*T*T
3090 X = SP*COS RAD 45'T
3100 IF H <220 AND X<320 THEN 3105
3102 IF H>0 THEN SOUND1, —15,

250,2:D = INKEY(50):NEXT:
GOTO 3110

3103 T=250:NEXT:GOTO 3110
3105 IF H> =0 THEN PLOT69,X*4,

H*4 + 128:SOUND1, —15,H/4,2:
D=INKEY(85):NEXT ELSE T=250: NEXT

3110 IF R=6 THEN 3230
3120 D=INKEY(100)
3130 REPEAT
3140 INPUT TAB(0,29)"NEW G (0 END) 0"1$
3150 PRINT TAB(0,29);SPC(19);
3155 G =VAL 1$
3160 UNTIL LEN I$>0 AND G> =0 AND

G <1000
3170 IF G=0 THEN R=6:GOTO 3230
3180 REPEAT
3190 INPUT TAB(0,29)"NEW SPEED: ❑ "1$:

PRINT TAB(0,29);SPC(30);
3195 SP = VAL I$
3200 UNTIL LEN 1$> 0 AND SP> 0 AND

SP<1000

Without gravity and air friction, a
projectile's velocity is constant

3230 NEXT R
3240 RETURN

3000 PCLS
3010 LINE(0,0) — (255,191),PSET,B
3020 G =10:SP = 50
3030 FOR R=1 TO 6:CLS
3040 PRINT"G ❑ ❑ ❑ ❑ =";G;"M/S/S":

PRINT"SPEED=";SP;"M/S"
3050 PR INT@448,"ENTER TO SHOOT"
3060 IF 1NKEY$< >CHR$(13) THEN 3060
3065 SCREEN1,0
3070 FOR T=0 TO 200 STEP .5
3080 H = SP*SIN(ATN(1))*T .5*G*T"T
3090 X = SP*COS(ATN(1))*T
3095 IF H <0 THEN T=250:GOTO 3106
3100 IF X > 251 THEN T=250:GOTO

3106 ELSE IF H>189 THEN SOUND
250,1:D=25 ELSE PSET(X + 2,
190— H,(R +3)/2):SOUNDH +10,1:D=35

3104 IF PEEK(345) = 255 AND D> 0 THEN
D = D —1:GOTO 3104

3106 NEXT
3110 IF R>5 THEN 3230
3115 D=100
3119 A$=1NKEY$
3120 IF 1NKEY$="" AND D>0 THEN

D = D —1:GOT03120
3130 PRINT@416,"":PRINT@448,`"'
3140 PRINT@416,"NEW G (0 END)";:

INPUT G

31601F G <0 OR G >9999 THEN 3130
3170 IF G=0 THEN R=6:GOTO 3230
3180 PRINT@448,""
3190 PRINT@448,"NEW SPEED:";:

INPUT SP
3200 IF SP <0 OR SP > 999 THEN 3180
3230 NEXT
3240 RETURN

RUN the program and enter 3 in response to
the prompt to select the third option. When
you press ENTER or 'RETURN I, points are
plotted in a curve starting at the bottom left of
the screen and ending some way along to-
wards the bottom right. This is the trajectory
of an object shot at a speed of 50 m/s in a
gravity of 10 m/s/s.

The structure of the routine is similar to
that of the previdus two. The calculating and
plotting sections are in a FOR ... NEXT loop
(Lines 3030 to 3230), which lets you compare
six different trajectories, five of which you
specify. As in the other trials, you can escape
from the routine by entering 0 at this or any
subsequent stage, to return to the menu. It is
more likely, however, that you wish to enter a
new set of values to compare trajectories.

Enter a value of 5 for G and keep SP at 50,
then press 'ENTER I or'RETURNI to shoot. This
time the object will go higher and farther.
Now keep G at 5, but reduce SP to 25 and
compare the result. Continue experimenting,
changing both G and SP, and listen to the
sounds to help you understand the motion of
the object when it disappears from the screen.
A note which is increasing in pitch indicates
that the object is rising, whereas a decreasing
one indicates it is falling.

HOW IT WORKS
Remember that the trajectory of the object is
plotted as H coordinates in the Y axis direc-
tion, and as X coordinates in the X axis
direction. These two coordinates are cal-
culated at Lines 3080 and 3090. The only
difference is that here the H coordinate has
speed (SP) multiplied by the SINE of an angle,
and the X coordinate has SP multiplied by the
COSine of the same angle (45°). This explains
why, when G is small and SP is large, the
trajectory is apparently a diagonal line at 45°.

The reason for these trigonometric ratios is
to calculate what fraction of the object's
motion applies in each of the two directions—
vertically and horizontally. These fractions
are called components. If the starting speed of
the object is 50 m/s, for example, both the
vertical and horizontal components are some-
what less than 50. Added together, however,
they give exactly 50 m/s.

You will not go wrong if you remember

that the vertical component is SP'SIN A and
the horizontal component is SP . COS A. A is
the angle of elevation of the gun, bow or
whatever.

To understand how these values are arrived
at, however, it helps to look at a sketch. The
sketch on page 542 shows a projectile starting
its motion with actual speed V at an angle A to
the horizontal. The dashed lines show the
components of speed (Vh and Vx) in the two
directions. The sine of angle A is Vh/V, so
this relationship can be arranged as
Vh = V*SIN A. Similarly, the cosine of A is
Vx/V, which when rearranged becomes
Vx = V*COS A.

Following this pattern in the program, you
need SP*SIN 45 for the vertical component
of speed, and SP*COS 45 for the horizontal
component.

Except on the Commodores and Spectrum,
there is a RAD before 45 in Lines 3080 and
3090. This is to convert degrees into radians,
the way your computer measures angles. The
Commodores achieve the conversion by mul-
tiplying the 45 by a factor.

CHANGING ANGLE
At this stage, you may be wondering why the
angle should be fixed at 45°, because it limits
the range of the projectile. Both the angle of
elevation and the initial speed can be varied to
change the range of the projectiles. And it is
more usual to change the angle only to vary
the range, leaving the speed constant. The
next routine achieves just this:

a
4000 CLS
4010 LET FL=0
4020 RESTORE : FOR N=0 TO 7: READ A:

POKE USR "A" + N,A: NEXT N
4040 LET A = 70: LET SP = 50
4060 PRINT AT 0,0;"ANGLE=";A;CHR$

144;CHR$ 32
4070 INPUT "ENTER TO SHOOT", LINE 1$
4080 FOR T= 0 TO 250 STEP .5
4090 LET H=SP*SIN

((P1/180) .A)'T — 	 017: LET
X = 50*COS ((PI/180)*A) .T

4100 IF H> =0 THEN PLOT X,H + 16: BEEP
.05,H/4: PAUSE 40: NEXT T: GOTO 4110

4105 LET T = 250: NEXT T
4110 PAUSE 50
4130 INPUT "NEW ANGLE (0 END)", LINE 1$
4135 IF LEN 1$ =0 THEN GOTO 4130
4140 LET A=VAL 1$
4150 IF NOT (LEN 1$>0 AND A> =0 AND

A< 90) THEN GOTO 4130
4160 IF A=0 THEN LET FL=1
4170 IF NOT FL THEN GOTO 4060
4180 RETURN

5000 DATA 24,36,36,36,24,0,0,0

4040 A=70: SP = 50
4041 PRINT "DANGLE= ❑ ";A
4042 PRINT DN$;"TYPE RETURN TO SHOOT"
4043 GET 1$: IF 1$ < >CHR$(13) THEN 4043
4044 GOSUB 9000
4045 FOR T=0 TO 250 STEP 0.25
4050 H =SP'SIN(A'n/180) .T— 0.5'1017
4060 X = SP'COS(A'n/180)7+ 20
4070 IF H> =0 THEN Y=179— H: GOSUB

10000: FR = H/2+50: GOSUB 11000
4075 IFH <0 THEN T=250
4080 FOR D=1 TO 50: GET X$: IF X$=""

THEN NEXT
4090 NEXT T
4100 GOSUB 9500
4110 PRINT "piggy: INPUT "NEW

ANGLE111(07.END)E ❑ 0 0 0 ❑

ED 1111 1111 II II II IVA
4120 IF A<0 OR A> =90 THEN 4110
4130 IF A>0 THEN 4041
4140 RETURN

11(K
4000 PRINT "0"
4010 FL=0
4040 A =70:SP = 50
4060 GRAPHIC O:PRINT "DANGLE = ";A
4070 INPUT "ggRETURN TO SHOOT";Z$:

GRAPHIC 2
4080 FOR T=0 TO 250 STEP.5
4090 H=SP . SIN((n/180)*A)*T—.5 . 10 .

