
A MARSHALL CAVENDISH COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 3 	 No 27

BASIC PROGRAMMING 58

COMMODORE/ACORN CUSTOM KEYS 825

Save wear and tear on your fingers by programming
for the special-purpose function keys

GAMES PROGRAMMING 27

AS GOOD AS GOLD 	 830

The first of two parts of a complete business
strategy game in which you run a mining company

BASIC PROGRAMMING 59

MORE HEADLINE IDEAS

Find out how to design another, very versatile set
of characters for display use

MACHINE CODE 27

ADDING INSTRUCTIONS TO BASIC 	844

Program your computer to respond to your own version
of BASIC, as well as the one in ROM

APPLICATIONS 15

Enter this simple text editor program, the easy
way to tidy up your typing

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover,Dave King. Pages 825, 827, 828, Dave King. Pages 830, 832, 834,
Johanne Ryder. Pages 839, 843, Dave King. Pages 844, 846, 850, Kuo Kong
Chen. Pages 852, 854, Kevin O'Brien.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V 5PA,
England. Printed by Artisan Presss, Leicester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IR£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are lour binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries—and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London WIV SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable forthe SINCLAIR 2X81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, t.
48K,128, and + 	COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ 114 DRAGON 32 and 64

a UM 	VIC 20 ..r. 1C.CIL ICIIIR COMPUTER

KEY DETECTING
CODE CONTROL

TESTING FOR SEVERAL
KEYS

LESS TYPING

Even before the QWERTY keys on
your Commodore or Acorn become
insufficient for complicated
software, the Function Keys let you
realize the micro's potential

Few home computer users are experienced
typists, so for most people, getting used to a
keyboard can be difficult. Realizing this fact,
manufacturers design certain simplifying fea-
tures into their keyboards so you are not
frustrated by slow progress.

For example, the Spectrum and Electron
let you enter entire keywords, such as PRINT
or NEXT, by pressing one or at most three
keys. Other computers accept abbreviated
keywords—such as the BBC's REN. for
RENUMBER and P. for PRINT, or the Commo-

dores' and Dragon's ? for PRINT.
These shortened forms can greatly reduce

the amount of typing you need to do, but
there is an even more powerful facility given
by the Function keys (or El keys) on the
Commodore and Acorn computers. On the
Commodores, the g keys store valuable con-
trol codes which you can access either directly
by pressing the key, or indirectly from within
a program. And on the Acorn computers, they
have the ability to store not only keywords,
but even short programs which you can RUN
by merely pressing the g key.

Much commercial software exploits the g
keys as the simplest way to control various
program functions. These functions may be
quite simple operations—for example, in
many Commodore games, the function keys
set levels, number of players, change playfield
colours or start the game—but it is perhaps in
business software that they find their most
sophisticated use. For example, they may be
used to select the various features available in
a wordprocessing package—setting markers
or editing codes, copying text, etc—freeing
the keyboard for entering the text. The BBC
even has the facility to label these special keys
by inserting a card behind the transparent
strip placed above them.

Creative use of the function keys in this
way is not limited to commercial packages.
Programming them to control your own
routines is in most cases a straightforward
matter involving simple BASIC commands.

KEY PRESSES
To understand how the g keys work, it is
useful to know what happens when you press
any of the keys on the keyboard.

When this happens the keyboard generates
a code which is examined by the built-in
ROM software, known as the Operating
System. If the code reveals a printable charac-
ter, such as a letter of the alphabet, this is sent
to the screen.

If, however, the keypress reveals a special
code for a particular operation, such as ICTRLI
2 (on the Commodores) or ICTRLI L (on the
Acorns) or even 'RETURN I, then an appropriate
routine is invoked and the task associated with
that key is carried out—the current fore-
ground colour is changed, the screen is
cleared, the cursor moves to a new line, or
whatever. Similarly, the g keys generate a
unique code, but the Commodores and
Acorns differ in what happens when this code
is detected by the Operating System.

[CC 1.161■1111M
On the Commodore and Vic 20, the g keys
are the four keys set to the right of the

QWERTY keyboard. Each can be used with
or without 'SHIFT', giving a total of eight
function keys. Each U key has a unique
ASCII code, as follows:

	

m = 133 	id 	IB) = 137

	

IEI = 134 	f4 IEEE ®)= 138

	

® = 135 	f6 (iSHIFT1 ®)= 139

	

=136 	f8 	m)=140
So ASC(13) = 133, or m = CHR$(133), and so
on.

When the Operating System detects that
an g key has been pressed, it does nothing.
This is because no code has any meaning or
function outside of the one that is written into
the operating system. Any of the g key codes
could have been assigned to a particular letter
or to perform some specific action, such as
change the screen colour, or move the cursor
to the bottom of the screen, but the operating
system was designed to ignore the IR key
codes. So it is up to you to make use of them.
For example, look at this simple BASIC
program:

10 GETX$:IF X$="" THEN 10
20 PRINT ASC(X$)

When this program is RUN, it stays at Line 10
until a character is typed. But when you press
a key, for example, you type A or I RETURN I, the
program jumps to Line 20, which PRINTS the
ASCII code of the character you typed. In a
practical application, X$ could be examined to
see whether it relates to a particular key. If it
does find the code for a given key, the
appropriate action can be taken. For example,
the program could be directed (using GOTO)
to a menu option, or to a subroutine, using
GOSUB. Of course, you can specify the code
for any key—an A or an L, say. But there is a
great advantage in selecting one of the g
keys—they are separate from the main key-
board and have no other functions until you
define them, so there is no possibility of
confusion. This is an example of such a
simple program.

10 GET X$:IF X$ = "" THEN 10
20 IF ASC(X$) =133 THEN POKE

53281,(PEEK(53281) + 1) AND 15
30 GOTO 10

RINE
For the Vic 20, change Line 20 as follows:

20 IF ASC(X$) =133 THEN POKE
36879,(PEEK(36879) + 16) AND 255

Line 20 compares the ASCII code for the
character read into the variable X$ with the
ASCII code for gl; all other keys are ignored.
When you RUN the program and type WI, it
changes the screen colour, held in the register

at 53281 (36879 on the Vic 20).
Notice that the test at Line 20 could have

been written: 20 IF X$ = CH R$(133) THEN .
In this case, two strings would be tested for
equality, instead of two integers as in the
previous case. The effect is the same which-
ever way the program is written.

CODE CONTROL
The Commodore 64 and Vic 20 can store El
key codes in strings, just as they store codes
for control keys, colour change keys, and so
on. For example, if you type: WH$ = "I CTR L I
2" the control character is not acted on
immediately, but is stored in the string WH$
as an inverse £ sign (1). Characters in
strings are acted on only when they are
printed, by a PRINT statement. Each character
is then examined; printable characters are
displayed, and control characters are acted on.

The same rules apply to J keys, and the
effect of the PRINT statement depends on the
mode in which the computer is working. In
upper case graphics mode, the 151 keys appear
as inverse graphics characters, but in lower
case mode, they appear as inverse letters.
Here is a list of codes generated by the [I keys
in both modes (the graphic characters for the
other keys of the keyboard appear on page
421):

Upper caselgraphics 	Lower case
inverse `E'

GEI 	 inverse 'F'
011 	IN 	inverse `G'

/1 	inverse 'H'
inverse 'I'

f4 	11; 	inverse T
f6 	111 	inverse 'K'
f8 	 inverse `L'

In the program above, Line 20 could be
written: 20 IF X$ = "1111" THEN ... (where 111
appears as a graphics character or a reversed
letter).

TESTING FOR SEVERAL F KEYS
The ASCII codes for each odd-numbered U
key, followed by those for each even-
numbered one are consecutive from 133 to
140. This makes it very easy to write a short
routine to detect the code of any one, and act
differently in each case:

100 GET X$:IF X$ = "" THEN 100
110 V = ASC(X$)
120 IF V<133 OR V> 140 THEN 100
130 ON V — 132 GOSUB 1000,3000,5000,

7000,2000,4000,6000,8000
140 GOTO 10

This routine could follow the lines that
display a menu. Line 120 ensures that only

the Q keys can cause the program to branch. If
la is pressed, V is assigned the value 133, so
V —132 (which equals 1) at Line 130 directs
the program to the first line number after the
GOSUB. Pressing III, therefore, is equivalent
to GOSUB 1000. Similarly, if 11E1 is pressed, V
is assigned the value 137, so V — 132 GOSU Bs
to the fifth line number (2000), and so on.

UTILITY PACKAGES
Many commercial utility packages allow the
user to assign strings to the 1[1 keys, and you
can include aIRETURN1 in the string if desired,
so that when an 1g key is typed, the assigned
string is printed to the screen. Q keys are
normally programmed to reproduce such
command strings as PRINT "CLR": LIST,
LIST200-499 or G0T01200 but they may
contain any printable or control characters. If
the string is terminated with IRETURN1, then
not only is the string displayed but it is also
read and acted on by the system, just as
though the user had typed in both the
command and IR ETU R NI.

Commands can only be entered into the
system while it is in direct or immediate
mode: you obviously can't type LIST (RETURN

while a BASIC program is running, and
expect the system to execute the LIST
command.

This means that you can't write a BASIC
program that will assign strings to the Q keys
and make them act as single-keystroke
BASIC commands. (Of course, the function
keys may be tested for in the usual way inside
a program and may be made to trigger any
action you like, including printing LIST, say,
on the screen, but the system cannot be made
to act on this as a command while the program
is running).

Software to print command strings and
persuade the system to act on them has
therefore to be written in machine code and
linked into the Operating System software.
However it is possible to gain some idea of
how this works using BASIC.

When you type 1 RETURN1 on a line contain-
ing a command such as LIST, the system
processes the string. Now, it doesn't matter
how the characters making up that command
were put there (whether they were typed in
by the user, or printed by a program, for
example), the system will take them to mean
the LIST command. So if you have assigned

"LIST" + CH R$(13) to function key 1, then
subsequently typing that function key in
direct mode will print LIST on to the screen,
execute a return, and perform the LIST oper-
ation. But there's something special about the
CHR$(13), the (RETURN(character, here. If a
program prints out LIST followed by IR ETURN1,
the characters making up the word LIST are
printed, and the 'RETURN! is printed, moving
the cursor to the next line but not causing the
LIST to be executed: (RETURN(printed by the
computer doesn't have the same effect as
1RETURN1entered at the computer keyboard by
the user. So the handling of the CHR$(13) in
the string "LIST" + CH R$(13) is special: it
isn't simply printed to the screen; instead, the
system has to be fooled into thinking that the
user really has typed IR ETURN1.

This is quite easy to do, making use of the
way the computer handles typed input.
BASIC programs are interrupted regularly
while they are running to check whether a key
has been pressed. The keyboard is scanned 60
times a second by this interrupt-driven rout-
ine, and when a key is typed it is detected by
this scanning routine and its ASCII code is
placed in a buffer at location 631. There is

room for 10 characters in this buffer, so the
computer can 'remember' up to 10 key-
strokes. Memory location 198 stores the
number of characters stored in the buffer. So
if a program POKEs the ASCII code for
IRETURNI into the buffer, and POKEs the value
1 into the location containing current buffer
size, you can fool the system into believing
that a user has typed 'RETURN I at the keyboard.
If the program then ends and returns to direct
mode, the system will think that 'RETURN has
been typed, and it will act on this 'RETURN I,
processing the line the cursor is currently on.
This is how many commercial packages
handle CHR$(13) characters included in El key
definitions. The following simple program
illustrates this:

10 PRINT "RUNCOO"
20 POKE 631,13: POKE 198,1

When this is RUN, it prints the string RUN on
the screen, followed by three cursor-up char-
acters; it then sets up the input buffer to hold
a 'RETURN I charadter, and ends. The system
then prints out its READY message, followed
by a IRETURNI, so the cursor is now on the line
containing RUN that was printed by the
program. The system now discovers that a
IRETURNI is present in its input buffer, so
proceeds to read and process the line the
cursor is on. Since this says RUN, the program
is run again, and the process is repeated
indefinitely, the system switching between
program mode, where the string containing
RUN is printed, and immediate mode, where
the 'RETURN' in the input buffer is detected
and acted on.

The Acorn micros have ten Q keys, labelled
f0 to f9 on the BBC micro and to f0 on
the Electron. On the BBC, the red g keys are
arranged separately at the top of the key-
board, and they are accessed simply by press-
ing the desired one. On the Electron, they are
shared with the numeric keys, so are accessed
by pressing I CAPS LK FUNC I first.

The a keys are essentially additional to the
QWERTY keyboard and are detected in a
different way. When you first switch on the
computer, the g keys are undefined—they are
not recognized. So you must define the a keys
before you can use them. You have a consider-
able amount of choice over the definition.

PRINTING KEYWORDS
If you are a BBC user, you might set up the El
keys to store common BASIC keywords, and
give single key entries to make light work of
entering long programs. A typical line to let
you do this looks like:

'KEY 0 PRINT

Because this line begins with an asterisk (*), it
is passed directly to the Operating System,
and not to BASIC. Once you have entered it,
every time you press f0, the word PRINT
appears on the screen. Similarly, 'KEY 1 THEN
would cause the word THEN to appear on the
screen every time you press la

These are not necessarily the best key-
words to choose to define in this way. In fact,
if you are familiar with the abbreviations that
BBC BASIC allows, you will be able to enter
many keywords using only two or three
keystrokes. Many people prefer to use the
abbreviations, than to set up the g keys at the
start of a programming session.

Some keyword abbreviations are not easily
remembered and the full word can be awk-
ward. An example is CHR$, which requires
the use of 'SHIFT', at least once (for $), and
often a second time immediately afterwards
for an open bracket. The use of long strings as
variables, often with upper and lower case
letters, can also add to the tedium of entering
programs. So if you set up an g key with
definitions such as `FN getposition' or
`PROCsecondstage', you will not only save
yourself a lot of typing, but eliminate the risk
of mistakes—any difference in spacing or

spelling of these variables would cause an
error.