 PT:X = 50. COS((n/180)*A)'T
4100 IF H> =0 THEN:POINT 1,X*4,1023—

(H .6):POKE S,128+(H/10):NEXT T:GOTO
4110

4105 T = 250:NEXT T
4110 POKE S,O:FOR Z=1 TO 1000: NEXT Z:

GRAPHIC 0
4130 1$= `"':INPUT "DNEW ANGLE (0

END)";
1$

4135 IF LEN(($) =0 THEN 4130
4140 A = VAL(1$)
4150 IF LEN(3)=0 OR A<0 OR A>90

THEN 4130
4160 IF A=0 THEN FL=1
4170 IF NOT FL THEN 4060
4180 RETURN

4000 MODE5
4010 FL=0
4020 VDU 23,225,24,36,36,36,24,0,0,0
4030 VDU 19,3,4,0,0,0,19,0,3,0,0,0,24,

0;128;1280;950;
4040 A=70: SP = 50
4050 REPEAT
4060 PRINTTAB(0,0)"ANGLE = ❑ ";

A;CHR$(225)"0"
4070 PRINTTAB(0,29)"RETURN TO

SHOOT":D = GET:PRINTTAB(0,29)
SPC(16)

4080 FOR T=0 TO 250 STEP.5
4090 H = SP'SIN RAD A7—.5'1017:

X=SP*COS RAD Al.
4100 IF H> =0 THEN PLOT69,X'5,

H*4 +100:SOUND1, —15,H/4,2:
D=INKEY(85):NEXT ELSE T=250:
NEXT

4110 D=INKEY(100)
4120 REPEAT
4130 INPUT TAB(0,29)"NEW ANGLE (0

END): "1$: PRINTTAB(0,29) SPC(26);
4140 A=VAL 1$
4150 UNTIL LEN I$>0 AND A> =0 AND

A < 90
4160 IF A=0 THEN FL=1
4170 UNTIL FL
4180 RETURN

NC
4000 PCLS
4020 LINE(0,0) — (255,191),PSET,B
4040 A=70: SP =50
4060 CLS:PRINT"ANGLE =";A;

"DEGREES"
4070 PRINT@448,"ENTER TO SHOOT"
4072 IF 1NKEY$ < >CHR$(13) THEN 4072
4075 SCREEN1,0:AN = A'ATN (1)/45
4080 FOR T=0 TO 250 STEP .5
4090 H =SP*SIN(AN)'T—.5 . 10*T`T:

X = SP'COS(AN)`T
4092 IF H <0 THEN T=250:GOTO 4100
4094 IF X > 251 THEN T=250:GOTO

4100 ELSE IF H>189 THEN SOUND
250,1:D =25 ELSE PSET(X +2,
190— H,2):SOUNDH +10,1:D=35

4096 IF PEEK(345) =255 AND D > 0 THEN
D = D —1:GOTO 4096

4100 NEXT

4110 A$=1NKEY$
4120 IF 1NKEY$="" THEN 4120
4130 PRINT@448,"NEW ANGLE (0 END):";:

INPUT A
4160 IF A<0 OR A> =90 THEN 4120
4170 IF A>0 THEN 4060
4180 RETURN

When you RUN the fourth option, you should
see the trajectory of an object shot with a
speed of 50 m/s and at an elevation of 70°
(both set at Line 4040, and used in the
relationships at Line 4090-4050 and 4060
on the Commodore 64).

The routine works as the previous one,
except that you can enter as many angles (each
between 1° and 89°) as you wish, without
returning to the menu. So every time you run
through the routine, the variable A at Line
4090 is set to the angle you enter. This time
the routine is in an infinite loop, so the display

will not return to the menu unless you enter 0
as an angle.

Using this routine, try to find the angle
that gives the longest range—the angle that
lets the object travel farthest in the horizontal
direction. You should have no trouble verify-
ing that this angle is 45 degrees.

Most people know this either from expe-
rience or intuitively, but it is less well-known
that in practice resistance makes a significant
difference in most cases, and that 45 degrees
gives the longest range only if the starting and
landing points are at the same height. Never-
theless, any projectile game that depends only
on the player getting the greatest range is
doomed to failure, because there will not be a
sufficient variation from the ideal angle—
which most players will either know or guess.
In a subsequent article, you will see how these
routines are used as the basis for a challenging
and enthralling game.

Here is a really useful machine code
program with a visible result. It
extends the standard Commodore
BASIC into normally inaccessible
high-resolution graphics

So far, many of the painting and drawing
programs for the Commodore given in
INPUT have used Simons' BASIC. This is
because you cannot access the machine's
high-resolution graphics directly from stan-
dard Commodore BASIC. And to use a
Simons' BASIC program, you need a special
cartridge. But it is possible to write a machine
code routine that will give you graphic in-
structions similar to those used in Simons'
BASIC; the following program does just that.

This is the first of several articles which
will allow you to RUN all the graphics
programs published in INPUT, without
needing a Simons' cartridge. All you need to
do is ensure that the command words are
prefixed with an @. It fits into the protected
area from C000 to CFFF so you don't have to
POKE the. system variables to shift RAMTOP.

Because it is a long program—too long for
INPUT's assembler to cope with in one go—
it has been divided up into small chunks, each
with their own origin. You'll find it easier to
assemble that way.

SETTING UP
The first routine intercepts the computer and
makes sure that it goes to this machine code
program before doing anything else.

ORG 49152
LDX # &02

BACK LDA &COOB,X
STA &73,X
DEX
BPL BACK
RTS
JMP &COOF
BYT &00

This small routine redirects the Com-
modore's own CHRGET routine, which starts
at &0073, to the beginning of the main
routine here. CH RGET is used by BASIC to get
each character or token. So you are simply
sending it off to perform the program given
here, before it deals with any of the regular
BASIC commands.

You'll note here that JMP &COOF is not
actually a command in this part of the
program. It is data. The rest of the routine
picks this instruction byte by byte and stores

it in &73, &74 and &75. When that's done, the
computer is returned to BASIC. But now,
when the computer tries to execute a
program, it will be directed to your graphics
program first.

BYT 00 sets aside an empty byte for the
temporary storage of error codes.

LOCATING GRAPHIC COMMANDS
To be able to use your graphics routines with
this program you have to insert an @ symbol

in front of each graphics command. This
routine searches through the BASIC program
looking for an @ so it can locate the
commands.

ADDING NEW
COMMANDS

WHICH ROUTINE?
HIRES

,COLOUR

ORG 49167
INC &7A
BNE ON
INC &7B

ON STX &COOE
TSX
SEC
LDA &9D
BEQ RUN
LDX # &OD
J M P &0079

RUN JSR &0079
CMP #&40
BEQ &CO30
LDX &COOE
JMP &0079

The first four instructions move the current
BASIC byte pointer onto the next byte of
BASIC. This is normally done in the CHRGET
routine, but was overwritten when you re-
directed it.

LDA &9D and BEQ RUN check to see if a
BASIC program is RUNning or not. The
system variable at &NOD is 0 if one is.

If no program is RUNning, Xis loaded with
OD, the code for a syntax error. And JMP
&0079 takes it back into the CHRGOT routine
which goes on to PRINT the error message on
the screen. This routine will not work in
direct mode, only with a program.

If a BASIC program is RUNning, the
processor branches forward to JSR &0079.
Again, this jumps to the CHRGOT subroutine
which gets the same byte of BASIC again. But
because it has been called as a subroutine, as
soon as it has finished, the processor returns
to your program, rather than move onto the
screen print ROM routine.

The BASIC byte can now be compared to
the program token for an @, &40, If it finds

one, the processor branches on to the next
routine. If not, the current error status is
loaded into the X register from its store in
&COOE and the processor jumps back to the
CHRGOT routine to PRINT the error message
or start on the next byte.

STORING POINTERS
This section takes care of the pointers.

ORG 49200
JSR &0073
LDX &7A
STX &FB
LDX &7B
STX &FC
LDX # &01
STX &FE

The next byte of the BASIC program is
obtained from the CHRGET routine. The
current byte pointer is stored in &FB and
&FC in the user area of the zero page. This
is done so that they can be manipulated
without corrupting the system variables.

The number 1 is stored in &FE. This
location is being used as a counter for the
graphic keyword being dealt with.

RECOGNIZING NEW KEYWORDS
Once the @ symbol has been located, the next
routine looks at the first letter of the graphics
command.

ORG 49215
LDX # &00
CMP &CF00,X
BEQ &C061

AGAIN LDA # &OD
CMP &CF00,X
BEQ STOP
LDA # &01
CMP &CF00,X
BEQ &COA4
I NX
JMP AGAIN

STOP INX
INC &FE
JSR &0079
JMP &C041

A word-search counter X is initialized. The
letter in A is compared with those in the table
at &CFOO. When it finds one the same, the
processor branches forward to the beginning
of the next routine at &C061.

If it doesn't find a match, OD is compared
with the byte in the table. The ODs in the
table indicate the end of a word. If an OD is
found, the processor branches forward and
increments the X counter and the word
number in &FE. The same byte is supplied by
the CH RGOT and the processor jumps back to
the beginning of the routine again, ready to
start on the next word in the table.

If no OD is found, the byte of the table is
compared with 1, which indicates the end of
the table. If a 1 is found, the processor
branches forward into the exit routine at
&CF00.

If the letter in A does not match one in the
table, and the table has not reached the end of
a word (or the end of the table), the X counter
is incremented and the processor jumps back
to check again.

CHECKING THE SPELLING
Once the initial letter of the graphics com-
mand has been located, the processor has to
check that the rest of the letters of the new
keyword match the ones in its table. Other-
wise it returns a syntax error.

OR G 49249
FND INX

LDA # &OD
CMP &CF00,X
BEQ &C089
LDA # &01
CMP &CF00,X

BEQ &C089
JSR &0073
CMP &CF00,X
BEQ FND
LDY &FB
STY &7A
LDY &FC
STY &7B
LDA &FE
CMP# &16
BEQ &COA4
JMP &C046

The first thing that is checked for is a OD or 1
in the next byte of the table. Of course, it
won't find either of these on the first pass, but
these instructions are part of a loop. When
one of these is found, the check is complete
and the processor jumps onto the routine that
works out which routine it needs to go to.

The next byte of the BASIC program is
obtained from the CH RG ET routine again and
it is compared with the byte in the table. If
they match, the processor goes back to the
beginning of this routine again and checks the
next byte.

If not, the BASIC byte pointer is loaded
back into the appropriate system variable.
The word number in &FE is compared with
22, &16 in hex, to see whether all the words
have been checked. If they have, BEQ &COA4
branches forward to the exit routine. Other-
wise, the processor jumps back to &C046,
which is marked by the label AGAIN in the
routine, to start the checks all over again.

WHICH ROUTINE?
The program now jumps to the correct
routine to deal with that graphics command.

ORG 49289
LDX # &01
LDY # &00

ADD CPX &FE
BEQ &C097
INX
I NY
I NY
JMP ADD
LDA &COCO,Y
STA &FD
LDA &COC1,Y
STA &FE
JMP (&00FD)
LDX # &OB
JMP (&0300)

The X and Y registers are initialized and
incremented until the word number in &FE
matches the value of X. Then the value of Y
calculated is used as an offset to read across
the table starting at &COCO to find the

Long programs
Where INPUT'S graphics routines mani-
pulate the screen, BASIC programs longer
than 6K will not RUN. So far, all the
graphics programs published in INPUT
have been shorter than 6K. But if you
want to write longer ones you will have to
move BASIC up memory to the other side
of the screen area. You can do that by
entering the following POKES:

POKE 43,1:POKE 44,65;POKE 65'256,0:
NEW

This will give you 24K free for your
BASIC programs.

address of the routine for handling that
instruction. The start address of the routine is
stored in &FD and &FE.

JMP (&00FD) jumps to the routine which
starts at the address pointed to by &FD and
&FE.

LDX # &OB and JMP (&0300) make up a
small exit routine called when the word in the
program does not match any of the command
words in the table. The routine pointed to by
&0300 and &0301 returns the BASIC error
message specified by the number that is found
in the X register.

THE ROUTINE TABLE
Here are the start addresses of the routines.

ORG 49344 	WOR &CE00
WOR &C100 	WOR &CE00
WOR &C130 	WOR &CE00
WOR &CE00 	WOR &C
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00 	WOR &CE00
WOR &CE00

In this article only two of the graphics
commands are going to be covered. The rest
will be dealt with in subsequent chapters. So
there are only two start addresses of active
routines in this table—C130 and C100. For
the moment, if any of the other command

words are found, they will be directed to a
temporary routine at CE00. The start address
of the other graphics routines will be filled in
when the routines are dealt with.

THE (i COLOUR ROUTINE
ORG 49408
JSR &B79B
TXA
STA &D021
JSR &AEFD
JSR &B79E
TXA
STA &D020
LDX &COOE
JMP &0079

This part of the program makes use of several
ROM calls. JSR &B79B jumps to the subrout-
ine at &B79B which inputs the first parameter
after the COLOUR command. This is transfer-
red from the X register into A and stored in
the input/output location which controls the
screen colour.

The ROM routine at &AEFD deals with
commas. In this case the comma is ignored
and the next parameter is input. This is called
at &B79E. The first three bytes of the routine
move it onto the next byte, but this is not
necessary here as the comma routine has
already done it. It is stored in the location that
controls the border colour. Then the error
status is loaded into X and the processor exits
the program via the error message routine.

THE (/ HIRES ROUTINE
ORG 49456
LDA # &20
STA &FE
LDA # &00
STA &FD

ROUND LDY # &00
LOOP 	STA (&FD),Y

I NY
CPY # &00
BNE LOOP
INC &FE
LDX &FE
CPX # &40
BNE ROUND
LDA # &3B
STA &D011
LDA &D018
ORA # &08
STA &D018
JSR &13798
TXA
AND # &OF
ASL A
ASL A
ASL A

ASL A
STA &02
JSR &AEFD
JSR &B79E
TXA
AND # &OF
CLC
ADC &02
STA &02
LDA &02
LDY # &00

REPEAT STA &0400,Y
STA &04FA,Y
STA &05F4,Y
STA &06EE,Y
INY
CPY # &FB
BNE REPEAT
LDA # &60
STA &C23E
JSR &C208
LDA # &4C
STA &C23E
LDA # &C8
STA &D016
LDX &COOE
JMP &0079

LDA # &3B and STA &D011 sets the Vic
chip control register bit-map (or @HIRES)
mode. Then the next four instructions pre-
pare the Vic memory control register by
switching it from 21 to 24 to give hi-res.

The next parameter is then input, switched

Will all the graphics programs
for the Commodore in INPUT
work with the graphics command
being added to BASIC here?
When you have completed adding the
instructions in the last article in the
series, provided you add the @ sign
before the graphics instructions in your
programs, they will all work.

There is one exception though and
some alterations have to be made to the
program on page 569. These are:

10 POKE 51,255:POKE 52,31:POKE 55,
255: POKE 56,31:CLR

50 DATA 169,0,133,251,133,253,169,
32,133,252,169,96,133,254,
160,0

60 DATA 177,251,145,253,192,63,
208,16,165,252,201,63,208,10

into the A register and stored in 0286—the
current character colour code system variable.
The following comma is then skipped over
and the next parameter is input.

Then the error code condition is loaded
back into X and the processor leaves the
program again via the error print routine.

THE NEW WORD ROUTINE
This routine returns the error message.
ORG 52736
LDX # &00
LDA &CE13,X
JSR &FFD2
INX
CPX # &12
BNE &CEO2
LDX &COOE
JMP &0079
TXT 'NOT ... IMPLEMENTED'

THE ASCII TABLE
This table carries the ASCII data of all the
new keywords. Each word ends with a OD
byte and the table ends with a 01.

ORG 52992
TXT 'COLOUR'
TXT 'HIRES'
TXT 'MULTI'
TXT 'NRM'
TXT 'LOWCOL'
TXT 'HICOL'
TXT 'PLOT'
TXT 'LINE'
TXT 'BLOCK'
TXT 'PAINT'
TXT 'TEST'
TXT 'CSET'
TXT 'REC'
TXT 'CHAR'
TXT 'TEXT'
TXT 'ARC'
TXT 'ANGL'
TXT 'CIRCLE'
TXT 'DRAW'
TXT 'ROT'
TXT 'FLASH'
TXT 'OFF'
BYT &01

TESTING
Use the following BASIC graphics program
to test that your machine code is working:

10 @HIRES 0,1
20 FOR Z = 8192 TO 16191 STEP 5:

POKE Z,255:NEXT
30 FOR Z = 0 TO 15:@COLOUR Z,Z:

NEXT Z:GOTO 30

SYS 49152 calls the whole routine.

The ability of the computer to work at
fantastic speeds and to store information in
such a way that it takes up little space makes
it an ideal tool for searching through and
manipulating large collections of information.
And one of the most common serious uses of
home computers is as a database management
system, or DBMS.

A database is essentially a collection of one
or more datafiles (see pages 622 to 627),
themselves little more than a collection of
individual records. But the power of the
computer means that by embracing usually
more than one file, a database assumes rather
greater power than a mere electronic equiva-
lent of a filing cabinet.

WHAT IS A DBMS?
The difference lies in the way the inform-
ation is manipulated. In a datafile, inform-
ation is simply entered according to the
records required—the various entries are
established and all the records within the file
follow exactly the same form. The same
pattern of records could, in practice, extend
beyond a single file—a large company may,
after all, like to isolate personnel records
departmentally.

Left simply in storage, these various data-
files are only of use if and when accessed from
outside. And essentially they are little more
than electronic versions of paper records at
this stage.

The significant difference is that inform-
ation in a database is specifically set out ready
for subsequent work such as sorting, record
searching, amendment or replacement of
entries, and so on.

In reality, a DBMS is capable of much
more, particularly in that details of one file
can be used to generate or update information
in another.

USES OF DATABASES
Commercially available database management
systems are being put to some remarkable
uses. A vicar uses one for storing lessons and
sermons, a hospital uses a database on a home
micro to match up blood types, and they have
also been used in an attempt to forecast
football results and horse race winners!

DBMS can be used in any application
where a great deal of information has to be
filed and repeatedly accessed later. And of
course it doesn't matter whether the inform-
ation is business or hobby interests—a single
DBMS program can be used for both.

Information can be disgorged in the form
of mailing lists, labels, company reports,
personalised form letters, invoices, state-
ments, debtors lists, stock lists, and much
more.

Although the terms 'database' and 'data-
base management system' are often used,
incorrectly, to describe the same thing, there
is in fact an important difference. Confusion
often arises because the DBMS is sometimes
referred to simply as the database, meaning
the whole package, hardware and software,
rather than by its proper title, a database
management system.

And there's a clear difference between
information which is simply collected as a file
of data and confined to storage—such as a
straightforward correspondence file—and in-
formation which is filed and then frequently
used as a source of information (in effect a
reference file).

ORDERING FILES
In many instances, a datafile or simple data-
base will have a fixed record format, field size
and headings. A true DBMS should give you
the flexibility of defining your own records
from scratch, accepting, of course, memory
and other system limitations.

There must be some order to the database
to start off with and defining this is an
essential first step in using a DBMS. It need
not be highly organised but there must be
some sense to it. After all, `cemoprtu' is an
organised collection of information (it's in
alphabetical order) but it will not make much
sense to man or machine until it is reorganised
to become 'computer'.

Similarly a filing cabinet with all the
addresses of all the members of a club or
company in one file, all their names in another
and all their telephone numbers in another
would be useless because it would be impo-
ssible to tell which name belonged to which
address or phone number.

Would a purpose-built filing
program or a database be better
suited to my needs for a simple
application such as creating
mailing lists?
A purpose-designed program would
probably be the better choice. Such a
program would be simpler and shorter,
and could have special, easily accessed
features such as printout of all entries.

But the fields of even a simple DBMS
can be defined in a way that would yield
a suitable mailing list (where output is
in the form of labels). The data may
have to be read by an external
program unless there is a label
facility, only likely with more
expensive packages.

FILE MANAGING
Taking again the comparison with a manually
run 'paper' office, a DBMS is like the person
whose job it is to make sure that information
from a whole collection of physically separate
but subject-linked files is passed to the appro-
priate department for attention—the file
manager, if you like.