You can also enter multi-word definitions,
for any expression you are going to use
frequently, but you must enclose them in
double quotation marks (""). For example,
'KEY 3 "IF RND(X) =" would print the string
within the quotation marks every time you
pressed DI .

ENTERING RETURN
You can use the g keys to print commands on
the screen, but the computer will not act upon
them unless you enter 'RETURN I. So merely
setting up f4 , say, to print RENUMBER is not
sufficient. Fortunately, there is a control code
for 'RETURN I that the Operating System un-
derstands: this is I CTRL I M. You can enter this
code directly, by pressing both keys together,
but to include it in a key definition, you must
use the key that looks like an elongated colon
(), the control character. Now the defi-
nition for f4 could look like this:

*KEY 4 RENUMBER M

Notice that if a program is running while you
press a defined g key, the definition is placed
in the keyboard buffer to be examined by the
Operating System when the program ends. If

the definition ends with a control code for
'RETURN , the computer acts on it. This time,
pressing f4 causes RENUMBER to be executed,
so the program you are developing is re-
numbered from 10 in steps of 10.

Using this facility, it is a simple step from
having the 11 keys perform single functions to
using them for multiple functions or even an
entire, short program. A typical example is
very useful during program development,
when you often need to RUN a program, study
the result and make changes. If the program
crashes, many of the computer's default
values may have been altered so it is difficult
or impossible to edit the program. When this
happens, you usually have to change mode,
select a formatted list option (using LISTO 7),
select paged mode, then LIST the program.
Here is a key definition to achieve all this:

`KEY 5 MOD El 1M IN LISTO 7 1 M LIST
RA Iv

has the same effect as pressing the I N
symbol, ICTRLI and N keys, and mode one.
There's a list of all the control codes along
with their letters in the User Guide, and you
can use any of them in the function key
definitions.

Now, every time you press 1111, the first
page of the program will be listed with a space
after each line number, and lines indented
within FOR . . . NEXT loops and within REPEAT

. UNTIL loops. To scroll the screen to the
next page, you need to press 'SHIFT!. Some
people find it easier not to use the paged
mode, but to press ICTRLI and SHIFT together
to prevent the screen from scrolling, and
release these keys when you wish the screen to
scroll.

Once you have edited the program, you
will need to RUN it, so it is a good idea to set
up another 11 key to achieve this.

You are not just limited to redefining the 11
keys. One other key that you will find useful
to redefine is IBREAKI. There are many in-
stances when you can press it accidentally,
sometimes without knowing. You can't pre-
vent it from IBREAKIing into the program but
you can make sure it will automatically
perform an OLD so your program isn't lost. It
can be simply defined as:

`KEY 10 OLD M

There are five other keys as well as the BREAK I
key that you can redefine. These are COPY
(key 11) and the arrow keys (keys 12 to 15).
However you first have to enter *FX4,2 which
allows them to be reprogrammed. To return
them to their normal editing function use
'FX4,0 which resets the keys. And if you want
to reset all the function keys use 'FX18.

KEY SETTING OPTIONS
The use to which you put the 111 keys depends
on how you use your computer—whether you
are developing programs or merely issuing
commands in direct mode. Whatever the
circumstances, you should aim to use defi-
nitions that ease the tedium of typing. Here is
a program to set the 0 keys with some useful
definitions:

10 'KEYO R. I M
20 *KEY1 MO.1 I M I NLISTO7 1 MLIST

1 M
30 "KEY2 P. — LOM EM — PAGE M
40 'KEY3 CHR$(
50 'KEY4 R EN. 	M
60 'KEY5 "LOAD"" 8000 1 M
70 'KEY6 SAVE
80 'KEY7 P.TAB(
90 'KEY8 CHAIN' M
100 'KEY9
110 "KEY10 O. 1 M
120 P. "THE KEYS ARE SET. TYPE NEW THEN

RETURN TO ERASE THIS PROGRAM."

When you RUN the program, f0 is set to RUN.
Key la sets MODE 1 (MO.1) and LISTS any
program in memory, as described above. Key
IN prints in hexadecimal the length of a
program in memory. Key is an unusual
definition and is used as a simple way to verify
whether a program has been saved. It at-
tempts to LOAD a program into ROM at
memory location 8000. The program is not
actually loaded, but any error messages are
printed out so you can check it was SAVEd
correctly. Key f8 CHAINs the next program,
key f9 is left undefined for you to fill in your
own definition, and key RI IBREAKI) is
redefined as OLD. When you type NEW, as
prompted on the screen, this program is
erased from memory but the definitions re-
main, so you can enter your own program
without it being corrupted.

It is a good idea to save the function key
definitions as a block of memory rather than
as a BASIC program, so they can be reloaded
`transparently' without affecting any BASIC
program you may be working on. The easiest
way to do this is to save the entire function
key buffer where the definitions are stored.
Use:

*SAVE ❑ name CI BOO + 100

to save the definitions, and reload them with:

'LOAD ❑ name

This way you can have several sets of defi-
nitions, each saved under a different name,
and you can load them in at any time while
you are developing or writing a program.

DETECTING THE KEYS
Apart from redefining the J keys, you may
simply want to detect when one has been
pressed. This is possible on the BBC as well as
the Electron. Normally, when you first switch
on the BBC, and before any of the keys have
been defined, pressing them has no effect
whatsoever. Nothing is printed on the screen
and no ASCII code is generated. But there
are, in fact, five ways to detect them. One way
is to use the negative IN KEY codes, which are
listed on page 275 of the BBC User Guide and
page 159 of the Electron User Guide. For
example this line detects the to key:

IF INKEY(— 33) THEN ...

You can add any command you like after
THEN or even use a GOSUB or a REPEAT ...
UNTIL checkloop to branch to a more com-
plicated subroutine.

The other way to detect the keys is to make
them produce ASCII codes which can then be
detected in the normal way using GET or
IN KEY. You can even choose which ASCII
codes are produced. The command to use is
'FX 225,n where n is the ASCII code produced
by f0 . The other keys follow on from this, so
10 produces code n + 1 and so on.

Using other 'FX commands—' FX226,
'FX227 and 'FX228 you can make the keys
produce different codes when used with
SHIFT', with ICTRLI or with 'SHIFT and ICTRLI
together. Again, each command should be
followed by a number to determine the code
produced by f0. In fact, when you first
switch on, some of these codes are already
defined. So, on the BBC, SHIFT plus the El
keys generate the Teletext colour control
codes from 128 to 137. (There will be more on
using Teletext control codes in a later article.)
By the way, 'FX225,1 returns the keys to their
normal user-definable function, and *FX225,0
makes them have no effect at all.

By using all four *FX commands you can
make each key generate four different codes,
giving 40 codes in all. This is ideal for
programs such as wordprocessors which need
to perform a lot of different functions. The
red keys can then be used to direct the
program to the various subroutines, leaving
the normal keyboard free to enter the text.

Luckily, most wordprocessors do still
allow you to define the keys in the normal way
using the 'KEY command, although in this
case they must be used with (CTRL and 'SHIFT
to print out the definition. The keys are
particularly useful in wordprocessing where
you can use them to print out a commonly
used word or heading.

Experience the risks and rewards of
big business with INPUTs gold
mining game. Have you the skill and
judgement to make the right
decisions and follow them through?

Goldmine is a business strategy game in
which you take the part of the owner of a
mining company. It is your job to see that the
company prospers as well as possible. During
the course of the game you are constantly
presented with a series of choices—and it's on
your ability to make sensible and imaginative
decisions that the company fortunes depend.

Strategy games, like adventures, are gener-
ally written entirely in BASIC as there is no
need for the speed of machine code. And
because they do not require lengthy sections
of text, it is relatively easy to write them for
computers with small memories. Goldmine
has been brightened up by the addition of
graphics to show the progress of the mine,
which add considerably to the memory
requirements—but it still fits into the 16K
Spectrum, and (with some simplification)
into the unexpanded Vic 20.

Even so, the program is quite lengthy, and
so it has been split into two parts. In this
article, you'll see how to set up the core of the
game, but some of the routines which you
need to make it playable follow in the next
article. When you have entered the listing,
SAVE it until next time. On some computers,
RUNning the program at this stage presents
the player with a screenful of status inform-
ation, and a series of options. But it will also
throw up an error message, as the program is
incomplete.

WHAT THE GAME INVOLVES
At the start of the game, you have two assets—
the mining company and $2 million in cash.
It is your job to invest this wisely in the
exploration for the precious metal. The object
of the game is to make as much money as
possible within 30 turns. You can either play
alone, or against an opponent who takes
control of a rival concern.

At each turn you are presented with a
number of choices. Before you can start
mining, you must find a suitable site, so you
need to invest in a prospector's report. This
will assess your chances of finding gold, its
likely depth and the expected amount. It is
your job to decide whether the mine is worth
exploiting.

Mining is expensive, so you may decide to

invest in research and development of new
equipment that will lower your costs. Or it
may be better to go straight into digging—
only you can decide.

If you do start excavations, a graphic
display will show you the progress of the
mine. If no gold is found, you can elect to
continue to dig, or to abandon the mine and
start a new working.

During the course of the game two other
factors will come into play. When you have
found gold, you can store it in your own
strongroom, or sell it on the bullion market. It
can make sense to keep it, for if you do not
need ready cash, it is sensible to keep the gold
until the exchange rate is favourable—and the
exchange rate fluctuates throughout the
game. But be careful, because there are gold
robbers about, and the more you have in
store, the more tempting the prize.

The second part of this article covers the
workings of the game in greater depth. But
now, enter the first part of the program.

5 BORDER 6: PAPER 6: INK 0: CLS
10 PRINT AT 9,2;"How many players? (1 or

2)": LET a$=1NKEY$: IF a$="" THEN
GOTO 10

20 IF a$<"1" OR a$>"2" THEN GOTO 10
30 LET p =VAL a$: LET nop=p
40 DIM a(2,6): DIM c(2,5): DIM a$(p,8): DIM

r(2): LET er =10000
50 LET r(1) = 0: LET r(2) = 0: LET

a(1,1) = 2000000: LET a(1,2) = 2000000:
LET a(2,1) = 2000000: LET
a(2,2) =2000000: LET a(1,3) =0: LET
a(2,3) =0: LET a(1,4) =100000: LET
a(2,4) =100000: LET a(1,5) = 0: LET
a(2,5) = 0: LET a(1,6) = 0: LET a(2,6) = 0:
PRINT

70 FOR n=1 TO p: INPUT "Name of
player ❑ ";(n);"?", LINE a$(n): NEXT n

200 FOR n=1 TO 30: FOR m=1 TO nop
202 BORDER 7: PAPER 7: INK 0: CLS
210 PRINT PAPER 6;n: PRINT PAPER

1; INK 6;AT 0,6;"111111G1110

220 PRINT 'TAB 16;a$(1);: IF nop =2 THEN
PRINT TAB 24;a$(2);

230 PRINT "'TOTAL ASSETS III $";TAB

WRITING A BUSINESS
STRATEGY GAME

WHAT THE GAME INVOLVES
ONE OR TWO PLAYERS

THE FIRST SCREEN

ASSETS AND COSTS
PROGRESS INFORMATION
DISPLAYING THE OPTIONS

THE ROBBERY ROUTINE
SOME SOUND EFFECTS

15;a(1,1);: IF nop=2 THEN PRINT TAB
24;a(2,1);

240 PRINT "'CASH ASSETS ❑ ❑ $"; TAB
15;a(1,2);: IF nop=2 THEN PRINT TAB
24;a(2,2);

250 PRINT "'GOLD ASSETS ❑ kg";TAB
15;a(1,3);: IF nop=2 THEN PRINT TAB
24;a(2,3);

260 PRINT "'COST TO MINE ❑ $";TAB
15;a(1,4);: IF nop=2 THEN PRINT TAB
24;a(2,4);

270 PRINT "'NO. OF MINES";TAB 15;a(1,5);:
IF nop=2 THEN PRINT TAB 24;a(2,5);

280 PRINT "'MINE DEPTH 111 ❑ ❑ m";TAB
15;a(1,6);: IF nop=2 THEN PRINT TAB
24;a(2,6);

300 PRINT " PAPER 4; INK 0;"Current
Exchange Rate:—": PRINT "$";er;" ❑ per
kg of gold"

400 PRINT' PAPER 5;">—";a$(m)
500 PRINT PAPER 2; INK 7;"1";: PRINT "-

Research and Development"
510 PRINT PAPER 2; INK 7;"2";: PRINT "-

Exploration and Report"
520 PRINT PAPER 2; INK 7;"3";: PRINT "-

Increase mine depth by 200m"
530 PRINT PAPER 2; INK 7;"4";: PRINT "-

Exchange gold for dollars"
540 PRINT PAPER 2; INK 7;"5";: PRINT "-

Pass"
550 PRINT : PRINT FLASH 1; PAPER 1; INK

6;"Enter your instruction"
600 LET i$=1NKEY$: IF i$="" THEN GOTO

600
610 IF i$<"1" OR i$>"5" THEN GOTO

600
620 GOSUB VAL ir 000
700 IF a(m,2) <0 THEN GOTO 7000
710 LET er=er+ INT (RND*1000) —200
720 IF INT (RND*1600) —a(m,3) <0 THEN

GOSUB 900
740 LET a(m,1)=a(m,2)+a(m,3)*er
750 PAPER 7: INK 0: BORDER 7: CLS
790 NEXT m
800 NEXT n
810 PAPER 5: BORDER 5: INK 0: CLS
820 PRINT FLASH 1; INK 7; PAPER 2;AT

6,10;" El GAME OVER 1=1 "
830 PRINT 'TAB 5;"Total Assets of 0";a$(1):

PRINT TAB 11;"$";a(1,1)
840 IF nop=2 THEN PRINT 'TAB 5;"Total

Assets of 111";a$(2): PRINT TAB
11;"$";a(2,1)