In a manual filing system, the filing man-
ager has to make decisions about how the
information should be stored. The file of
people who work for a company, for instance,
could be arranged alphabetically. But it could
also be arranged by length of service, rates of
pay, by department or position in the
company.

The filing manager's real problems start
when other departments want specific in-
fornition. Someone may want to know how
many (and which) staff are over the age of 50,
for instance, while someone else may need a
geographical breakdown of where staff live. If
the files are arranged alphabetically, then the
filing manager has no choice but to read
through all the record cards to extract the
appropriate information from them.

Even if your filing needs are simple
now, a proper database management
system could be a worthwhile long-
term investment. Here's a look at
what a DBMS can do

WHAT IS A DBMS?
USES OF DATABASES—IDEAL

FOR HOBBIES AND BUSINESS
ORDERING FILES

FILE MANAGEMENT

INFORMATION SEARCHES
DESIGNING A RECORD

IMPORTANCE OF THE KEYFIELD
ACCESSING INFORMATION

DIFFERENT TYPES OF OUTPUT

If this sort of information is needed regu-
larly, the file manager may decide to set up
two other files, one stored into age groups and
the other organised geographically. It would
be more efficient if, instead of complete files,
these two extra files took the form of indexes
cross-referenced to the main file.

In a computerised system, the choices are
exactly the same. A simple DBMS would file
information serially in the form of a sequent-
ial file. This is like the filing manager using
just one file, say the alphabetical file. A more
sophisticated DBMS, and most serious com-
mercial software falls into this category, uses
relational or relative files to store information.
This is equivalent to the filing manager
setting up extra files which are cross-
referenced to the main file.

Unfortunately for those who use cassette
storage, a relative file requires random
access—the ability to search anywhere on the
file and to move backwards and forwards
through it. (Although the words 'backwards
and forwards' do not really apply to a disk
drive since data is stored in order to make the
best use of space on the disk and not neces-
sarily in logical sequence.) Normally tapes are
not randomly accessible while disks are.

The type of DBMS used in business is only
really practical using a fast and efficient
method of storing and retrieving lots of
information—which is why business ma-
chines require a disk drive. This is not,
however, essential and the type of small
database you are likely to use at home, an
address book for instance, will work effi-
ciently using a cassette drive. But it may be
necessary to rewind the tape regularly so that
the computer can search through it again.

FILING
Data can be stored using one of several
distinct methods and the most common is in
the form of a sequential file (see pages 622 to
627). While this is the most efficient in its use
of available storage space and, because of its
serial nature, the only method available to
tape users, it imposes certain restrictions on
the use of a database. A sequential file is fine if
you want all the information displayed or
output—but it's not much good for any job

Choosing your program
A single record within a DBMS can be
designed to yield information which could
be used for reports, mailing lists, invoices,
general accounts, form letters, 'diary' let-
ters, stock updates—and much more.
Anticipate your fullest needs when you
first get down to the business of choosing a
database program. If you want flexibility,
it is best to go for the better quality DBMS
programs.

Few of the simpler databases permit
you to adjust the field lengths at a later
date. Still fewer allow you to insert ad-
ditional fields within existing ones or
move the fields around. You can get round
this on some systems by selectively im-
porting 'old' information. 4

that requires isolation of specific details.
A sequential file system is used by many of

the more simple datafile or database
programs, but can be emulated by more
sophisticated packages when the distinct ad-
vantages of a sequential file are required,
typically for generating reports (see below)
and output like a non-specific mailing list (in
other words, labels printed from all the
records in the file, start to finish).

Much more sophisticated direct access file
handling methods are used on more heavy-
weight DBMS. From the 'outside' this may
not appear to amount to much, but the
presence of commands and procedures to
enable sophisticated multi-parameter sorts
and searches would indicate that a wholly
sequential file system is not in use. So if
information is required—or possibly
required—for use in or from other programs,
do make sure that there's suitable provision
for creating the necessary transfer files.

These are often called export and import
files. The 'raw' information within them is
separated into fields and records usually only
by a commonly recognized symbol, typically

the value of a carriage return (CHR$13) but
other field separators can be used.

Use of predefined field separators enables
information to be compacted to make max-
imum use of the available memory or storage
space. Otherwise, with the use of carriage
returns alone, a fresh display line is required
for each new item of information, regardless
of whether it takes a third of the line or all of
it. The program originating export files must
be able to specify separators which can be
recognized by the program which is to import
that data.

Using this system information could be
exported by a DBMS and imported by a
wordprocessing or spreadsheet program—or
vice versa.

Files which are to be read by different
programs must of course share a common
language—particularly if that same file is to
be 'read' by other computers. A conversion
facility for the production of standard (or near
standard) ASCII sequential files is perhaps an
essential requirement in any program used to
produce data for transfer by a modem and the
telephone network.

INFORMATION SEARCHES
The most efficient method of searching for
information also requires a disk drive. The
only type of search possible with a cassette
unit or Spectrum Microdrive is a linear
search, starting at the beginning and working
a way through the file testing the 'search key'
against each record key until a match—the
`target'—is found. A binary search, on the
other hand, starts in the middle.

This may sound illogical but it is, in fact,
the way that everyone searches manually for
information. Think about looking for a name
in the telephone directory—Masters, for in-
stance. Opening the telephone book at the
beginning and working our way through the
entries until you come to Masters would be
very time consuming. So it is normal to open
the book in the middle. If if falls open at
Jones, then you know that the entry you want
is in the second part of the book, on a higher
page number. This means you can eliminate
all the low pages up to Jones.

The next step is to open the second part of
the book in the middle, that is three quarters

of the way through the whole book. The
entries on this page may be Smith in which
case we have gone too far, or 'high'. You want
a lower page number so you turn to a page
that's halfway between the first page you
opened and the second page. If you carry on
in the same way you will quickly home in on
the correct entry.

Anyone who has played a 'Guess the
Number' game, either with the computer or
with a friend, will know the idea and will also
be aware of how surprisingly fast and efficient
such a search is. The reason why it is called a
binary search should be obvious. Each time a
choice is made between two alternatives. Are
we on a page that's too low (let's give it the
value 0) or are we on a page that's too high (a
value of 1)?

If it's a human being that is doing the
search, the chances are that at some point they
will start guessing at which page the entry will
appear. Instead of adhering strictly to the
rules we usually go to a page which we think
might be close to the entry we want. The
computer cannot do this, of course, and must
work strictly by logic, according to the rules.

What are the procedures for
using a typical DBMS?
Defining the record format for a
particular file is usually the single major
task you face. This involves designing its
appearance and content. The fields can
take various forms—for example
character, numeric, data, calculation—
and the right combination is important.
A neat display makes it easier for users
to find their way round the record, and
good planning makes sure that maximum
possible use is made of the field lengths,
positions and field types. Once the
record has been defined, you can
proceed with making entries
and then use the functions
available to you within
the program.

SEARCHING AT SPEED
The electronic filing cabinet consists of three
main elements: the computer, the data and the
program which manages the data. It is much
more efficient than any manual system could
hope to be. And for one reason only: speed.

Asking a computerised system for a list of
all those employees of the company who are
aged over 50 requires exactly the same action
as in a manual system. The filing manager
and the computer search through the file,
laying on one side all the appropriate records.
But a computer can search through the
file at a speed many times faster than a
human being—seconds rather than hours.

Searching through a sequential file (which
is the sort of file stored on a cassette) is slower
than searching through relative files for both
the computerised and the manual systems.
This is because every record in a sequential
file has to be looked at one by one whereas a
relative file will usually have a separate index
for every separate item of information or
`field' on the records. Searching through the
index containing dates of birth will obviously
be much quicker than searching through
every individual record. This is true whether
the program utilises a linear search or binary
search. A binary search through relative files
will obviously be quickest of all.

DESIGNING A RECORD
There are many commercial DBMS
programs available for most makes of home
micro but writing your own program for
something like a simple address book is not
too difficult (see the file program on pages

46-53 and 75-79). Whether you are writing
your own program or using commercial soft-
ware it is essential to know how a DBMS is
constructed!

Designing the format of a record and
defining the content of each field of that
record are the first steps of using a DBMS. A
full-blown DBMS will enable you to design
the record from scratch and you may be
presented with little more than a blank screen
which you have to format according to your
requirements. On more simple systems the
position of the fields which go to make up the
record may already be defined—likewise the
size and position of the entry sections. In this
case you may be required to do little more
than enter the number of fields required, and
follow this with a heading for each of the
fields. The file program on pages 46-53 and
75-79 operates in this way.

For those systems which allow you to
format the record precisely to your require-
ments, the blank screen can be regarded
exactly like a blank sheet of paper. The first
thing you need to do is to decide what you
want to write on the paper!

Aside from the cosmetic appearance of the
record (you can usually incorporate graphic
symbols and lines in a record definition of this
type), you must decide which items or . fields
will be referred to regularly.

A field can be regarded as a heading for the
information. A personnel file for a company
may contain the following information:
Name, Address; Date of Birth; Sex; Marital
Status; Date started employment; Position;
Salary. Each one of these headings is known

as a field. Great care must be taken when
establishing the number and size of each field
since they cannot usually be added to or
amended later. Obviously, the fields on every
record in a file must be the same and it's often
useful to specify one extra field, perhaps
headed 'Notes', even if this field is left empty
on most records.

The information within each field on a
record card can, of course, be changed but the
fields themselves must remain the same.

Name, Address, Date of Birth, Telephone
Number are obvious fields for an address
book. But you might decide that part of the
address, the town, for instance, is an import-
ant piece of information. In this case you
could specify the town as a separate field.

Fields are especially important in relative
files, although these are only really practical
for those with disk drives. The information in
each field can be stored in a separate index,
and each entry in the index will contain a
pointer to the complete record in the main
file. All the telephone numbers in your
address file will be contained in an index
headed, appropriately, Telephone Numbers.
And each number will be prefaced or followed
by a unique code which indicates the record in
the main file.