850 PRINT " PAPER 2; INK 6; FLASH 1;TAB
2;"Press any key to play again"

860 IF 1NKEY$< >"" THEN GOTO 860
870 IF 1NKEY$="" THEN GOTO 870
880 RUN
900 PAPER 2: INK 6: BORDER 2: CLS
905 LET jk =INT (RND*100) +50: IF

jk > a(m,3) THEN LET jk=a(m,3)

910 PRINT PAPER 6; INK 1; FLASH
1;AT 9,8;" ❑ R ❑ 0 ❑ B ❑
B ❑ E ❑ R ❑ Y ❑ "

920 PRINT : PRINT INK 7;"0 DODD You
have had 0";jk;"kg of": PRINT
"El ❑ ❑ ❑ your gold assets stolen": LET
a(m,3) =a(m,3) -jk: LET
a(m,1) = a(m,1) - (jk'er)

930 FOR x=1 TO 35: BEEP .05,40: BEEP
.05,20: NEXT x

940 BORDER 7: PAPER 7: INK 0: CLS :
RETURN

1 POKE52,48:POKE56,48:CLR:PRINT
"D" TAB(3)"DEFINING
GRAPHICS,PLEASE WAIT ..."

2 GOSUB60000
3 POKE53272,28
5 POKE53280,7:POKE53281,7:PRINT

"Off"
10 PRINT"ggigggggggggggggg

gggggg";TAB(5);"HOW MANY
PLAYERS ? (1 OR 2)":GETA$:
1FA$=""THEN10

20 1FA$ < "1"ORA$ > "2"THEN10
30 P=VAL(A$):NO=P
40 DIMA(2,6),C(2,5):ER = 10000
50 R(1) = 0:R(2) = 0:A(1,1)=2000000:

A(1,2) = 2000000:A(2,1) = 2000000:
A(2,2) = 2000000

52 A(1,3) = 0:A(2,3) = 0:A(1,4) =
100000:A(2,4)=100000:A(1,5)=0:
A(2,5) = 0:A(1,6) = 0

54 A(2,6) = 0:PRINT "0"
70 FORN =1TOP:PRINT"NAME OF

PLAYER"N;:1NPUTA$(N):A$(N)=
LEFTVA$(N),10):NEXT

200 FORN =1T030:FORM=1TONO
202 POKE53280,1:POKE53281,1:

PRINT". D";
205 FORF=54272T054296:POKEF,0:

NEXT
210 PRINT"a0"N;TAB(10)"/I ❑ G ❑

O ❑ L ❑ D ❑ M ❑ I ❑ N ❑ E ❑

!OM"
220 PRINTTAB(16);A$(1);:1FNO = 2

THENPR1NTTAB(28);A$(2);
230 PRINT:PRINT"gg MITOTAL ASSETS";

TAB(15);A(1,1);:IFNO = 2TH ENPRINT
TAB(27);A(2,1);

240 PRINT:PRINT"CASH ASSETS";
TAB(15);A(1,2);:IFNO = 2THEN
PRINTTAB(27);A(2,2);

250 PRINT:PRINT"GOLD ASSETS KG ";
TAB(15);A(1,3);:IFNO = 2TH EN
PRINTTAB(27);A(2,3);

260 PRINT:PRINT"COST TO MINE $";
TAB(15);A(1,4);:IFNO = 2 THEN
PRINTTAB(27);A(2,4);

270 PRINT:PRINT"NO. OF MINES";

TAB(15);A(1,5);:IFNO = 2THEN
PRINTTAB(27);A(2,5);

280 PRINT:PRINT"MINE DEPTH M";
TAB(15);A(1,6);:IFNO = 2TH EN
PRINTTAB(27);A(2,6);

300 PRINT:PRINT" gg U a CURRENT
EXCHANGE RATE:-":PRINT"f"ER;
"D PER KG OF GOLD"

400 PRINT "NM > mplpJ" ;A$(M)
500 PRINT"g]..011M D-0

RESEARCH AND DEVELOPMENT"
510 PRINT" BUM ❑ - ❑ EXPLORATION

AND REPORT"
520 PRINT"a3111 III-0 INCREASE

MINE DEPTH BY 200M"
530 PRINT" a4. ❑ -0 EXCHANGE

GOLD FOR DOLLARS"
540 PRINT" a 5 	-0 PASS"
550 PRINT", TENTER YOUR

INSTRUCTION":POKE 198,0
600 GET1$:IFI$ = ""THEN600
610 1F1$ <"1"OR1$ > "5"TH EN600
620 ONVAL(3)GOSUB1000,2000,

3000,4000
700 IFA(M,2) <OTHEN7000
710 ER= ER + INT(RND(1)*1 000) -200
718 J=0:K=0
720 IFINT(RND(1)'1600) -A(M,3)

<OTHENGOSUB900
740 A(M,1)=A(M,2)+A(M,3)*ER
750 POKE53280,1:POKE53281,1:

PRINT". 0"
790 NEXTM,N
810 POKE53280,3:POKE53281,3:

PRINT". 0"
820 PRINT"glgigiggg gl";TAB

(15);"1./IGAME OVERgigigg."
830 PRINT"TOTAL ASSETS OF 0";

A$(1);TAB(18);" DARE $"A(1,1)
840 IFNO =2THENPRINT"TOTAL

ASSETS OF ❑ ";A$(2);TAB(18);
"DARE $"A(1,2)

850 PRINT:PRINT:PRINT"M pimp]
pgpinplaPRESS ANY KEY TO PLAY
AGAIN"

860 POKE 198,0
870 IFPEEK(197)=64THEN870
880 RUN 3
900 POKE53280,2:POKE53281,2:

PRINT"061"
905 JK=INT(RND(1)*100) +50:IF

JK>A(M,3)THENJK=A(M,3)
910 PRINT"gfigigggigggaggy;

TAB(12)"a ❑ R ❑ O ❑ B ❑
B ❑ E ❑ R ❑ Y ❑ "

920 PRINTTAB(9)"gg AYOU HAVE HAD
"JK"KG OF":PRINTTAB(7)"YOUR GOLD
ASSETS STOLEN"

925 A(M,3)=A(M,3)-JK:A(M,1)=
A(M,1)- (JICER)

930 FORF = 0T024:POKE54272 + F,0:

NEXT
940 POKE54286,5:POKE54290,16:

P0KE54275,1:P0KE54296,143:
POKE54278,240

950 POKE54276,65:FR = 5389:FOR
T= 1T0150

960 FQ= FR + PEEK(54299)*9.5:
HF=INT(FQ/256):LF= FQ- HF'256:
POKE54272,LF

965 POKE54273,HF:NEXT:POKE
54296,0

970 POKE53280,1:POKE53281,1:
pRINT"00":RETURN

5 POKE36879,25:PRINT"oi":POKE
36878,15

10 PRINT"I§HOW MANY PLAYERS ?":
PRINT"PJ PJPJ IF OR 2)":GETA$:
1FA$=""THEN10

20 1FA$<"1"ORA$>"2"THEN10
30 P=VAL(A$):NO=P
40 DIMA(2,6),C(2,5):ER =10000
50 R(1) = 0:R(2) = 0:A(1,1)= 2000000:

A(1,2) = 2000000:A(2,1) = 2000000:
A(2,2) = 2000000

52 A(1,3) = 0:A(2,3) = 0:A(1,4) =
100000:A(2,4)=100000:A(1,5)=0:
A(2,5) = 0:A(1,6) = 0

54 A(2,6) = 0:PRINT "D"

How do I assure the best returns
when playing Goldmine?
When the program is completed and you
try playing the game, you'll find that it
is very like the real world of commerce,
and is riddled with uncertainty.

It's therefore very difficult to find a
foolproof route to millionaire status.
There are a few useful tips that can be
given, though. Mining costs can be
reduced by investing in research and
development, but it's not advisable to
invest too much here because you only
have 30 goes to make your fortune.

Only start excavating mines that have
a good chance of containing gold, and
are relatively shallow-but if you keep
passing, you'll find that you soon run
out of goes.

If you are holding any gold, you are
in danger of being robbed, but you have
to weigh the chances of robbery against
the market price of gold-always
try to sell at the most favourable
price you can get.

70 FOR N=1TOP:PRINT"giggiONAME
OF PLAYERM";N:1NPUTA$(N):
A$(N)=LEFT$(A$(N),9):NEXT

200 FORN=1T030:FORM=1TONO
210 PRINT"Off "N;TAB(4)"I ❑ G ❑

ODLEDOMDIONDE00M"
220 PRINT" 	"A$(1);:1FNO = 2TH EN

PR1NTTAB(11);A$(2);
230 PRINT:PRINT"AT"A(1,1);:IF

NO =2THENPRINTTAB(11);A(2,1)
240 PRINT:PRINT"C"A(1,2);:IFNO=

2THENPRINTTAB(11);A(2,2)
250 PRINT:PRINT"G"A(1,3);:IFNO=

2THENPRINTTAB(11);A(2,3);
260 PRINT:PRINT"M"A(1,4);:IFNO=

2THENPRINTTAB(11);A(2,4);
270 PRINT:PRINT"N"A(1,5);:IFNO=

2TH EN PRINTTAB(11);A(2,5);
280 PRINT:PRINT"D"A(1,6);:IFNO=

2THENPRINTTAB(11);A(2,6);
300 PRINT:PRINT"UCURRENT EXCHANGE

RATE:$"ER;"PER KG"
400 PRINT"pjam";As(m)
500 PRINT"' al •• RESEARCH,

DEVELOPMENT"
510 PRINT" Ilzi2E.EXPLORATION,

REPORT"
520 PRINT"1213•.INCREASE MINE

DEPTH ❑ ❑ BY 200M"
530 PRINT"ja••EXCHANGE GOLD

FOR ❑ ❑ ED DOLLARS"
540 PRINT"I a5..PASS"
550 PRINT"aMENTER YOUR

INSTRUCTION":POKE 198,0
600 GETIVF1$=""THEN610
610 IFI$<"1"OR1$>"5"THEN600
620 ONVAL(1$)GOSUB1000,2000,

3000,4000
700 IFA(M,2) <OTHEN7000
710 ER =ER + INT(RND(1)*1 000)-200
718 J=0:K=0
720 IFINT(RND(1)1600) -A(M,3)

<OTHENGOSUB900
740 A(M,1)=A(M,2)+A(M,3)*ER
750 PRINT".0"
790 NEXTM,N
810 PRINT".EI"
820 PRINT"gaggigggggani

milli aGAmE ovERAggggg."
830 PRINT"TOTAL ASSETS OF":

PRINTA$(1)"ARE $"A(1,1)
840 IFNO = 2THENPRINT"TOTAL ASSETS OF

":PR1NTA$(2)" DARE $"A(1,2)
850 PRINT"gg gg a PRESS ANY KEY TO

PLAY"
860 POKE198,0
870 IFPEEK(197) =64THEN870
880 RUN
900 PRINT"OM"
905 JK= INT(RND(1)*1 00) + 50:IFJK

>A(M,3)THENJK=A(M,3)

910 pRINT"gligggigggiggiggii
pats EIRE10111BEBEEDROY111"

915 FORDE=1T0100:POKE36875,200
+SIN(DE)*10:NEXTDE:POKE36875,0

920 PRINT"gg gg MYOU HAVE HAD"
JK"KG":PRINT"OF YOUR GOLD
ASSETS pi EJ MSTOLEN"

923 FORDE=1T03000:NEXT
925 A(M,3) =A(M,3) -JK:A(M,1) =

A(M,1)-(JK*ER)
970 PRINT"O Iff":RETURN

1 MODE1
3 *FX11,0
4 VDU 23;8202;0;0;0;
5 FOR T=224 TO 238:VDU23,T:FOR P=1

TO 8:READ A:VDU A:NEXT:NEXT
10 VDU 19,2,4,0,0,0,19,0,2,0,0,0:

PRINTTAB(7,10)"HOW MANY PLAYERS (1
OR 2)":A$= GET$

20 IF A$< >"1" AND A$< >"2" THEN 10
30 P=VAL(A$):NOP=P
40 DIM A(2,6),C(2,5),A$(P),R(2):

ER =10000
50 R(1) = 0:R(2)=0:A(1,1)=2000000:

A(1,2) =2000000:A(2,1) = 2000000:
A(2,2) =2000000:A(1,3) = 0:A(2,3) =
0:A(1,4)=100000:A(2,4)=100000:
A(1,5) =0:A(2,5) =0:A(1,6) =0:
A(2,6) = 0:PRINT

70 FOR N=1 TO P:PRINT"NAME OF PLAYER
";N;:1NPUTA$(N):NEXT

200 FOR N=1 TO 30:FOR M=1 TO NOP
202 COLOUR131:COLOURO:CLS
210 COLOUR130:PRINT;N;TAB(10,0)

"OGOODLEIDEMOIONDED":
COLOUR131

220 PRINTTAB(20,3)A$(1);:IF NOP=2 THEN
PR1NTTAB(30,3)A$(2);

230 PRINT"`TOTAL ASSETS0$"TAB(19)
A(1,1);:IF NOP=2 THEN PRINTTAB
(29)A(2,1);

240 PRINT"`CASH ASSETS ❑ ❑ $"TAB(19)
A(1,2);:IF NOP=2 THEN PRINTTAB
(29)A(2,2);

250 PRINT"`GOLD ASSETS ❑ ❑ $"TAB(19)
A(1,3);:IF NOP=2 THEN PRINTTAB
(29)A(2,3);

260 PRINT"`COST TO MINE ❑ rTAB(19)
A(1,4);:IF NOP=2 THEN PRINTTAB
(29)A(2,4);

270 PRINT"`NO. OF MINES ❑ ❑ "TAB(19
A(1,5);:IF NOP=2 THEN PRINTTAB
(29)A(2,5);

280 PRINT"`MINE DEPTH ❑ ❑ ❑ m"TAB
(19)A(1,6);:IF NOP=2 THEN PRINT
TAB(29)A(2,6);

300 COLOUR1:PRINT""CURRENT EXCHANGE
RATE :-$";ER;"0 PER kg OF GOLD"

400 PRINT:COLOUR131:COLOUR2:PRINT

">-";A$(M)
500 PRINT""10-RESEARCH AND

DEVELOPMENT"
510 PRINT"`2 ❑ -EXPLORATION AND

REPORT"
520 PRINT"`3 ❑ -INCREASE MINE DEPTH BY

200m"
530 PRINTN ❑ -EXCHANGE GOLD FOR

DOLLARS"
540 PRINT "`50-PASS"
550PRINT"'"ENTER YOUR INSTRUCTION"
600 1$ =GETS
610 IF I$<"1" OR 1$ > "5" THEN 600
620 GOSUB VAL 3'1000
700 IF A(M,2) <0 THEN 7000
710 ER =ER + RND(1000) -200

720 IF RND(1600)-A(M,3) <0 THEN
GOSUB 900

740 A(M,1) =A(M,2) +A(M,3)'ER
750 COLOUR131:COLOURO:CLS
790 NEXT
800 NEXT
810 CLS
820 PRINTTAB(15,12)"GAME OVER"
830 PRINT'TAB(5)"TOTAL ASSETS

OF ❑ "A$(1)" ❑ ARE ❑ $";A(1,1)
840 IF NOP= 2 THEN PRINT'TAB(5)

"TOTAL ASSETS OF ❑ "A$(2)" ❑ ARE
❑ $";A(2,1)

850 PRINTTAB(0,30)"PRESS ANY KEY TO
PLAY AGAIN"

860 G =GET

880 RUN
900 COLOUR129:COLOUR3:CLS
905 JK= RND(100) + 50:IF JK>A(M,3)

THEN JK=A(M,3)
910 PRINTTAB(12,13)" CI R ID 0111B111

B D E III R ENO"
920 PRINT"' ❑ ill ❑ YOU HAVE

LOST ❑ ";JK;" ❑ kg OF YOUR
GOLD":A(M,3)=A(M,3)-JK:A(M,1)
= A(M,1) -JKIR

930 FOR X=1 TO 35:SOUND1, -15,40,1:
SOUND1, -15,100,1:NEXT

940 COLOUR131:COLOURO:CLS:RETURN

Mi ill
10 PMODE 3,1:CLS

20 DIM H(23),T(0),D(1),B(1),A(1,5),
C(1,4),A$(1),R(1)

40 FOR K=0 TO 9:READ NU$(K):NEXT
50 DATA NR2D4R2U4BR2,BFEND4BR2,

R2D2L2D2R2BU4BR2,NR2BD2NR2BD2R2
U4BR2,D2R2D2U4BR2,NR2D2R2D2L2BE4,
D4R2U2L2BE2BR2,R2ND4BR2,NR2D4R2U2
NL2U2BR2,NR2D2R2D2U4BR2

60 PCLS3
70 DRAW"BM36,23C2L35U6E3R3NU4R5U

10E2RE3R3F4D3F4DF2DF2DF3D2":
PAINT(18,16),2

80 DRAW"BM24,9C3G2D6F5R3E2UH2UHU
H2UH2BM20,1 NLDL2GR5D5BM14,6RBR3
RBD4DBL4UBD3LBR4RBD2LBL3LBD2RBR
3RBD2LBL3LBD2RBR3RBD2LBL3L":

PAINT(26,15),3
90 DRAW"BM2,21C4UBR4ND3BR4D":

GET(0,0) - (37,23),H,G
100 PCLS:DRAW"BM7,0C4L6BD2ERFRE

RBD2L7DR7DL5GNR3DNR3FNR4DNR
4GNR3DNR3FNR4DR2GL3FNR6FR3FL
4GNRDR5DL3"

110 GET(0,0) - (7,2),T,G:GET(0,3)
- (7,10),D,G:GET(0,11) - (7,20), B,G

120 PRINT@129,"HOW MANY PLAYERS (1
OR 2)11I?";

130 AS= INKEYS:IF A$ < "1" OR A$>
"2" THEN 130

140 P =VAL(A$):NO= P:ER =10000:
A(0,0) = 2000000:A(0,1) = 2000000:
A(1,0) =2000000:A(1,1) = 2000000:
A(0,3) =100000:A(1,3) =100000

150 FORN =1TOP:PRINT:PRINT:PRINT
"0 NAME OF PLAYER";N;:LINE
INPUTA$(N-1):IF LEN(AS(N -1))
>8 THEN AS(N -1) = LEFT$(A$
(N -1),8)

160 NEXT
200 FORN = OT029:FORM =OTONO -1
202 CLS
210 PRINT@3,"goldmine";
220 PRINTTAB(15);A$(0);:IF NO=2

THEN PRINTTAB(24);A$(1)
230 PRINT@32,"TOTAL ASSETS";TAB

(14);A(0,0):IF NO=2 THEN PRINT
@55,A(1,0)

240 PRINT@64,"CASH ASSETS";TAB
(14);A(0,1):IF NO=2 THEN PRINT
@87,A(1,1)

250 PRINT@96,"GOLD ASSETS kg";
TAB(14);A(0,2):IF NO=2 THEN
PRINT@119,A(1,2)

260 PRINT@128,"COST TO MINE";
TAB(14);A(0,3):IF NO=2 THEN
PRINT@151,A(1,3)

270 PRINT@160,"NO. OF MINES";
TAB(14);A(0,4):IF NO=2 THEN
PRINT@183,A(1,4)

280 PRINT@192,"MINE DEPTH m";
TAB(14);A(0,5):IF NO=2 THEN
PR1NT@215,A(1,5)

300 PRINT@224,"CURRENT EXCHANGE
RATE:-":PRINTER;"PER KG OF GOLD"

400 PRINT@330,A$(M)
500 PRINT"1-RESEARCH AND

DEVELOPMENT"
510 PRINT"2-EXPLORATION AND REPORT"
520 PRINT"3-INCREASE MINE DEPTH BY

200m"
530 PRINT"4-EXCHANGE GOLD FOR

DOLLARS"
540 PRINT"5-PASS";
600 A$ =1NKEY$:IF A$ < "1" OR A$ > "5"

THEN 600
620 ON VAL(A$) GOSUB 1000,2000,

3000,4000,5000
700 IF A(M,1)< 0 THEN 7000
710 ER =ER + RND(1000) -200
720 IF RND(1600) -A(M,2) <0 GOSUB 900
740 A(M,0) = A(M,1) + A(M,2)*ER
750 CLS
790 NEXTM,N
810 CLS
820 PRINT@138,"GAME OVER"
830 PRINT@197, "TOTAL ASSETS OF ";

A$(0):PRINTTAB(11);A(0,0)
840 IF NO=2 THEN PRINTTAB(5);"TOTAL

ASSETS OF ";A$(1):PR1NTTAB(11);A(1,0)
850 PRINT@449,"PRESS ANY KEY TO PLAY

AGAIN"
860 IF INKEY$=" THEN 860 ELSE RUN
900 CLS
905 JK=RND(100)+49:1F JK>A(M,2)

THEN JK = A(M,2)
910 PRINT@9,"R ❑ 0 ❑ B ❑ B ❑ E ❑ R ❑ Y"
920 PRINT:PRINT" ❑ 	❑ ❑ YOU HAVE

HAD"; JK;"KG OF": PRINT
"1111111110111YOUR GOLD ASSETS
STOLEN":A(M,2) = A(M,2) -JK:
A(M,0) = A(M,O) -JK . ER

930 PLAY"T401CDEFBAGFED"
940 CLS:RETURN

All four programs work in much the same
way, following the same general structure and
line numbering. From the start to line 200,
there are some differences between the
programs, though.

a
To start with, line 10 asks for the number of
players, and line 20 makes sure that your
INPUT is within the permitted range. Line 30
sets p and nop, according to the chosen
number of players.

A series of arrays are DIMensioned in line
40, along with the exchange rate, er. Array a is
used for storing information about assets
belonging to each of the players and the
mines, array c is used for storing information
about the mines, array a$ contains the
players' names, and array r is used to indicate
if mining has started in the mine being
considered by the player. Line 50 initializes
the assets and the mine status for both
players. The value 0 is given to r(1) and r(2)
to indicate that mining hasn't yet started in
the first mine that will be prospected. Other
assigned values are given as follows: a(1,1)
and a(2,1) are the total assets of each player;
a(1,2) and a(2,2) are the cash assets of each
player; a(1,3) and a(2,3) are the gold assets;
a(1,4) and a(2,4) are mining costs; a(1,5) and
a(2,5) are the number of mines; and finally,
a(1,6) and a(2,6) are the mine depths. Line 70
allows the name of each player to be entered.

In the case of the Commodore 64 program,
lines 1 to 5 set up the game's graphics, with
the subroutine starting at line 60000 setting
up the mine head workings and the excav-
ation. You need a 3K RAM extension on the
Vic 20, and high resolution graphics have
been discarded in favour of the machine's
block graphics. Line 5 in each of the programs
sets up the screen colour and clears the screen.
Line 10 asks for the number of players, while
line 20 checks that you have entered one or
two. Line 30 sets P and NO according to the
number of players that has been entered.

Line 40 DIMensions two arrays, and sets
the exchange rate, ER. Lines 50 to 54 initialize
the arrays and clear the screen. The values
stored in array R tell the program if mining
has started in the site being considered by the
player-setting the elements equal to zero
means that mining hasn't yet begun. The first
pair of elements in array A contain each
player's total assets, the second pair contain
each player's cash assets, the third contain
each player's gold assets, the fourth contain
the mining costs, the fifth contain the number
of mines, and the sixth contain the depth of

the current mine. Line 70 prompts for the
name of the player(s) and stores the response
in array A$.

1E1
The Acorn program sets MODE 1 in Line 1.
Lines 3 and 4 turn off the autorepeat on the
keys, and the cursor. Line 5 sets up the
graphics for the game by READing from the
DATA at the end of the program. Line 10 uses a
series of VDU commands to set the display
colours before prompting for the number of
players. Line 20 checks the number is within
the range allowed. P and NOP are set accord-
ing to the number of players chosen. A
number of arrays are DI Mensioned in Line 40,
along with the exchange rate, ER. Line 50
initializes a range of the elements in these
arrays. R(1) and R(2) are set to zero to indicate
to the program that excavation hasn't started
in the mine being considered by the current
player. The first pair of elements in array A
contain each player's total assets, the second
pair contain the cash assets, the third the gold
assets, the fourth, the cost to mine, the fifth,
the number of mines and the sixth, the mine
depth. Line 70 prompts for the name(s) of the
player(s).

la
In the Dragon and Tandy version, PMODE 3
is chosen by Line 10, and the screen is
cleared. A series of arrays are D I Mensioned in
Line 20.

As some of the game takes place on the high
resolution graphics screen, text has to be
DRAWn at some stages in the game. Lines 40
to 110 are the routine for drawing numbers on
the high resolution screen which you have
seen before in INPUT (pages 191-192).

Lines 120 and 130 ask for the number of
players and check the number entered. Line
140 sets P and NO according to the number of
players. Next, some of the elements of array A
are initialized; A(0,0) and A(1,0) contain the
total assets of each player; the next pair of
elements contain the cash assets; the next pair,
the gold assets; and the next, the cost to mine.
Lines 150 and 160 prompt for the name(s) of
the player(s).

The programs now follow one another very
closely. All the programs have a pair of FOR
... NEXT loops starting at Line 200 and
finishing at Lines 790 and 800. The loops set
up the main menu of options, and the display
showing the mining company assets, mining
costs, etc.

Variable N (n in the case of the Spectrum)
counts the number of goes the player(s) have

taken. Variable nop (Spectrum), NO (Commo-
dore, Dragon and Tandy and NOP (Acorn)
makes sure that both players get 30 turns.
Later on in the program, these same variables
are used to ensure that both player's assets
etc. are displayed.

Line 202 sets up the screen colours in the
case of the Spectrum, Commodore and
Acorn: The Dragon and Tandy merely clear
the screen. Line 205 in the Commodore
program clears the sound registers ready for
sound effects later in the program. In each
program, Line 210 PRINTs the title:
GOLDMINE. Line 220 PRINTs the name(s)
of the player(s). Only the second name is
PRINTed when the two player game has been
chosen.

Lines 230 to 300 display the values of
TOTAL ASSETS, CASH ASSETS, GOLD
ASSETS, COST TO MINE, NO. OF
MINES, MINE DEPTH and EXCHANGE
RATE. If two people are playing, both values
are displayed where appropriate by checking
the nop, NO or NOP variables. In the Vic 20
program the assets and mine information
headings are abbreviated to a single letter
owing to the small size of the screen display.

Line 400 displays the name of the player
whose turn is in progress. Lines 500 to 540
give the player the options Research and
Development, Exploration and Report, In-
crease mine depth by 200 metres, Exchange
gold for dollars or Pass. In the Spectrum,
Commodore, and Acorn programs, Line 550
prompts the player for an instruction. The
Dragon/Tandy program doesn't have the
prompt because the text screen is full by this
stage.

Lines 600 to 620 use IN KEYS or GET$ to
take in the player's choice, checks that the
choice is valid and calls the subroutine which
handles that choice.

Line 700 checks if the total assets have
dropped below zero, and jumps out the
program to the 'end of game' routine, if they .

have. Line 7000 and those following will be
entered next time. Line 710 introduces ran-
dom fluctuations in the exchange rate, so be
careful that you sell gold
when there's a

favourable exchange rate prevailing.
Line 720 compares a random number with

the amount of gold assets held, to decide if
there's going to be a robbery—notice that
there is a greater chance of a robbery when
you are holding a large amount of gold than
when you are holding a small amount. The
robbery routine is from Line 900 to 940. Line
905 chooses how much gold has been stolen,
and Line 920 displays the amount on screen.

Line 740 calculates the total assets by
adding the cash assets to the value of the gold
held according to the prevailing exchange
rate. Line 350 resets the screen colours and
clears the screen before the N EXTs send the
program back to Line 200 ready for the next
turn.

Line 810 to Line 840 are the 'game over'
routine, which is used when one of the
player's assets drop below zero. The routine
displays the financial status of both players,
after PR INTing GAME OVER.

Finally, Lines 850 to 880 are an 'another
go?' routine.