Serious commercial database manage-
ment programs write the separate indexes and
carry out all the necessary cross-referencing
automatically every time information is saved.

This is why, with a good DBMS, we can
say: 'Find all people named Smith who live in
Birmingham and were born before 4/2/1952
then print out their telephone numbers.'

The picture shows various screens of a commercial DBMS (Superbase 64 for the Commodore 64). The first is one of two
general menus which outline the main functions of the program. Defining a record (`format') is one of these (next

picture). Record appearance and field name and types can be specified. The next picture shows an entry being made. Next
is shown the program option, a feature which can be used to

generate tailor-made applications from within the main
program. Finally there's one of the secondary menus

KEYFI LD
The keyfield is the most important field in a
record—the item of information you will need
access to most frequently. It is this at which
the DBMS will look when sorting records
into order, or if a general search is ordered
(this is the quickest way of accessing inform-
ation). So the keyfield must be the one item of
information which is most memorable and
which is, as far as possible, unique to each
record. The keyfield in a personnel record for
instance is likely to be the surname.

ACCESSING INFORMATION
Once the information has been stored, you
need to get access to it. The more so-
phisticated a DBMS, the more flexible it will
be and the easier it will be to retrieve exactly
the information you want. There are a num-
ber of standard methods of searching for
information, some of which have been ment-
ioned previously.

A keyfield search simply runs through the
records (in memory) and stops to display the
record which matches the search criteria.

If a system of indexed fields is used, each
field is filed in its own field index. In the
company personnel file example all dates of
birth would be in a separate index and each
entry would point to the record in the main
file.

A criteria search can hunt through inform-
ation in one or more fields. You could find
out, for example, how many of your em-
ployees were male, over 60 and earned above
a certain given level. In this instance the com-
puter would need to conduct three searches
more or less simultaneously.

Finally there's the standard
character string search. Although
the slowest of all search methods
used on DBMS, it is the most versatile.
The computer simply looks for a character
string—usually a word, but it could be a
number—and gives you all records in
which that word or number occurs
It is very useful for gaining
access to information which
we have not specified
as a field. So in an
address book file, even
though the whole address
might be specified as a
field and the town or city is
not, you can find out which of 	,
your friends live in a given town
or city by asking the computer
to carry out a search for all record
cards in which the name of the .city
or town occurs.

OUTPUT
Hard-copy output in the form of labels, lists
and reports is really what DBMS is all about.
Thinking about exactly what you want in this
respect obviously should influence the very
structure of the records which form the files
of the DBMS. But such is the flexibility of
some systems, that information can be
plucked from all over the place in a record and
presented in almost any desired position and
order when it comes to the printed output.

The simplest form of output is in the form
of what is called a report. On selecting this
option you are usually asked by the core

program for the fields which are required.
Records are then printed out in strictly
sequential order. Some DBMS may even
allow you to choose which records will be
printed.

Other types of printout, typically for mail-
ing lists, invoices and other 'form' printing
require a measure of formatting and special
instructions may be provided by the DBMS
program for you to do this.

Is there something missing from
your UDG generator? This article
provides extra program lines to give
you even more scope to design
exciting UDGs

This article provides the rest of the character
generator programs. The new program lines
add several more editing facilities to make it
even easier to design your own graphics
characters. There is also a guide to using the
UDGs you have designed, by calling them up
in other programs.

E
When you add the new lines to the program
given in the last article, six new functions
become available to you.

You will see the first function as soon as
you RUN the new program. It shows the
values of the eight bytes of the character in the
grid, and an actual size version of it on the
screen display. These bytes are added by a
short machine code routine, which updates
both the numbers and the actual size UDG
every time you set a new point under the
cursor.

The new program also lets you clear the
grid simply by pressing C to save you having
to delete every pixel.

There are three more control keys which
you can use to alter the UDG in the grid. If
you press M the UDG is mirrored from left to
right. This means that whenever you want to
design two UDGs to make up one sym-
metrical figure (a spaceship, for example) you
can start by designing one of the UDGs, and
store the finished version. You can then call
this back and get the computer to create the
second half for you. The mirror function is
also useful if you want two figures, one facing
left, one facing right.

NEW CONTROLS
CHECKING THE DATA

INVERSE UDGS
REFLECT YOUR DESIGNS

ROTATING UDGS

CLEARING THE GRID
PRINTING OUT THE DATA

USING THE UDGS IN YOUR
OWN PROGRAMS

LOADING UDGS FROM TAPE

Similarly, you can rotate your UDG
through 90 degrees by pressing the R key.
This facility is useful, since you can design
just one UDG—say, a rocket—and then
rotate it to create UDGs of a rocket being
fired in any of four different directions.

The last of these three control keys, the I
key, gives you the inverse of the character.
Press it twice and it gives you the inverse of
the inverse—to give you the original character
back again.

There is also a printer routine, which you

can use to print either the DATA values for
each character in the UDG bank, or a screen
dump. The screen dump may not work if you
have an independent make of printer, but
don't worry—a future article in INPUT will
show how to get your printer to produce a
screen dump when this facility is available.

Press Z to activate the printer routine, and
then either D or S. D prints out the DATA,
while S produces a screen dump. If you press
any other key after the Z, the computer
returns to the main loop of the program.

If you do not intend to use a printer, you
need not type in Lines 2570 to 2590. You
should, though, add this line:

2570 GOTO 2000

Here are the extra lines:

5 CLEAR 31999
12 LET T= 0: FOR N = 32000 TO 32227:

READ A: POKE N,A: LET T=T + A: NEXT
N: IF T< >21691 THEN PRINT FLASH 1;
"ERROR IN DATA": STOP

2020 PRINT AT 10,21;CHR$ 139;CHR$
131;CHR$ 135;AT 11,21;CHR$ 138;AT
11,23;CHR$ 133;AT 12,21;CHR$ 142;CHR$
140;CH R$ 141

2030 RANDOMIZE USR 32000
2530 IF 1NKEY$ = "I" THEN RANDOMIZE

USR 32092
2540 IF 1NKEY$ ="C" THEN POKE 32106,0:

RANDOMIZE USR 32092: POKE 32106,12
2550 IF INKEY$="M" THEN RANDOMIZE

USR 32145
2560 IF INKEY$="R" THEN RANDOMIZE

USR 32183
2570 IF 1NKEY$ < >"Z" THEN GOTO 2000
2575 INPUT "S(CREEN DUMP) OR

D(ATA)? ❑ "; LINE Z$
2580 IF Z$ < >"S" AND Z$ < >"D" THEN

GOTO 2000
2590 IF Z$ ="S" THEN COPY : GOTO 2000
2600 LET CH =65: FOR N = USR "A" TO

USR "U" +7 STEP 8
2610 LET TA = 0: LPRINT CHR$ CH: FOR

M=N TO N + 7: LPRINT TAB TA;PEEK M;:
LET TA = TA + 4: NEXT M

2620 LPRINT : LET CH =- CH +1: NEXT N
9100 DATA 62,2,205,1,22,62,22,215,62,

8,215,175,215,33,11,72,221,33,118,72

9110 DATA 6,8,197,6,8,14,128,175,50,
91,125,126,254,1,40,7,58,91,125,
129

9120 DATA 50,91,125,203,57,35,16,239,
58,91,125,221,119,0,229,221,229,
62,23,215

9130 DATA 62,5,215,33,90,125,205,40,
26,62,13,215,221,225,225,17,24,
0,25,221

9140 DATA 229,209,20,213,221,225,193,
16,189,201,0,0,33,11,72,6,8,197,
6,8

9150 DATA 197,126,254,1,229,40,12,6,7,
62,1,119,36,16,252,54,255,24,13,6

9160 DATA 4,54,85,36,54,171,36,16,248,
37,54,255,225,193,35,16,219,17,
24,0

9170 DATA 25,193,16,209,201,33,11,72,
6,8,197,6,4,17,7,0,197,229,126,25

9180 DATA 78,119,225,113,35,27,27,193,
16,242,17,28,0,25,193,16,229,
205,92,125

9190 DATA 195,92,125,221,33,11,74,33,
235,72,6,8,197,6,8,197,221,126,
0,119

9200 DATA 221,35,6,32,43,16,253,193,16,
241,17,24,0,221,25,17,1,1,25,
193

9210 DATA 16,226,205,92,125,195,92,125

The DATA at the end of the program is POKEd
into memory and is machine code. There are
three separate routines to rotate, mirror and
display the actual size UDG (and its bytes) on
the screen all the time.

You must take extreme care to type in these
numbers accurately. Any error in your ma-
chine code will result in the program failing to
work properly—or at worst, crashing
completely.

There is a check built-in to the program, so
that the program will stop if you have typed in
the DATA incorrectly. This means that your
program should not suffer if you have made
an error. You will just be prompted to recheck
the DATA.

USING YOUR UDGs
The first part of the program included a SAVE
and LOAD option, so that you could make a
permanent record of your characters on tape.

By careful selection of what is stored on tape,
you can use this program to create several
banks of UDGs.

The Spectrum can access up to 21 UDGs
at any one time. If you want to use more than
this, you have to have either several banks, or
redefine the whole character set. The article
on pages 450 to 457 explains how you can do
this. There is also a guide to how you can call
the UDGs up from the bank and into your
program.

You can define all the UDGs you are likely
to want using the INPUT UDG generator,
and you can use them all in one program by
changing the UDG pointer.

The program assumes that the UDG poin-
ter is pointing to the address you want it to
indicate, and so it SAVEs its bytes from this
address, and LOADS them back to this address.