Next time you'll be adding a series of
subroutines which will make the game play-
able. There will be a routine which will allow
you to reduce your mining costs through
research and development, read a report on a
prospective mine, excavate the mine in stages,
and change gold for dollars.

In addition, there will be all the data you'll
need for drawing the graphics illustrating the
goldmines, and the progress of excavation.

The first part of this article showed
how to create display letters using
the character set or block graphics.
Here's a new typeface, plus ideas on
using all the new letters

Both of the display typefaces which you can
create using the programs on pages 815 to 823
are made up from character-square
graphics—either based on the standard char-
acter set, or made up from the block graphics.
But there is another way to create display
letters, using high-resolution graphics to
DRAW them out, line-by-line.

The programs which follow work in a
similar way to those for block graphic letters,
in that each consists of a series of DATA
statements which tell the computer how to
construct each letter. This information is
stored in an array, and you can enter the
words you want to enlarge in the form of a
string. As before, the letters are then built up
according to the instructions the computer
finds, and displayed on the screen. Later on,
you will see how you can then use this display
(or that from either of the other letter gen-
erators) as part of your own program.

A CUSTOM TYPEFACE
Using high-resolution lines allows you far
more freedom over the style of your letters
than either of the previous methods. The
character set expansion is limited solely to
doubling the height or width of the standard
characters. And the block graphic letters are
completely fixed by their design in the DATA
statements.

The DATA in the following programs also
fixes the way each letter is constructed (so for
an L, for example, it tells the computer to
DRAW a vertical line and a horizontal line).
But all these instructions are relative to each
other, and so do not determine the overall
shape of the letter. Think of each letter as
enclosed by an imaginary box. If the box is
tall and thin, you get a tall, thin letter—short
and fat, and you get a short, fat letter. The
programs are written in such a way that you
decide these scaling factors at the outset.

Now type in the program lines. As the
program uses up quite a large amount of
memory, it will not fit into the Vic 20, and so
there is no Vic version.

10 POKE 23658,8
20 DIM N(26): DIM A(26,12,2)

30 FOR N=1 TO 26
40 READ N(N)
50 FOR M=1 TO N(N)
60 READ A(N,M,1),A(N,M,2)
70 NEXT M
80 NEXT N
100 INPUT "ENTER A STRING", LINE A$: IF

A$="" THEN GOTO 100
110 INPUT "ENTER X-FACTOR",X
120 INPUT "ENTER Y-FACTOR",Y
125 CLS
130 FOR N=1 TO LEN A$
140 LET T$=A$(N): IF TS <"A" OR

T$>"Z" THEN NEXT N: GOTO 100
150 PLOT (10*(N —1)*X) +VA(CODE

T$-64,1,1),20+Y'A(CODE T$-64,1,2)
160 FOR M=2 TO N(CODE T$-64)
170 DRAW VA(CODE T$-64,M,1),

rA(CODE T$-64,M,2)
180 NEXT M
190 NEXT N
200 GOTO 100
1000 DATA 8,0,0,0,5,1,1,4,0,1,-1,0,

1010 DATA 12,0,0,0,6,5,0,1,-1,0,
—1,-1,-1,-5,0,5,0,1,-1,0,-1,
—1,-1,-5,0

1020 DATA 8,6,1,-1,-1,-4,0,-1,1,
0,4,1,1,4,0,1,-1

1030 DATA 7,0,0,0,6,4,0,2,-2,0,
—2,-2,-2,-4,0

1040 DATA 7,6,0,-6,0,0,6,6,0,-6,
0,0,-3,5,0

1050 DATA 6,0,0,0,6,6,0,-6,0,0,
—3,5,0

1060 DATA 10,5,2,1,0,0, — 1, —1, —1,
—4,0,-1,1,0,4,1,1,4,0,1,-1

1070 DATA 6,0,0,0,6,0,-3,6,0,0,3,
0,-6

1080 DATA 6,0,0,6,0,-3,0,0,6,-3
0,6,0

1090 DATA 5,0,1,1,-1,4,0,1,1,0,5
1100 DATA 6,0,0,0,6,0,-3,6,3,-6,

—3,6,-3
1110 DATA 3,6,0,-6,0,0,6
1120 DATA 5,0,0,0,6,3,-3,3,3,0,-6
1130 DATA 4,0,0,0,6,6,-6,0,6
1140 DATA 9,1,0,-1,1,0,4,1,1,4,0,

1,-1,0,-4,-1,-1,-4,0
1150 DATA 7,0,0,0,6,5,0,1,-1,0,-1,

—1,-1,-5,0

1160 DATA 9,4,2,2,-2,-5,0,-1,1,0,
4,1,1,4,0,1,-1,0,-5

1170 DATA 9,0,0,0,6,5,0,1,-1,0,-1,
—1,-1,-5,0,4,0,2,-3

1180 DATA 12,0,1,1,-1,4,0,1,1,0,1,
—1,1,-4,0,-1,1,0,1,1,1,4,0,1,-1

1190 DATA 4,3,0,0,6,-3,0,6,0
1200 DATA 6,0,6,0,-5,1,-1,4,0,1,

1,0,5
1210 DATA 3,0,6,3,-6,3,6
1220 DATA 5,0,6,1,-6,2,3,2,-3,1,6
1230 DATA 5,0,0,6,6,-3,-3,-3,3,6,

—6
1240 DATA 5,3,0,0,3,-3,3,3,-3,3,3
1250 DATA 4,6,0,-6,0,6,6,-6,0

DRAWING LETTERS LINE
BY LINE

SCALING THE CHARACTERS TO
ANY HEIGHT AND WIDTH

ENTERING THE WORDS

DESIGN YOUR OWN TYPEFACE
USING THE LETTERS IN

YOUR OWN PROGRAMS
SAVEING AND LOADING

THE SCREEN DISPLAY

rt_1(OEM
5 PRINT"QINITIALIZING
100 FORT= 8192T016192:POKET,O:

NEXT
110 DIM L(26,20)
115 T= 1:X =0
140 READA:X= X +1:L(T,X) =A
145 IFA = 10THENX = 0:T = T + 1
150 IFT > 26TH EN160
155 GOT0140
157 PRINT"OPLEASE WAIT...":

FORT = 8192T012000:POKET,O:NEXT
160 X =10:Y = 30:PRINT"ENTER

THE X FACTOR

170 INPUTX1:IFX1 > 40THEN160
180 PRINT"ENTER THE Y FACTOR"
190 INPUTY1:IFY1 > 40TH EN180
200 PRIN.T"INPUT THE WORD"
210 INPUTA$
213 FORT =1024T02023:POKET,1:

NEXT
215 POKE53265,PEEK(53265)0R32:

POKE53272,PEEK(53272)OR8
220 FORR =1TOLEN(A$):XT= X
230 S= 0:A =ASC(MID$(A$,R,1)):A =

A - 64:IFA = - 32TH ENX = X + 10:
XT=X:NEXT

240 S=S+1:B=L(A,S):S=S+1
250 IFB=10THEN730

300 ON BG0T0500,550,570,590,610,
630,650,670,730

500 FORM =1TOL(A,S)*Y1
510 Y=Y-1:GOSUB1000:NEXT: GOT0240
550 FORM =1TOL(A,S) . Y1
560 Y=Y +1:GOSUB1000:NEXT:

GOT0240
570 FORM =1TOL(A,S)*X1
580 X= X -1:GOSUB1000:NEXT:

GOT0240
590 FORM =1TOL(A,S)*X1
600 X =X +1:GOSUB1000:NEXT:

GOT0240
610 FORM =1TOL(A,S)*X1
620 X= X -1:J = (L(A,S)*Y1)/

(L(A,S)*X1)
622 JJ=J:IF J>1THEN JJ=J/

INT(J)
625 FORU=1TOJ:Y=Y—JJ:GOSUB

1000:NEXTU,M:GOTO 240
630 FOR M =1 TO L(A,S)*X1
640 X= X +1:J = (L(A,S)*Y1)/

(L(A,S)*X1)
642 JJ='J:IF J>1THEN JJ=J/

INT(J)
645 FORU=1TOJ:Y=Y—JJ:GOSUB

1000:NEXTU,M:GOTO 240
650 FOR M =1 TO L(A,S) . X1
660 X= X —1:J = (L(A,S) .Y1)/

(L(A,S)*X1)
662 JJ=J:IFJ>1THEN JJ=J/

INT(J)
665 FORU=1TOJ:Y=Y+JJ:GOSUB

1000:NEXTU,M:GOTO 240
670 FOR M =1 TO L(A,S)'X1
680 X= X +1:J = (L(A,S)*Y1)/

(L(A,S)*X1)
682 JJ=J:IFJ>1THEN JJ=J/

INT(J)
685 FORU=1T0J:Y=Y+JJ:GOSUB

1000:NEXTU,M:GOTO 240
730 Y = 30:X = XT + 11*X1:S = 0
737 NEXT
740 GETA$:1FA$=""THEN740
750 POKE53265,PEEK(53265)AND223:

P0KE53272,21
760 GOT0157
1000 RO = INT(Y/8):CH = INT(X/8):LI

=YAND7:B1=7— (XAND7):BY = 8192 +
R0•320 +CH*8+ LI

1010 POKEBY,PEEK(BY)0R2111
1020 RETURN
3000 DATA2,8,1,8,4,8,2,8,1,4,3,8,10
3010 DATA2,8,4,8,1,2,5,2,3,5,4,6,6,2,

5,2,3,6,10
3020 DATA4,6,8,2,5,2,3,6,2,8,4,6,6,2,

10
3030 DATA2,8,4,6,6,2,1,4,5,2,3,6,10
3040 DATA4,8,3,8,2,4,4,6,3,6,2,4,4,8,10
3050 DATA4,8,3,8,2,4,4,6,3,6,2,4,10
3060 DATA4,7,3,7,2,8,4,8,1,4,3,2,10
3070 DATA2,8,1,4,4,8,1,4,2,8,10
3080 DATA4,8,3,3,2,8,4,4,3,8,10
3090 DATA4,8,3,2,2,6,7,2,3,2,10
3100 DATA2,8,1,4,4,2,6,4,7,4,8,4,10
3110 DATA2,8,4,6,10
3120 DATA2,8,1,8,8,4,6,4,2,8,10
3130 DATA2,8,1,8,8,8,1,8,10
3140 DATA2,8,4,8,1,8,3,8,10
3150 DATA2,8,1,8,4,6,8,2,7,2,3,6,10
3160 DATA2,8,4,8,1,8,3,8,4,8,2,8,8,

1,5,4,10
3180 DATA2,8,1,8,4,6,8,2,7,2,3,6,4,

3,8,4,10
3190 DATA4,8,3,8,2,4,4,8,2,4,3,8,10
3200 DATA4,8,3,3,2,8,10

3210 DATA2,8,4,8,1,8,10
3220 DATA2,4,8,4,6,4,1,4,10
3230 DATA2,8,6,4,8,4,1,8,10
3240 DATA8,8,5,4,6,4,7,8,10
3250 DATA8,4,6,4,7,8,10
3260 DATA4,8,7,8,4,7,10

10 MODE1
20 DIM N%(26),A%(26,12,2)
30 FOR N =1 TO 26
40 READ N%(N)
50 FOR M =1 TO N%(N)
60 READ A%(N,M,1),A%(N,M,2)
70 NEXT
80 NEXT
100 INPUT"ENTER A STRING",A$:IF A$=""

THEN END
110 INPUT"ENTER X-FACTOR",X
120 INPUT"ENTER Y-FACTOR",Y
125 CLS
130 FOR N=1 TO LENA$
140 T$= MIDPA$,N,1):IF T$ <"A" OR

T$> "Z" THEN NEXT:GOTO 100
150 MOVE (10*(N —1)*X) + X'A%(ASCT$ —

64,1,1),50 + rA%(ASC T$ — 64,1,2)
160 FOR M=2 TO N%(ASCT$ —64)
170 PLOT1,VA%(ASCT$ —64,M,1),Y*A%

(ASCT$ — 64,M,2)
180 NEXT
190 NEXT
200 GOTO 100
1000 DATA 8,0,0,0,5,1,1,4,0,1,-1,

0,-5,0,3,-6,0
1010 DATA 12,0,0,0,6,5,0,1,-1,0,-1,

—1,-1,-5,0,5,0,1,-1,0,-1,-1,-1,
—5,0

1020 DATA 8,6,1,-1,-1,-4,0,-1,1,0,
4,1,1,4,0,1,-1

1030 DATA 7,0,0,0,6,4,0,2,-2,0,-2,
—2,-2,-4,0

1040 DATA 7,6,0,-6,0,0,6,6,0,-6,0,
0,-3,5,0

1050 DATA 6,0,0,0,6,6,0,-6,0,0,-3,
5,0

1060 DATA 10,5,2,1,0,0,-1,-1,-1,-4,
0,-1,1,0,4,1,1,4,0,1,-1

1070 DATA 6,0,0,0,6,0,-3,6,0,0,3,0,
—6

1080 DATA 6,0,0,6,0,-3,0,0,6,-3,0,
6,0

1090 DATA 5,0,1,1,-1,4,0,1,1,0,5
1100 DATA 6,0,0,0,6,0,-3,6,3,-6,

—3,6,-3
1110 DATA 3,6,0,-6,0,0,6
1120 DATA 5,0,0,0,6,3,-3,3,3,0,-6
1130 DATA 4,0,0,0,6,6,-6,0,6
1140 DATA 9,1,0,-1,1,0,4,1,1,4,0,