When you want to use the bytes for your
own characters in your own programs, you
can LOAD them back into memory to any
address you specify. This means that if you
want to have three banks of UDGs in mem-
ory, all you need to do is LOAD each bank into
memory in different places.

Each bank is 168 bytes long, so you should

remember to LOAD each one into areas of
memory at least 168 bytes apart, otherwise
one bank might erase part of another. To
LOAD a block of memory to any address, you
can use this command:

LOAD "" CODE (start address)

No matter what address the block was SAVEd
from, you can LOAD it back to any area in
RAM.

Once you have LOADed each block of
memory for the various banks of UDGs you
have SAVEd, you can use each one by changing
the UDG pointer. The article on pages 450 to
457 explains how you can do this.

Whenever you do use more than one bank
of characters in your programs, you should
use a CLEAR command to protect the block of
memory used for the UDGs from being
corrupted by the computer—this, too, is
explained in the article on pages 450 to 457.

ECK
The program lines below add a number of
extra features to the character generator
started last time.

If you SAVEd the last program on tape, you

can LOAD it back in again. If you did not, type
in the lines below and RUN the program.

33 FOR Z=0 TO 7:POKE 12288+
Z,255:NEXT Z

123 PRINT "taggAggiglapnl
PJ[2]";:FOR Z=1 TO 31:
PRINT "B";:NEXT Z:
PRINT "1=1"

125 PRINT"mpipig E •ma ❑ g
©0 m@E] k@oi@ou
© ❑z@ ❑iri@ ❑ c© ❑
11@E n©Li o©012@
❑ ■ @ ❑❑ @ ❑ u@ ❑ am"

128 PRINT "MniM13";:
FOR Z=1 TO 31:PRINT "9";:
NEXT Z:PRINT "El"

165 IF P=55 AND Y.<7 THEN Y=Y+1
210 IF P=4 THEN 1000
220 IF P=5 THEN FL = 1:GOTO 1100
230 IF P=6 THEN FL= 2:GOTO 1100
240 IF P=3 THEN FL= 3:GOTO 1100
245 IF P=51 THEN FL= 4:GOTO 1120
260 IF P=49 THEN A =0:GOTO 1230
270 IF P=54 THEN 1300
1000 FOR Z=0 TO 7:FOR ZZ= 0 TO7

1010 C1 =1396+ZZ+Z*40:
C2= PEEK(C1)

1020 IF C2=207 THEN POKE C1,230
1030 IF C2=230 THEN POKE C1,207
1040 NEXT ZZ,Z:GOTO 130
1100 FOR Z=0 TO 7:FOR ZZ=0 TO7
1110 C1 =1396+ZZ+Z .40:

C(Z,ZZ) = PEEK(C1):
NEXT ZZ,Z

1120 FOR Z=0 TO 7:FOR ZZ=0 T07
1130 IF FL=1 THEN POKE 1396+

ZZ + Z .40,C(ZZ,7 —Z)
1132 IF FL = 2 THEN POKE 1396+

ZZ + r40,C(7 — ZZ,Z)
1134 IF FL=3 THEN POKE 1396+

(7 — ZZ) +Z .40,C(Z,ZZ)
1136 IF FL=4 THEN POKE 1396+

ZZ + r40,207
1140 NEXT ZZ,Z
1145 IF FL=4 THEN A=0:

GOTO 1230
1150 GOTO 130
1230 PRINT "I§IggggggAgAgglAgg ,

 1270 PRINT "a";SPC(22);
Z+1;1300111011 1111111";T

1300 PRINT "E§Iggligga";
TAB(9);"(D)ATA OR (C)HARACTER?": FOR

Z=1 TO 25: NEXT Z
1301 PRINT "I§IIIINgia";

TA13(9);" ❑❑❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑ "
1302 GET A$:1F A$< >"D" AND

A$< >"C" THEN 1300
1303 OPEN 4,4:CMD4:IF A$="D" THEN

1700
1304 FOR Z=1 TO 26:PRINT SPC(6);

CHR$(64+Z): FOR ZZ=0 TO 7: PRINT
ZZ+1;

1305 A= PEEK(12288 + Z*8 + ZZ)
1310 AA=A:FOR Z1=0 TO 7:IF

A—Z(Z1)= >0 THEN A=A—Z(Z1):
PRINT"fi 	GOTO 1320

1315 PRINT ".";
1320 NEXT Z1:PRINT AA:NEXT ZZ:

PRINT:NEXT Z
1330 PRINT # 4:CLOSE4:GOTO 130
1620 NEXT Z1,ZZ: GOTO 1230
1700 FOR Z=1 TO 26:PRINT CHR$

(64 +Z);" = ";:FOR ZZ = 0 TO 7
1710 PRINT PEEK(12288+ Z*8 + ZZ);:

NEXT ZZ:PRINT:NEXT Z
1720 PRINT # 4:CLOSE4:GOTO 130

With an expanded Vic, delete Lines 1301,
1302, 1304, 1305, 1310, 1315 and 1320, and
enter:

1300 REM

1-1X1
125 PRINT"giggiggggfiganipi

PJ•@ ❑ A@ ❑ l© ❑ 16-.1
@ ❑ MI@ ❑ ii© ❑Z© ❑ 1113

210 IF P=39 THEN 1000
220 IF P=47 THEN FL = 1:GOTO 1100
230 IF P=55 THEN FL =2:GOTO 1100
240 IF P=63 THEN FL = 3:GOTO 1100
245 IF P=62 THEN FL =4:GOTO 1120
260 IF P=14 THEN A =0:GOTO 1230
270 IF P=54 THEN 1300
1000 FOR Z=0 TO 7:FOR ZZ=0 TO7
1010 Cl = 7880 + ZZ + Z . 22:

C2= PEEK(C1)
1020 IF C2=207 THEN POKE C1,230
1030 IF C2=230 THEN POKE C1,207
1040 NEXT ZZ,Z:GOTO 130
1100 FOR Z=0 TO 7:FOR ZZ=0 TO7
1110 C1 =7880+ ZZ+ Z*22:C(Z,ZZ) =

PEEK(C1):NEXT ZZ,Z
1120 FOR Z=0 TO 7:FOR ZZ=0 T07
1130 IF FL = 1 THEN POKE 7880+

ZZ + Z*22,C(ZZ,7—Z)
1132 IF FL = 2 THEN POKE 7880+

ZZ+ Z*22,C(7 —ZZ,Z)
1134 IF FL=3 THEN POKE 7880+

(7 — ZZ) + Z . 22,C(Z,ZZ)
1136 IF FL=4 THEN POKE 7880+

ZZ + Z . 22,207

1140 NEXT ZZ,Z
1145 IF FL=4 THEN A=0:

GOTO 1230
1150 GOTO 130
1230 PRINT "iggigggigggliggmAg"
1270 PRINT "a";SPC(12);

Z+1;"90111171D mu/VT
1300 PRINT "Iggiggggg(D)ATA OR

(C)HARACTER?":FOR Z=1 TO 25:NEXT Z
1301 PRINT"I§Aggigga ❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑❑❑❑❑
0 0 0"

1302 GET A$:1F A$< >"D" AND
A$< >"C" THEN 1300

1303 OPEN 4,4:CMD4:IF A$="D" THEN
1700

1304 FOR Z=1 TO 22:PRINT SPC(6);
CHR$(64+Z):FOR ZZ=0 TO 7:
PRINT ZZ+1;

1305 A= PEEK(7168 + r8 + ZZ)
1310 AA= A:FOR Z1=0 TO 7: IF

A—Z(Z1)= >0 THEN A = A —Z(Z1):
PRINT"a ❑ 11111";:
GOTO 1320

1315 PRINT ".";
1320 NEXT Z1:PRINT AA:NEXT ZZ:

PRINT:NEXT Z
1330 PRINT#4:CLOSE4:

GOTO 130
1700 FOR Z=1 TO 22:PRINT CHR$

(64+ Z);" =";:FOR ZZ = 0 TO 7
1710 PRINT PEEK(7168 +Z*8 +ZZ);:

NEXT ZZ:PRINT:NEXT Z
1720 PRINT#4:CLOSE4:

GOTO 130

When you have typed in the extra lines, your
character generator is complete. You can now
move around the grid, setting pixels on or off,
and rotate, mirror, invert and clear the grid,
too. The function keys at the right of the
keyboard are used for several of the new
controls.

To rotate the grid left, press F3, and for
right press F5. The ability to rotate a single
UDG comes in handy when you want to have
the same, or very similar, characters able to
point in four different directions, such as a
spaceship which you can turn round to fire at
any point on the screen.

The mirror routine, obtained by pressing
F7, mirrors the grid from left to right about
an imaginary axis: a vertical line in the centre
of the grid. You can use this to produce a
symmetrical figure which comprises two
UDGs—all you need to do is design one of
the UDGs, store it, and then call it back and
mirror it to get the other half. Missile bases
are ideal subjects for this, as they usually take
up two UDGs, and are symmetrical.

You can invert your design by pressing the

F1 key. This turns every pixel to its
opposite—on, if it was off, or off, if it was on.
This can give quite surprising results.

If you decide, after designing a UDG in the
grid, that it is nothing like what you want, you
can wipe it out completely, clearing the grid
ready for you to start again. Do this by
pressing the CLR/HOME I key. Because this is at
the top of the keyboard, away from the
movement keys, you are unlikely to hit it by
accident.

USING YOUR UDGs
The first part of the program provided a SAVE
to tape routine, so that you could store the
UDGs for use in your own programs. You
might also like to use the DATA values for each
design. You can copy the DATA from the
screen by hand by pressing the asterisk (*) key
for each UDG in the grid, but this can take a
long time. If you have a printer, you can also
have the DATA printed out on that. To do this,
press the up-arrow key (not the cursor up).

If you want to SAVE the characters onto
tape and use them in your own programs
without typing in the DATA, you must LOAD
them back again. Unfortunately, this is less
easy than you might think and you should use
the LOAD routine in Lines 1410 to 1420.

Don't forget that in Line 1410, you must
only use the half of the line which applies to
you: the first half if you are using tape, the
second half if you are using disk. In this line,
you should replace the variable OU with 0,
and the string variable N$ with the name of
the stored file (you type in this name when
you SAVE the character set from the UDG

generator).
By careful planning of your computer's

memory, you can have several sets of charac-
ters stored in the computer at one time. You
can change the area in memory that the DATA
is LOADed back into to help you here, so that
you can SAVE several blocks of characters from
the UDG generator, and then LOAD them all
back into memory.

To do this, all you have to do is to change
the numbers in the FOR ... NEXT loop in Line
1413. The first of the two numbers is where
the characters start in memory, and the
second number is where they end. You also
have to set the character set pointers accord-
ingly by changing the POKES in Line 10. This
is explained in the article on pages 450 to 457.

With this method, you can call up a large
number of UDGs into your programs, and
never have to type in any DATA values for
them.

You can extend your character generator
using the extra program lines given below.
You should first type in, or LOAD from tape,
the last part of the program—the new lines do
not work on their own.

240 IF A$ = CH R$(9) THEN
PROCINVERT:ENDPROC

250 IF A$=CHR$(18) THEN
PROCREFLECT:ENDPROC

260 IF A$=CHR$(15) THEN CALL
ROT:PROCNOS:GOTO 360

270 IF A$=CHR$(16) THEN
PROC PRT: EN D P ROC

280 TY = Y
340 PRINTTAB(25,16 +TY)STR1NG$

(3 — LEN (STRCTY?&C18))," ❑ ");
TY?&C18

410 FOR T = &C18 TO &C1F:PRINT
TAB(25,16 + T — &C18)STR1NG$
(3 — LEN (STR$(?T)),"111");?T:
NEXT:CALL MC:VDU5:MOVE
(16 + X)'32,1023 — (16 + Y)'32:
VDU224,4:ENDPROC

700 DEF PROCINVERT
710 FOR T= &C18 TO &C1 F:

?T= 255 — ?T:NEXT:PROCNOS:
ENDPROC

720 DEF PROCREFLECT
730 FOR T= &C18 TO &C1F:?&70 =0:

FOR P = 0 T07: IF ?T AND 2 A P THEN
?&70 = ?&70 OR 2 A (7 — P)

740 NEXT:?T =?&70:NEXT:
PROCNOS:ENDPROC

750 DEF PROCPRT
760 PRINTTAB(0,28)"PRINTING NOW":

COLOURO:VDU2:PROCMOVEUDG(1):
FOR P = 0 TO 31:PRINTTAB(0,29)
"VDU23, CHARACTER NUMBER";:
FOR T= &COO + 8. P TO &C07 +8'P:
PRINT",";?T;:NEXT:PRINT:NEXT:
PROCMOVEUDG(6):VDU3:COLOUR3:
PRINTTAB(0,28)STRING$(12," ❑ ") :
ENDPROC

Once you have added these extra lines, the
program makes it even easier for you to design
your characters, allowing you to invert,
mirror and rotate your UDG and print out
the DATA.

There are often several UDGs which you

might want for a program, which are all fairly
similar. When this is the case, you have to
design almost the same thing several times.
The new features of the program help to make
this quicker.

The Acorn has no INVERSE command
unlike some other computers so, while you
can get round the problem by changing the
colours, it is often useful to have some inverse
characters in memory. For this reason, the
UDG generator now has an inverse com-
mand. When you press the ICTRL I and I keys,
the computer gives you the inverse of your
design: every pixel that was set, or coloured-
in, becomes clear, and each one that was clear
becomes set.

Another feature which manipulates your
design is the reflect facility. Pressing the
ICTRL I and R keys mirrors the UDG in the grid
from left to right through an imaginary axis—
a vertical line in the centre of the grid.

This facility is very useful for symmetrical
designs which take up more than one UDG.
Suppose you want to design a laser base for
your latest space game; the chances are that it
will take up two UDGs, side by side. If the
design is symmetrical, you only need design
one UDG. When you are satisfied you can
Store it in the bank, and then reflect it to get
the computer to produce the other half.

Similarly there is a rotate command. The
ICTRL and 0 keys rotate your design through
90 degrees. You can use it to produce versions
of your UDG pointing in four directions,
which you might need, for example, if you are
designing rockets for an asteroids game.

The last feature that the new lines add is a

printer option. This prints out the eight bytes
of DATA for each UDG in the bank to a
printer, if you have one. The bytes are printed
as VDU statements, with eight bytes after each
VDU 23, CHARACTER NUMBER, to make it
easier for you to understand. To use this
option, press the ICTRL and P keys.

If you do not want to use a printer, you
should miss out Lines 270, 750 and 760. This
prevents the computer trying to send inform-
ation to a non-existent printer.

USING YOUR UDGs
Although you can get the DATA values printed
out, you do not have to type in each byte for
every UDG in order to use them in your own
programs—you can just LOAD them in from
tape.

When you SAVE a bank of UDGs to tape
with the SAVE option in the program, the
computer stores a block of memory on tape.
So when you want to put it back into the
computer, you have to tell the computer to
expect a block of memory instead of a
program.

You do this with the command *LOAD,
followed by quotes, followed by a number in
hexadecimal; this number is the first address
that the block is LOADed into.

So, by working out where in memory you
are going to store the UDGs, you can fit in as
many banks as you want—the only limit is
your computer's memory. All you have to do
is *LOAD each bank to a different address in
memory, so that the new banks do not wipe
out the old. The article on pages 450 to 457
explains this.

You do not need to give any address at all
after the *LOAD command. If you don't, the
block is automatically LOADed back to the
area it came from.

The UDG generator SAVES them from the
usual place in memory; if you are going to use
more than one bank, you will need to use a
*FX 20 call, and LOAD the extra blocks in
above the old one. The article on pages 450 to
457 explains this.

The last article gave you the first half of a
program to make it easier for you to design
your own graphics. This article includes the
next half of the program to give you even
more facilities to edit your UDGs. First,
LOAD the last program, and then type in these
extra lines.

If you have a Tandy, you should also make
these changes to the new lines. Change the
number 139 at the end of the DATA statement
in Line 80 to 179, the number 48 to 237 and
the number 8056 to 8285; each of the numbers
to be changed is in bold type to make them
easier for you to find. In Lines 2800 and
2900, change USR01 and USR02 to USR1 and
USR2, respectively.

30 T =0:FORK = OT014:READN:
T=T+ N:POKEK+ 31100,N:NEXT:
READC:IFT< >C THENEND

40 T =0:FORK = OT084:READN:
T=T+ N:POKE31150 + K,N:NEXT:
READC:IFT< >C THENEND

70 DATA 141,72,142,123,12,236,129,
237,193,140,123,84,38,247,57,1974

80 DATA 141,22,142,123,84,51,67,198,
3,166,130,167,194,90,38,249,51,
70,140,123,12,38,240,57,189,139,48,52

90 DATA 6,31,3,142,123,14,134,3,183,
121,68,230,192,134,8,74,88,73,
125,121,23,39,4,88,73,128,4,68

100 DATA 102,132,125,121,23,39,3,68,
102,132,77,38,230,48,31,122,121,68
38,219,48,6,140,123,86,38,207,53,192,8056

170 PRINT"EIJOYSTICK OR KEYBOARD (J
OR K) ?"•

180 A$ =1NKEY$:IFA$ < > "J"
ANDA$ < >"K" THEN180

190 IF A$ ="J" THEN JY=1
350 IF JY=1 THEN GOSUB 1000 ELSE

GOSUB 1500
1000 PUT(X1,Y1) — (X1 + 	— 1,

Y1 + 4),C1,NOT
1010 IF(PEEK(65280)AND1) =0 GOSU B2000
1020 IFJOYSTK(1)= 0 THENY = Y —1
1030 I FJOYSTK(1) = 63 TH ENY = Y + 1
1040 I FJOYSTK(0) =0 TH ENX = X — T
1050 I FJOYSTK(0) =63 THEN X = X + T
1060 RETURN

With the new routines for the INPUT UDG designer, you
can turn your space invaders round to fly in four
different directions

You can also INVERSE your design to the background
colour. These UDGs were created on the Spectrum, but
the other computers are similar

2100 GET(216,70) — (239,93),A
2110 GOSUB3000:G0102070
2200 A$ =IN KEY$:1FA$ < > "S"

AN DA$ < > "P" TH EN2200
2210 CLS:DN =0:1F A$ = "P" THEN

DN = —2
2220 FORK = OT014:FORR = 0T02
2230 PRINT # DN,PEEK(VARPTR

(A(0)) + K*3 + R);:NEXT:PRINT # DN:NEXT
2240 IF DN <0 THEN2260
2250 A$ = I N KEY$:1FA$ = "" TH EN 2250
2260 FORK =15T023: FOR R = 0102
2270 PRINT # DN,PEEK(VARPTR

(A(0)) + K*3 + R);:NEXT:PR1NT # DN:NEXT
2280 A$ =1NKEY$:IF A$ = "" AND DN=0

THEN2280
2290 SCREEN1,ST:RETURN
2800 POKE30999,T — 1:N = USR02

(VARPTR(A(0)))
2810 GOSUB3000:G0102070
2900 PO KE30999,T — 1:N = USR01

(VAR PTR (A(0)))
2910 GOSUB3000:GOT02070

Then add this to the end of Line 10:

:DEFUSR1 = 31100:DEFUSR2 = 31150

If you now RUN this new program, you can
use the extra editing facilities. If the program
stops before it does anything, check your
DATA.