1,-1,0,-4,-1,-1,-4,0
1150 DATA 7,0,0,0,6,5,0,1,-1,0,-1,

—1,-1,-5,0

Here are three versions of the new
typeface on the Spectrum

1160 DATA 9,4,2,2,-2,-5,0,-1,1,0,
4,1,1,4,0,1,-1,0,-5

1170 DATA 9,0,0,0,6,5,0,1,-1,0,-1,
—1,-1,-5,0,4,0,2,-3

1180 DATA 12,0,1,1,-1,4,0,1,1,0,1,
—1,1,-4,0,-1,1,0,1,1,1,4,0,
1,-1

1190 DATA 4,3,0,0,6,-3,0,6,0
1200 DATA 6,0,6,0,-5,1,-1,4,0,1,1,

0,5
1210 DATA 3,0,6,3,-6,3,6
1220 DATA 5,0,6,1,-6,2,3,2,-3,1,6
1230 DATA 5,0,0,6,6,-3,-3,-3,3,6,

—6
1240 DATA 5,3,0,0,3,-3,3,3,-3,3,3
1250 DATA 4,6,0,-6,0,6,6,-6,0

10 PMODE1,1:PCLS
20 DIMN(26),A(26,12,2)
30 FORN = 1T026
40 READN(N)
50 FORM =1TON(N)
60 READA(N,M,1),A(N,M,2)
70 NEXTM,N
80 CLS:INPUT"ENTER A STRING";A$:

1FA$=""THENGOT080
90 INPUT"ENTER X-FACTOR";X
100 INPUT"ENTER Y-FACTOR";Y
110 CLS:PCLS:SCREEN1,0:FORN =1

TOLEN(A$)
120 T$=MIDS(A$,N,1):IFT$<"A"OR

T$ > "Z"THENNEXTN:GOT080
130 J =(10*(N —1)*X)+X*A((ASC(T$)

—64),1,1):K =10 +Y*A(ASC(T$)
—64,1,2)

140 FORM =2TON(ASC(T$) —64)
150 F=X.A((ASC(T$)-64),M,1)
160 G = Y'A((ASC(T$) —64),M,2)
170 LINE(J,K) — (J + F,G + K),PSET
180 J=J+F:K=K+G
190 NEXTM,N
200 IF 1NKEY$=`"'THEN 200
210 GOT080
1000 DATA9,0,6,0, —5,1,-1,4,0,1,1,

0,3,0,2,0,-3,-6,0

By altering the X and Y factors
the letters can be made to any size

1010 DATAl2,0,0,0,6,5,0,1, —1,0, —1
—1,-1,-5,0,5,0,1,-1,0,-1,
—1,-1,-5,0

1020 DATA8,6,1, —1,-1,-4,0,-1,1,0,
4,1,1,4,0,1,-1

1030 DATA7,0,0,0,6,4,0,2, — 2,0, —2,
—2,-2,-4,0

1040 DATA7,6,0, —6,0,0,6,6,0, — 6,0,
0,-3,5,0

1050 DATA7,0,0,6,0, — 6,0,0,3,5,0,
—5,0,0,3

1060 DATA10,7,1, —1, —1, —4,0, —1,1,
0,4,1,1,4,0,1,-1,0,-1,-1,0

1070 DATA6,0,0,0,6,0, —3,6,0,0,3,
0,-6

1080 DATA6,0,0,6,0, — 3,0,0,6, — 3,0,
6,0

1090 DATA7,0,0,6,0, — 3,0,0,5, —1,1,
—1,0,-1,-1

1100 DATA6,0,0,0,6,0, —3,6,3, —6, —3,
6,-3

1110 DATA3,0,0,0,6,6,0
1120 DATA5,0,6,0, —6,3,3,3, —3,0,6
1130 DATA4,0,6,0, —6,6,6,0, —6
1140 DATA9,1,0, —1,1,0,4,1,1,4,0,

1,-1,0,-4,-1,-1,-4,0
1150 DATA7,0,6,0, —6,5,0,1,1,0,1,

—1,1,-5,0
1160 DATA11,5,0, —4,0,-1,1,0,4,1,

1,4,0,1,-1,-2,-1,2,1,0,-4,
—1,-1

1170 DATA9,0,6,0, — 6,5,0,1,1,0,1,
—1,1,-5,0,4,0,2,3

1180 DATAl2,6,1, —1,-1, —4,0,-1,1,
0,1,1,1,4,0,1,1,0,1,-1,1,-4,0,
—1,-1

1190 DATA4,3,6,0, — 6, —3,0,6,0
1200 DATA6,0,0,0,5,1,1,4,0,1,

—1,0,-5
1210 DATA3,0,0,3,6,3, —6
1220 DATA5,0,0,1,6,2, —3,2,3,1, —6
1230 DATA5,0,0,6,6, —3,-3,-3,3,6,

—6
1240 DATA5,3,6,0, —3, —3, —3,3,3,3,

—3
1250 DATA4,0,0,6,0, — 6,6,6,0

These pictures show normal, extra
wide and extra tall letters

Apart from the Commodore these programs
are similar. There are 26 DATA statements,
one for each letter of the alphabet. And each
one contains a series of numbers which tells
your computer how to draw the shape of that
letter, as a series of short lines. The first
number after each DATA statement is the total
number of lines that are used to make up each
letter—an L needs fewer than an S, for ex-
ample. The maximum number used is 12.

The following numbers are arranged in
pairs giving the x and y coordinates of each
short section of line. As explained above,
these numbers are relative, not absolute, so
the actual lines that are drawn may be affected
by scaling factors. And the first pair of
coordinates specify a starting point for the
letter within its imaginary 'box'.

The numbers from the DATA statements are
READ into two arrays, N and A. A is a three
dimensional array, 26 (for the number of
letters) by 12 (for the maximum number of
lines) by 2 (for the x and y vectors).

ENTERING A STRING
The lines which let you enter your words are
the same as those in the program on pages 815
to 823. They check to make sure that you do
enter an actual string, rather than a 'null'
entry, but there is no limit on the string length
you can enter.

The programs then let you INPUT two
values—an a-factor' and a 'Y-factor'. The
values that you enter here determine the
actual size of each letter (the dimensions of
the invisible 'box'). As a rough guideline to
scale, 1 represents a standard size character. 2
would give you double height or double
width, 0.5 would give you half height or half
width, and so on. Note that for values smaller
than one, you may get some odd effects. Since
the computer cannot draw a fraction of a
pixel, it defaults to drawing a whole pixel.
And letters which contain a large number of
lines have more opportunities for this to
happen. As a result, an S, say, may end up

slightly over-sized compared to a letter T.
By having different values for each factor,

you can produce some interesting variations
on the characters: either by having tall and
thin letters, or wide and short ones.

As there is no limit on how long a string
you can enter, you should be careful not to
enter too many letters for the available screen
display at your chosen size—otherwise the
computers either stop with an error message
or produce strange variations of the letters.
You can work out how many characters you
can have for any given scale factors quite
simply. You should note that the important
value is the X-factor which sets how much
wider, or narrower, each letter is (the Y-factor
determines how tall each letter is). If you have
values of 2 as your multiplication factor, you
can only fit half as many characters as normal
in a line. And if you had a multiplication
factor of 4, you could only fit a quarter as
many letters onto a line.

ANALYZING THE STRING
As with the other programs which create a
display typeface, this one uses a main loop to
go through every letter in the string. It starts
at Line 130 for the Spectrum, Line 220 for
the Commodore, Line 130 for the Acorn, and
Line 110 for the Dragon and Tandy.

The program continues in a similar way to
the earlier letter generator, setting a string
variable (T$) equal to each letter of the string
in turn. The Commodore uses a variable A
equal to the ASCII code of the letter. The
program then checks to see whether the
character is a letter from A to Z (any other
character is treated as a space). If it is not, the
computer does a NEXT to update the FOR ...
N EXT loop, and if there are no more letters in
your string the computer goes back to let you
enter another string.

When the computer finds a letter in the
string, it goes to Line 150, which starts the
drawing routines. These are at Line 150 for
the Spectrum and 170 for the Acorn, Dragon
and Tandy. These are slightly different for
each computer, since each has a different size
of screen and different PLOT and DRAW
commands.

The basis for the routine, though, is the
same on all the computers except the Commo-
dore which is described later. The control
variable of the FOR . . . NEXT loop, N, is used as
a guide for the x coordinate of the starting
position, and the computer adds two things to
this. The first is a relative value—the drawing
coordinates from the array A—while the
second is a value to take into account the
screen size and your x and y scaling factors.

You have already seen that one of the three

elements of this array is used to separate the
details of the x and y coordinates.

The other two elements give each of the 26
letters up to 24 numbers each—remember
that 12 is the maximum number of drawn
lines used by any letter. The one dimensional
array N is used to tell the computer how many
lines each letter uses. So, when the computer
comes to draw, for example, the letter A, it
first looks up how many lines it has to draw
from array N. This number then controls the
loop to draw the exact number of lines for
each letter.

The values of the numbers in A, the main,
three-dimensional array, are 64 less than the
character codes of each letter—this is the
reason why Lines 130 to 180 (Line 230 on the
Commodore) contain either the expression
ASC(T$)-64 or CODE T$-64 or A-64. What
this means is that the computer can take the
character code of the letter and uses this to
count through to the right part of the arrays to
use for drawing the lines. The relative values
for x and y stored in the array are then
multiplied by the scaling factor that you
entered and these are passed to the DRAW or
PLOT command.

Since the Commodore cannot DRAW lines
on the screen with a single command, the
letters have to be built up from dots POKEd
onto the screen one at a time by the subrout-
ine at Line 1000. The short routines from
Lines 500 to 730 determine the direction of
the lines that are drawn—there are eight
routines for left, right, down, up and the four
diagonals. The DATA statements determine
the length of each line.

When the computer has drawn a letter, it
goes to the next letter in your string—if there
is one—and runs through the same process to
draw that. If there are no more letters left to
be drawn, the computer returns to Line 100
(Line 80 on the Dragon and Tandy) to let you
enter another string. The Dragon and Tandy
first wait for you to press a key, since they
have to clear the screen in order to return to
the text screen (the letters are drawn on the
graphics screen).

DESIGNING YOUR OWN
You have now seen three examples of display
typefaces but you can use similar ideas to
make your own special letters. While you
cannot vary the double width and height
versions of the computers' own characters,
you can use the 'expanding' routines to
expand your own redefined characters (the
article on pages 450 to 457 explains how you
can redefine the character set, except for the
Dragon and Tandy, which do not have this
facility).

The variations you could exploit with the
other two methods, though, are almost end-
less: you can design your own characters from
the computers' block graphics characters, and
store them in an array as in the program on
pages 815 to 823. If you are not satisfied with
the on-board block characters, why not de-
sign your own UDGs and combine them?
Similarly you could make a variation on the
DRAWn typeface in this article—all you have
to do is change the DATA, once you have
worked out your new characters, and change
the array if necessary.

USING LARGE LETTERS
It is all very well being able to create large
letters, but unless you can use them in your
programs, there is little point. Whether you
use the routines given on pages 815 to 823, or
the drawing program in this article, you need
to be able to call up the special letters for use
elsewhere.

There is a number of ways you can use the
display typeface in your own programs. The
most obvious of these is to incorporate the
letter generating programs as a subroutine—
then, you can GOSUB them whenever you
want to.

If you want to use the expansion of the
character set routine, this is probably the best
solution. But for the letter-drawing program
given here, it is far from ideal. The reason for
this is that the program takes up quite a lot of
memory space, so that you would not have
very much left for your own use.

You can get around this in several ways, all
of which involve using the programs to design
your letters, then storing the results so that
they are available for use elsewhere.

One way of doing this is to store your
designs in UDGs. This is easy on the Dragon
and Tandy, which can simply GET what is on
the screen. On the other computers you could
do this by POKEing the UDGs with the
contents of the screen. But, except on the
Dragon and Tandy, this, too, is complicated.

Another alternative is to SAVE the section of
memory which stores the screen, as a block of
machine code onto tape. You can then LOAD
the display back in to your computer. While it
is in your computer, you must protect it by
storing it above the end of BASIC, or below
the start of BASIC (the article on pages 450 to
457 explains more about this). And once it is
in memory, you have to be able to use it. This
is not applicable to the Acorn.

The best way of doing this is either to write
a routine to PEEK your code in the protected
area of RAM, then POKE it into the screen area
of memory, or to alter the character set
pointers so that your code 'becomes' several

characters. You could then PRINT the charac-
ters to make your large letters appear. The
routine to move your block of code from its
protected area in RAM to the screen would
look something like this:

1000 FOR x =1 TO (the length of your block
of code)

1010 POKE (the start address of screen
memory) + x, PEEK (the start address of your
block of code) + x

1020 NEXT x

Again, this routine is not a very good solution
to the problem, since it would take quite a
long time to finish, unless you know machine
code, and can write the equivalent routine in
machine code. You could then call the routine
and your letters would appear on the screen
almost instantly.

SAVEING THE SCREEN
The other alternative is to SAVE the screen
picture, and LOAD this in when you LOAD
your program. The picture will then stay on
the screen until you wipe it off by clearing the
screen. On most machines, this is the best
option, but the Commodore computers do
not have this facility.

The Spectrum has a special keyword which
lets you SAVE a screen picture to tape very
easily. The picture is SAVEd as a block of
memory as described on pages 532 and 533,
except that instead of having to type in the
start address of the screen and how much
memory you wish to SAVE, you can just type
the keyword SCREEN$ immediately after the
filename. So this command entered as a direct
command would SAVE the picture named
`pic':

SAVE"pic"SCR EEN$

To LOAD the screen picture back, use:

LOAD" "SCREEN$

You can use the display as a title page to a
game by LOADing it in first so it stays on the
screen while the game is loading. The way to
do it is to create a loader program:

10 LOAD ""SCREEN$
20 LOAD"GAME"

then save this using

SAVE"LOADER" LINE 10

so that it aoutoruns. The game itself should
also be saved using SAVE "GAME" LINE 10 so
that it autoruns too. You'll also need to save
the programs in the correct order on the
tape— LOADER, SCREEN then GAME.

To SAVE a screen picture from the Acorn
computers, you should use a command within
a program—although you can do it as a direct
command, you should SAVE it via a program
line, since, if you don't, the computer will
SAVE any writing on the screen (including the
command itself) along with the picture.