There are three main additional features:
mirror, invert, and rotate a UDG.

To mirror a UDG you press the M key.
The character becomes reversed from left to
right—mirrored through an imaginary axis (a
vertical line through the centre of the UDG).
This is a very useful facility when you are
defining two UDGs to stick together to

make up one large character. If the large
character is symmetrical, you need only de-
fine one character, store it, and then mirror it
to get the second half.

The rotate facility is similar—pressing the
R key rotates the whole UDG by 180 degrees.
This can be useful if you need to have
graphics which move both up and down—you
can use the computer to produce an 'upside
down' version of your UDG, for when the
character is moving down.

The inverse facility, on the I key, actually
reverses every pixel's colour. With PMODE 4
this is easy—green becomes black and vice
versa, or buff becomes black, and vice versa.

On the other hand, when you are in colour
mode (PMODE 3) things are not quite so
simple. Blue and yellow are reversed (so that
any blue pixel becomes yellow, and any
yellow pixel becomes blue), as are red and
green, buff and orange, and cyan and
magenta.

Once you have got used to these colour
changes, the facility is very useful. It is
surprising how different some characters look
when reversed like this.

This new program also allows you to
change the screen colours while it is RUNning,
by pressing the V key. What this does is to
swap the set of screen colours you are using. If
you were using buff and black, you can
change to green and black (and vice versa) and
if you were using either of the four-colour
screens, using this command puts you into the
other one.

Another new feature is the facility to print
out the DATA values for the current bank of
UDGs.

To do this you should press P. This prints

out the set of numbers you should POKE into
the top left-hand corner of the screen. Once
you have POKEed them to the screen, you can
then GET them into an array so that you can
call them up to use as a UDG.

The option also lets you print the numbers
to the screen in case you don't have a printer.
You can then copy them down on paper, if
you want a permanent record of them.

For this reason, after you have pressed the
P key, the computer waits for you to press
either P or S. P sends the printout to a printer,
while S sends it to the screen.

USING YOUR UDGs
When you want to use the UDGs that you
have designed in your own programs, you can
CLOAD in the relevant data from tape, and
then GET the bits you want into arrays using
the command CLOADM.

Unfortunately, if you are going to use the
UDGs in your own programs, you will either
have to CLOADM the relevant pieces of data
from tape, and then GET the arrays, every time
you want to use the program or, alternatively,
you need to transfer the information into data
statements which the computer carries out
whenever you RUN the program.

For this reason, it might be easier for you
to either get a printout and then type in the
numbers as data to be POKEd onto the screen,
or for you ,to print the numbers to the screen
(from the character generator program) and
copy them down on paper. You can then
incorporate them as DATA in your own
program.

When you POKE the numbers onto the
screen, you can then GET the area of the screen
into an array for you to use as a UDG.

P
Parameters for functions 	578-583
Pascal's Triangle 	 697
Pie charts 	 474-476
PEEK, Commodore 64

Vic 20, 	 656,658-659
Peripherals

bulletin boards 	 712-715
data storage devices 	504-508
light pens 	 690-693
modems 	 612-615

	

492-497 	setting up a printer 	 642-647

	

464-469 	TVs and monitors 	 445-449
Who needs wordprocessors? 	541-545

	

468-469 	Planning screen displays 	433-439

	

485-491 	POINT, Acorn 	 656,659-660
Dragon, Tandy 	 556,660-661

Pontoon program 	534-540,553-559,
598-604

PPOINT, Dragon, Tandy 	656,660-661
PRINT 	 434-438
PRINT AT

Acorn
	

434
Spectrum
	

434,436

	

416 	PRINT SPC
Commodore 64, Vic 20
	

434-435

	

636 	PRINT TAB
	

434-438

	

690-693 	PRINT @
Dragon, Tandy
	

435
PRINT #, Commodore 64, Vic 20

	
644

Printers, setting up
	

642-647
control commands
	

644-647
Program squeezer

	

428-432 	Acorn 	 546-552,593-595

520-527

583

432

672-674

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Adventure games,

using the text compressor 	684-689
Applications

CAD 	 566-572,573-577
conversions program 	520-527
extend your typing 	 498-503
UDG designer 	721-727,758-764

ASCII codes 	 420-421
ASCII files 	 622-623
Assembler

Dragon, Tandy 	 440-444
ATTR, Spectrum 	 656-658
Autopilot 	 733-739
Autorun 	 460-461
Axes for graphs 	415-416,470-471

B
Barchart 	 470-476
Basic programming

bouncing ball graphics 	584-592
Commodore 64
graphics
	

420-421
defining functions 	 578-583
detecting collisions 	 656-661
formatting 	 433-439
making more of UDGs

450-457,484-491,528-533
more music 	 701-707
plotting graphs
	

413-419,470-476
probability
	

694-700
pfotecting programs 	458-463
simple music 	 669-675
sort routines 	 708-711
using files
	

622-627
Bootstrap programs 	459-463
Bug tracing 	 477-483
Bulletin boards 	613,712-715
Bytes, saving

Acorn 	 546-552,593-595

C
Cardgame graphics 	 534-540
Cassette storage 	 504-505
Character sets

redefining 	 450-457
Collisions, detecting 	 656-661
Communications 	 612-615
Computer Aided Design,

program 	 566-572,573-577
Control commands,

in wordprocessing 	 545
Conversion program 	520-527

D
Data storage
Database management systems

Datafiles
Defining functions
Dip switches
Disk drives

conversions, Commodore 64
Displays, improving
Distribution curves
Drawing in 3D

E
Editing programs

Commodore 64
Dragon

Electronic mail
Ellipse, drawing a
Epson codes
Escape codes

F
Files

management
FLASH command

Spectrum
Flight simulator

G
Games programming

adventures, planning your own 422-427
duck shooting game 	492-497
using joysticks 	 464-469
flight simulator 	716-720,733-739
pontoon game 	535-540,553-559
text compressor

628-636,648-655,684-689
Graphics, CAD program 566-572
Graphics, hi-res

Commodore 	 748-751
Graphics, ROM

Commodore 64 	 420
Graphs 	 413-419
Grid, drawing a 	 512-513

H
Histograms and barcharts 	470-476

Imperial to metric
conversions

Interest on savings
program

Inversing the screen
ZX8I

J
Joysticks,

duck shooting game
in games

JOYSTK
Dragon, Tandy

Jungle picture

K
Keyboard, as a musical instrument

assembler
Dragon, Tandy 	 430-4-44
Spectrum 	 477-482

modifying programs for
disk, Commodore 64 	 676-682
modifying programs for
the microdrive 	 616-621
program squeezer
Acorn 	 546-552,593-595
Dragon, Tandy 	 637-641
sound effects, Spectrum 	728-732

Memory
saving, Acorn 	 546-552
SAVEing on tape 	 532-533

Microdrives 	 505
saving and loading on 	616-621

Modems 	 612-615,712-714
Monitors and TVs 	 445-449
Motion

effects of gravity 	 740
horizontal 	 740
vertical 	 743

equations of 	 584-592
Multicoloured background 	490
Music 	 669-675,701-707

N
Networks 	 614,715
Number keys

redefining 	 450-457

0
On-board graphics

Commodore 64
	

420
OUT, Spectrum
	

728-732

Dragon, Tandy
	

637-641
Program symbols

Commodore 64
	

420
Projectiles 	 740-747
Protecting disks and tapes 	683
Protecting programs 	459-463

Q
Quote mode

Commodore 64
	

420

R
ROM graphics

Commodore 64
	

420

S
Screen pictures

from UDGs
	

484-491
Seikosha codes 	 647
Serial access

tape systems
	

505-506
Sort routines
	

708-711
Space station,

drawing a
	

666-668
Speed POKE

Dragon, Tandy
	

444
Spelling-checker 	 543-544
Storage devices
	

504-508
String functions

Acorn, Spectrum
	

581
Stunt rider UDG, Vic 20

	
429

Submarine UDG, Vic 20
	

430
SYS Commodore 64, Vic 20

	
463

T
Tape storage 	 504-505
Teletext 	 614,715
Text compressor

628-636,648-655,684-689
Tokens

Commodore 64 	 421
Trace program

Spectrum 	 477383
Commodore, Vic 20 	 514-519

TVs and monitors 	 445-449
Typing tutor part 4 	 498-503

U
UDGs

adapting 	 758-764
animals 	 484-491,528-533
creating extra 	 450
program to design 	 721-727
& high resolution graphics 	531

User defined functions 	578-583

V
Videotex 	 614,715
Viewdata 	 715
Virtual memory 	 545
Volatile storage 	 504

Wireframe drawing,
and colour
	

512
combining images
	

662-668
in 3 dimensions
	

560-565
with perspective
	

605-611
Wordprocessing 	 541-545

420
596-597

614
581

646-647
646

622-627
752-757

434
716-720

L

	

413 	Legends
for graphs

	

752-757 	Letter frequency,

	

623-624 	for text compressor

	

578-583 	Light pens
646

506-508
676-682
433-439 Machine code programming

	

697-700
	

animation

	

560-561
	

Vic 20, ZX81

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

LiComplete the FLIGHT SIMULATOR
PROGRAM by adding the lines that
allow you to take control of the aircraft

UIf you wondered how the machine code
frog and tank were created, there is a
complete analysis of the FRAMEPRINT
program used in INPUT 1 and 3

Li If you want to get the most out of
computer art, a GRAPHICS PAD is a
powerful and versatile tool. Find out
what one can do for you

UThe way computers store numbers is
more complicated than you might think,
so there is a full guide to FLOATING
POINT NUMBERS and EXPONENTS

L /Plus, for COMMODORE users, a
chance to get started on USING
COLOUR SPRITES, with a useful
SPRITE GENERATOR

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