The command you should use to SAVE a
screen to tape is VDU 21, then:

'SAVE"filename"start address ❑ end address

The address of the screen varies, depending
on which MODE you are in. The end address

for every MODE is 8000 hexadecimal. The
start address of each MODE is: 0-3000; 1-
3000; 2-3000; 3-4000; 4-5800; 5-5800;
6-6000; 7C00.

To LOAD the screen picture back, type:

'LOAD filename

You can use the display as a title page to a
game by LOADing it in first so it stays on the
screen while the game is loading. First create a
short loader program:

10 VDU 21
20 'LOAD filename
30 CHAIN "GAME"

The VDU 21 turns off output to the screen so
the loading messages don't spoil your display.
This does mean that the first line of your main
program should be VDU 6 to reset the effect of
the VDU 21. The three programs should be
positioned on tape in the correct order—
LOADER, SCREEN then GAME.

To SAVE a screen to tape from your Dragon or
Tandy, you can use this command:

CSAVEM"filename",1 536,7679,35725

The first two numbers are the start address
and end address of the screen memory (the
first page in any PMODE, unless you have a
disk drive. Except when you are using several
graphics screens, these are the addresses that
you should use). CLOADM will LOAD the
picture back into memory again.

You can use the display as the title page to a
game by adding a loading routine at the start.
Add these lines to the start of your program:

1 PMODE1,1: PCLS: SCREEN1,0
2 CLOADM
3 FOR D =1 TO 1000: NEXT

and make sure that the screen picture is SAVEd
immediately after your game. However, this
only works as long as the game doesn't reduce
the number of graphics pages available from
start-up, or the screen picture may overwrite
part of your BASIC program.

XK 3K
Although the Commodore computers cannot
easily LOAD in a screen picture in the same
way as the other computers can, they can still
SAVE large letters to tape. If you do not wish to
use the actual programs to create the large
letters as a subroutine in your own program,
you can SAVE the routine as a block of memory
to tape, and alter the character set pointer so
that it points to your block of memory, and
you can then PRINT the large letters in a series
of PRINT statements.

a ECK F1 11
The three types of large letters you have seen
in this article, and the one in the last issue, are
not the only kind of large letter you can create
with your computer. You have already seen
that one way you can store your large letters is
to put them into UDGs. You could equally
well design several UDGs together, which
combine to form a large letter. Using this
method, you can design as intricate UDGs as
you like, since the computer has only to PRINT
a string—it does not have to actually draw
each character, as the other programs do.

BASIC is just another machine code program
that runs on your computer. And even though
the instructions that are executed by the
processor are fed to it from ROM—instead of
from the keyboard or from tape or disk—on
most micros it is possible to tamper with
BASIC, even to the extent of adding, or
deleting, commands.

Adding instructions can be useful if you
are using your computer in a very specific
application that needs complex routines in
BASIC over and over again. In this article a
couple of instructions each are added to the
Spectrum's BASIC (if you have Interface 1
and 48K), and the BASIC's of the Acorn and
Dragon. Commodore 64 users have already
been putting the theory to practical use by
adding the graphics instructions that are
missing from Commodore's BASIC.

a
Adding an instruction to BASIC has to be
done in two operations. First, a routine has to
be added to the BASIC editor so that it
recognizes the syntax of the new instruction,
otherwise it will kick up an error message.
Then a routine has to be added to the main
body of the BASIC to execute the new
instruction when the program is RUN.

This next routine will add INVERSE and
ATTR instructions. Note that these keywords
already exist on the Spectrum. But normally
INVERSE has to be followed by 0 or 1.0 leaves
everything as normal, and 1 INVERSEs all
output to the screen from that point onwards.
The new INVERSE being added here takes no
parameters and INVERSEs the whole screen.

The Spectrum's ATTR is normally a func-
tion, not an instruction. You use it to ascertain
the ATTRibute of a screen location specified by
two parameters in brackets which follow the
keyword. The new ATTR is a command. It
takes one parameter (not in brackets) which
specifies the ATTRibute of the whole screen.

Remember, this routine only works if you
have Interface 1 attached.

10 REM org 65200
20 REM rst 16
30 REM defw $0018
40 REM cp 221

50 REM jr z,inv
60 REM cp 171
70 REM jr z,attr
80 REM jp $01F0
90 REM inv rst 16
100 REM defw $0020
110 REM call $05B7
120 REM Id hl,$4000
130 REM Id b,24
140 REM invlo push bc
150 REM Id b,0
160 REM invli Id a,(hl)
170 REM cpl
180 REM Id (h1),a
190 REM inc hl
200 REM djnz invli
210 REM pop bc
220 REM djnz invlo
230 REM jp $05C1
240 REM attr rst 16
250 REM defw $0020
260 REM rst 16
270 REM defw $1 C82
280 REM call $05B7
290 REM rst 16
300 REM defw $1 E94
310 REM Id h1,22528
320 REM Id (hl),a
330 REM Id de,22529
340 REM Id bc,767
350 REM Idir
360 REM rrca
370 REM rrca
380 REM rrca
390 REM out 254,a
400 REM jp $05C1
410 REM end
900 CLEAR 65199

The origin of this routine is 65200. But it is
not called in the usual way. You do not want it
running all the time, otherwise the routine
that runs BASIC would not be able to
operate. Instead, it is wedged in between
BASIC and the error messages.

When the BASIC editor has run and finds
that it does not recognize the instruction or
syntax in the edit line, it looks at the VECTOR
system variable. This usually directs it to the
error message routines at 01F0. But if the
start address of another routine, like this one,

The BASIC on your computer is not
something that is fixed. It is a
program, like any other, and you can
customize it by adding your own
instructions

WEDGING NEW INSTRUCTIONS
CHANGING FROM ROM TO ROM

REDIRECTING VECTORS
NEW WORD TABLES
CHECKING SYNTAX

WHEN WORDS FAIL
ADDING NEW STUBS

RECOGNISING NEW TOKENS
OLDING YOUR DRAGON

SWITCHING COLOUR SETS

is PO K Ed into VECTOR the processor will go off
and execute that routine instead.

SWITCHING BETWEEN ROMS
Interface 1's own built-in ROM itself adds
new instructions to BASIC. These are mainly
concerned with Microdrive and handle its
SAVE and LOAD instructions. But it does add
other instructions like CLS # which clears the
screen back to the power-up colours.

Adding Interface 1 does make it necessary
to switch back and forth between the new
ROM in the interface and the old ROM in the
Spectrum, though. Normally, the processor
looks at the new ROM in Interface 1.
But rst 16—that is, restart 16—sends
it to the new ROM's restart routine
at 0010 which directs it on to the old
ROM. But the restart routine does
not just send the processor to
any old place in the old ROM.
It sends it specifically to the
routine which starts at the
address given by the two
bytes that follow the rst
instruction.

So rst 16, defw $0018 jumps to the routine
at 0018 in the old ROM. This routine does
what rst 24 would do if Interface 1 had not
been plugged in. It gets the command code
which occurs at the beginning of the next
BASIC statement.

The cp 221 compares the command code
with the INVERSE token. And if they match, jr
z, inv sends the processor to the inverse
routine.

If they do not match, cp 171 compares the
command code with the token for ATTR. If
this matches, jr z,attr sends the processor off
to execute the attribute routine. And if the
token for attr does not match either, jp$01 FO
sends the processor to the syntax error routine
at 496, which is where it would have gone in
the first place if this routine had not inter-
cepted it.

THE INVERSE ROUTINE
The rst 16 switches to the old ROM again and
calls the routine at 0020 which moves the
pointer onto the next byte of the line of
BASIC.

The routine at 05B7 is then called. This
checks for an end of statement marker. If it
finds one in syntax time—that is, when the
BASIC editor is working on a line prefixed
with a line number—it exits ready to accept
the next line or a direct command.

If the computer is in running time—that is,
a direct command is being entered or a
program is being RUN—this routine sends the
processor back into this routine to execute the
next instruction.

The Id hl,$4200 loads the hl register with
the first screen address. The B register is then
set up as a double counter. First, the number
24 is loaded into B and pushed onto the stack,
then 0 (which will act as 256 when you start
decrementing it) is loaded. There are
24 x 256 screen locations.

The instruction Id a,(hI) loads the contents
of the first screen location—that is, the top
lefthand corner—into the accumulator. The
col complements it. It turns all the 0 bits to is
and all the is to Os. Then Id (hl),a puts the
outcome of this operation back into the same
screen location.

The result is to turn on all the pixels that
were off, and all the pixels that were on, off.
In other words, it inverses that part of the
screen.

COUNTING ACROSS THE SCREEN
HL is then incremented to move onto the next
screen location. The djnz invli decrements the
B register and jumps back to invli if B hasn't
counted down to zero. So this loop is executed
256 times, each time moving onto the next

location and inversing it. When it has counted
down to 0 the other counter is popped off the
stack, decremented, and if it is not zero, the
processor jumps back to invlo where the
counter is pushed back onto the stack.

This outer loop is executed 24 times, and
the inner loop is executed 256 times each time
the processor goes round the outer loop—
making 6,144 times in all. When the counter
for the outer loop has counted down to zero
and every screen location has been inversed,
jp $05C1 takes the processor to the routine at
05C1 which directs it to the next BASIC
statement so that it can start executing it.

THE ATTRIBUTE ROUTINE
This routine begins in exactly the same way as
the INVERSE routine—it sends the processor
to the routine in the old ROM which moves
the pointer onto the next byte after the
keyword.

On this occasion, though, this should be a
parameter. So rst 16 and defw $1 C82 send the
processor to the routine in the old ROM
which evaluates numerical expressions. It
puts the result on the stack.

The routine at 05B7 is called again. This is
the one that checks for the end of a statement
and exits in syntax time. If there is no end-of-
statement marker after the numerical ex-
pression, but a token, a letter, a punctuation
mark or another numerical expression, the
routine will give an error message. The new
command takes only one parameter, so if
there is anything else following it the syntax is
wrong.

The Spectrum will not get confused if you
use the normal ATTR function which takes two
parameters. That will already have been
picked up earlier by the Spectrum's own
BASIC routines. It would have been appro-
ved and entered, and the processor would not
be on its way to the error message routines
where this program intercepted it. So both
the old INVERSE function and the new
INVERSE command and the two ATTRs will be
accepted.

The rst 16 and defw $1594 send the
processor to the routine in the old ROM that
picks the value of the parameter back off the
stack. It puts it into the accumulator.

The Id h1,22528 then loads the address of
the beginning of the attribute file into HL.
The Id (h1),a loads the numerical value of the
INVERSE parameter into the first location in
the attributes file.

The Id bc,767 loads the BC register with
767. It is going to be used as a counter. There
are 768 locations in the attributes file-24
rows by 32 columns—but one of them has
already been dealt with. The Idir block-loads

the contents of the location pointed to by HL
into the location pointed to by DE, incre-
ments HL and DE, decrements BC and
repeats if the result is not zero.

In other words, it copies the attribute of
the first screen location—the one the program
has just set—into the attributes of all the other
screen locations.

The next thing to do is to change the
border colour to match the paper colour on
the screen. To do this the out command is
used. The problem is that the paper colour is
stored in bits 3, 4 and 5 of the attributes, while
the border colour has to be in bits 0, 1 and 2
with the out command.

So the three rrcas simply shove the at-
tribute value, which is still in the ac-
cumulator, three places to the right. It is then
outed through port 254.

Once all that is done jp $05C1 takes the
processor to the routine at 05C1 again.

RUNNING THE PROGRAM
The CLEAR command at the end of the
program automatically moves the top of
BASIC to protect the machine code. To get
this program to run each time one of the new
commands is entered, VECTOR must contain.
the start address of this routine.

So you have to put it into the two-byte
pointer with the following POKEs:

POKE 23735,176:POKE 23736,254

Be very careful when keying these POKEs. If
you get either of them wrong and then key in a
syntax error, the processor will be directed to
the wrong place and would crash.

It is even more critical that you get the
second POKE statement correct. The first
POKE changes half the VECTOR. So if there is a
syntax error in the second half the processor
will be misdirected disastrously.

The following assembly language program
adds the instructions INV and BYE to the
BBC's BASIC. The BBC's OS offers a facility
which allows you to add new commands
easily. But they must be prefixed by 'LINE,
followed by a space.

10 MC = &A00
20 JTABLE = &900
30 WORD = JTABLE + &40
40 FOR T = 0 TO 3 STEP 3
50 P%= MC
60 [OPT T
70 STX &72
80 STX PT2 + 1
90 STY &73
100 STY PT2 + 2

110 LDA #WORD ❑ MOD 256 M .

120 STA &70
130 LDA # WORD l=IDIV 256
140 STA &71
150 LDX # 0 	-
160 LDY #0
170 STY &7 	zip
180 .PT: LD),Y

200 	#127 	 •

210 . • 	P 	•
220 B - jt 	 .

230I 	•
240 I
250 PLA 	 .111
270 BPL PT
280 LDA
290 ASL A
300 TAY TAY
310 LDA JTABLE,Y Ar‘
320 STA JUMP + 1
330 LDA JTABLE +1
340 STA JUMP+ 2
350 .JUMP:JMP &FFFF
360 .FAI • 	&74
370 PLA
380 LDX
390 .F2.),
400 INY
410 AND #128
420 BPL F2
430 LDA (&70),Y
440 BPL PT
450 BRK
460] 	4111411111'
47g. $P% = CH (255) + "Foul u • 	Ili 	•

CHRS(0)
480 P%= P% + 9:[OPT
490 . F I RST:LDA # 17:JS • " FFEE:LDA

0:JSR &FFEE:LDA #17:JSR &FFEE:LDA
#135:JSR &FA.

500 TXA:TAY
510 .F2:LDA (&7 	. Y:JSR &FFEE:CMP

&OD:BNE F2
520 LDA #17:JSR &FFEE:LDA #1:JSR
r &FFEE:LDA #17:JSR &FFEE:LDA

#128:JSR &FFEE
530 LDA # 10:J 	FFEE 	4110 	1
540 RTS
550 .TW . 	:STA &70:LD L # 22:JSR 	DA # 2:J 	• Y

JL# 30 	 •
.T2:LDX # 20 	 ''411.

570 .T3:LDA # 17:JSR &FFEE:LDA &70111IR
&FFEE:DEC &70:BMI T4:LDA # 143:STA
&70

580 .T4:LDA # 32:JSR 	NE
T3:DE •BNE T2:RT

2000]:N
2010? 	=MC ❑ MOD

01 = MC ❑ DIV 226411j

2020 Q = —1 1111"PP-04007
2030 FOR P = 0 TO 1 	-
2040 READ A$44

i 2050 ?(JTABLE + 	 256
'2060 ?(JTAB LE +13 •2 +1) = A ❑

DIV 256
2070 FOR T = 1 TO LEN (A$)
2080 Q=Q+1
2090 ?(WORD + Q

(MID$(
2100 NEXT
2110 ?(WORD+)=?

(WORD + 	128
2120 NEXT

'2130 Q=Q+1
2140 ?(WORD+Q)=128
2150 DATA "INV",F13"BYE",

SETTING UP ®

Line 10 gives the start address of the machine
code. And Lines 20 and 30 give start ad-
dresses for the jump table and the details of
the new BASIC words being added. These
should be changed if the cassette buffers are
used—these are not used during SAVEing and
LOADing, only during file handling.

Then the assembler is initialized.
When the BBC's OS hits a 'LINE it puts the

high and low bytes of its start address of the
next word in the Y and X registers.

In Lines 70 and 80 the contents of the X
register are copied into the zero page 72—

here it can be referred to later—and into the
first byte past the label PT2. This occurs in
Line 210.

The contents AV register are stored in
-the subsequent bytes in Lines 90 and 100.
The whole of the start address of the com-
mand word following 'LINE has now been
POKEd into the CMP instruction in Line 210.

LDA # WORD MOD 256 and STA &70 then
stores k low byte of the start address of the
word to e. Lines 130 and 140 store the high
byte in &71.

Lines 150 and 160 then clear the X and Y
register and Line 170 uses the zero value in
the Y register to clear another zero page

(Memory location to store the word number.

COMPARING WORDS
LDA (&70),Y loads the accumulator with the
contents of the memory location pointed to by
70 and 71, offset by Y. This is the first byte of
the first word in the table when the processor
first goes round the loop.

PHA pushes it on the stack and AND #127
clears the high bit. The last letter of each word
in the word table is marked by having its high
bit set—as all the ASCII values of letters of
the alphabet are less than 127, it does not
affetip AN Ding with 127 will leave a regular

ASCII alone but resets the higliirrrn eni
of-word letter, turning it back into normal
ASCII form. Obviously, this ANDing makes titse no difference on the fi 	ss. (One-letter
command words are no 	d.)

The byte in the accum 	's then com-
pared with the letter pointe 	the address
following the CMP instructio , offset by X.
Because an offset is needed with this ins
tion, an absolute base address has to be giver
You cannot post-index with the X register in
an indirect addressing mode.

If the two letters do not match, Line 220
sends the proasor off to the FAIL routine.
But if they do match, Lines 230 and 240
increment X and Y to move onto the next byte
of the word in BASIC and the next byte of the
word you're comparing it to in the word table.

The last byte is then pulled off the stack
again by PLA, and BPL—Branch if PLus—takes
the processor back to deal with the next byte if
bit 7 is not set. If bit 7 is set—as it would be if
the contents of the register were negative or
the routine had matched the last letter of a
word in the word table—the processor goes
onto the next instruction.

CONSULTING THE JUMP TABLE
and a word has been found and mat hill

word in the word table completel
&74 in Line 280 loads the word n 	from
the memory location set aside f • 	SL—
Arithmetic Shift Left—then doubl 	he
ASL A instruction shifts all the b . 	e
accumulator one bit to the left. And
are binary bits, this effectively doubl
value of the register in the same way
multiplying a decimal number by ten is do
by shifting all the digits one place to the left.

The jump table is made up of two byte
addresses, so to count along the address table
you need to move two bytes at a time.

TAY puts the result of the doubling back
into the Y register so that it can be used as an
offset in Lines 310 and 330. And Lines 320
and 340 POKE the values picked up from the
jump table into the JMP command in Line
350. The processor then jumps to the routine
that's been written to cope with the new
command.

THE FAIL ROUTINE
If one of the letters in the command word in
BASIC does not match the corresponding
letter in the word in the word table, the
processor is sent to the FAIL routine on Line
360. The first thing it does is to increment the
word counter in memory location 74, so it is
ready to check whether the next word in th
table matches.

The PLA in Line 370 pulls the last item

the stack. This is not going to be used, but it
must be pulled off, otherwise the stack would
grow uncontrollably.

Then the X register is reset to zero, ready
to count along from the first letter of the word
in BASIC again.

The next byte of the word in the word table
is loaded up into A and the offset Y is
incremented. Then the contents of A are
AN Ded with 128, and BPL checks for a positive
result. The AND # 128 is necessary this time
because the I NY sets the sign flag too, and it
comes after the LDA.

The F2 loop is executed over and over until,
a byte with bit 7 set is found. The loop is use
to clock up the Y counter until it points to the
first letter of the next word.

At the end of the word table there is a 128.
And the instructions in Lines 430 and 440
check for that. If the 128 is not found, the
processor jumps back to the beginning of the
comparing routine again.

If not, it goes onto the BReaK command 1
BRK. The processor then retur BASICa
and Line 470 prints the error iiWge 'Foal
up' on the screen.

THE INV COMMAND t 1
The INV command that is being 	ints
whatever follows the INV in black onlsoilite
background, instead of the other wajand.

Line 480 puts the BBC's assembler back
into operation. Following the label FIRST, the
instructions LDA # 17:JSR &FFEE are equiva-
lent to COLOUR. And when they are followed
by LDA # 0:JSR &FFEE, the effect is the same
as COLOUR 0 in BASIC, which gives black
letters.

The assembly language equivalent of
COLOUR is repeated, this time followed by 135
which gives a white background.

Line 500 transfers the contents of the X
egister into the Y register. This can only be

one via the accumulator. If you look back,„ .
 pyou will see that the X register carries thil

-position directly after the command INV. This
rneeds to be in the Y register because you can'tt

post-indexed indirect addr sin with the
twister.
n Line 510, LDA (&72), picks up the first

letter of the word following the INV command.
Then Y is incremented so that it points to tI*1
next location, while JSR &FFEE outputs the
first letter, reversed out, to the screen. CMP
&OD checks for a carriage return. And if
there isn't one, BNE F2 takes the processor
back again to print out the next letter.

Once a carriage return has been located,
ine 520 gives the assembly language equiva-

of COLOUR 7 and COLOUR 128, which
the screen-,.back to white letteit on a
Alb

black background. Then LDA '# 10:JSR
&FFEE gives a line feed and RTS returns to
BASIC.

THE BYE COMMAND
BBC BASIC is so comprehensive that it is
difficult to come up with sensible commands
to add that have any general application. So as
a demonstration the BYE command simply
gives a checkered pattern on the screen.

The number 135 is stored in location 70.
The instructions LDA # 22:JSR &FFEE is the
assembly language equivalent of MODE, so the

1 ,1 ext two instructions switch to MODE 2. Then
is loaded with 30 and X is loaded with 20-
e screen is 30 rows by 20 columns.
LDA # 17:JSR &FFEE gives COLOUR again.

And the colour parameter is loaded from
location 70. The number in that location is

remented and BMI checks where it
. It ive—in other words, it has been

emen
.
 - t• below 128. If it has, 143 is

red in 70. If not, these instructions are
mped and the processor goes straight onto',

1
A # 32:JSR &FFEE which prints a space in
e background colour on the screen. X is

. hen decremented to move onto the next
haracter square and the print process is

repeated with a colour parameter one lower.
When X has been decremented to 20, Y is
decremented and the whole process starts
again until the whole screen is filled.

RUNNING THE PROGRAM
To assemble the routines, the program is RUN
in the normal way. But it is not called like a
regular machine code program. Instead, the
vectors in 200 and 201 point to routines that
need to be called after *LINE. Line 2010
pokes the start address into these vectors.

Line 2050 and 2060 poke the low and high
bytes of the command routines into the jump
table. Line 2090 creates the word 'table'. Line
2110 sets the high byte of the last letter of a
word and Line 2140 puts the 128 end-of-table
marker in. Up to 32 words can be added as
long as the total is less than 192 characters.

IA EMI" —41111'' -"1"1.11
The following routine adds two new com-
viands to the Dragon's BASIC. These are
FOLD, which allows you to revive a program if
you have mistakenly NEWed it—and INVERT,
which swaps the two colour sets.

0 RG 31000

	

SETUP LDX 	# 298

	

LDU 	# 308
STONE LDA ,X+

STA ,U +
CM PX # 308

le BLO STONE 	— 1

l LDA # 2
STA 	298
LDX # NEWR DS
STX 	299
LDX 	# NEWDSP
STX 	301
LDX # NEWUSR
STX 	176
LDU # $8B8D
LDA #10

STTWO STU ,X+ +
DECA
BNE STTWO
RTS

N EWR DS FCB 	79,76,196
FCB 	73,78,86,69,82,212

NEWDSP CMPA # $CE
BLO NDONE

1411. 	. CM PA # $D 0
BHS NDONE
SUBA # $CE

- 	 111 LDX 	# NEVVTBL
JMP 	$84ED 	. 	

.

NDONE JMP $89B4illir
OLD 	LDU 	25 ,

PSHS U
LE' 	4,U

OLDONE I • 	,X+ 	 %.

B.' ' OLD1 ■ 	 •:, 	-•
Sop T • rueot

SUBD 	±

4S

STA
41EQ il8. 	0
JM P

0 	TX 	,U
OLDTHR TFR $ X,U

LDX .. ,U
BNE 	OLDTHR
LEAU 2,U
STU 	27
STU 	29
STU 	31
RTS

INVERT LDA 	65314
EORA #8
STA 	65314
RTS

NEWTBL FDB $7964
FDB 	$7989

NEWUSR EQU .

STUBS
To add new words to BASIC, you have to
reserve new command words. And to do this
you have to extend the table of reserved words
and direct BASIC to the new words.

BASIC commands are pointed to by the
command interpretation vectors in the areas
of RAM known as stubs. There are normally
two stubs, each of which occupies ten bytes of

RAM. The second is a dummy, though,
which simply acts as an end marker.

When you are adding new instructions,
you have to create a new stub which points to
your new command routines. But first you
must move the second, end-marker stub
down memory to make room for it.

The start address of the second stub is 298
and the first six instructions in this program
shift it so that it starts at 308. The X register is
used as pointer to the source stub while the U
register points to its destination. The ,X +
and ,U + increment the pointers each time the
STONE loop is executed.

Warning: do not use this program with a
disk drive. Disk commands use the same stub.

ADDING A NEW STUB
Once the second stub has been moved and the
processor has come out of the STONE loop, the
new stub has to be created.

The first byte of the new stub should carry
the number of commands it is pointing to. So
LDA # 2 and STA 298 store the number two in
the first byte.

The second two bytes carry the address of
the table of new command words. These
appear after the label NEWR DS with their
letters carried byte-by-byte in ASCII. You'll
note, though, that last letter in each word is
marked by setting the most significant bit to
1. So D—the last letter of OLD—is represented
by its ASCII, 68, plus 10000000 in binary or
128 in decimal. (68 + 128 = 196.) Likewise,
the T of INVERT is 212 instead of 84.

The fourth and fifth bytes of the stub carry
the start addresses of the command routines.
These are given in the double bytes after the
label NEWTBL.

USR VECTOR
The vector at 176 and 177 points to the
locations which store the address of the USR
routines. These are usually kept in a table
starting at 308, after the end of the second
stub. But you have already shifted that stub
up into the USR table to make room for the
new commands. So the USR vector has to be
redirected.

LDX # NEWUSR and STX 176 store the
address of the label NEWUSR in the 176 and
177. And the EQU* after NEWUSR at the end
of the program simply reserves the following
bytes for the USR table.

THE NEW TOKENS
The highest token usually used in Dragon
BASIC is CD. So the two new tokens for your
two new instructions are CE and CF. CMPA
$CE and BLO NDONE check where the token
is below the range of the new tokens. If it is,

and hasn't been picked up by the first stub,
there must be something wrong with the
syntax. So the processor is sent to the label
NDONE which, in turn, jumps to 89B4— the
syntax error message routine in ROM.

CMPA #$DO and BHS NDONE makes the
same Branch if the token is Higher than, or the
Same as, DO. So this sends the processor off
to the ROM error message routine if the token
is out of the other end of the range.

If the token has passed those two tests, it is
inside the range of the new tokens you're
defining and the processor continues to the
next instruction. The value of the token in A
then has CE subtracted from it. The result is
the number of the new token. It is left in A.

The X register is loaded with the start of
the new command routine's address table. So
when the processor jumps to 84ED—the
routine that dispatches the processor to the

various BASIC command word routines—it
carries with it the parameter in X and A.

THE OLD ROUTINE
When a BASIC program is NEWed, it resets
several pointers. So if these pointers are reset
before the program has been overwritten or
the BASIC area has been moved by a PCLEAR
it is possible to salvage the old program.

The pointers effected by NEWing are the
one in the first two bytes of the first line of
BASIC, which usually points to the beginn-
ing of the next line, and the system variables
that point to the end of the BASIC program
area. The OLD command simply re-instates
these pointers with their former values.

The OLD routine begins with the instruc-
tion LDU 25. This loads the U register with
the contents of memory locations 25 and 26,
which are the pointer to the beginning of

BASIC. PSHS U pushes this onto the stack so
that it can be recalled for a subtraction later in
one instruction.

LEAX 4,U loads the X register with the
address of the byte four on from the start of
BASIC. The first two bytes of any line of
BASIC, remember, contains the address of
the start of the next line. And the next two
bytes contain the BASIC line number. So this
instruction loads up the address of the first
byte of the actual line.

LDA ,X+ loads that byte into the ac-
cumulator and increments X. BNE 0 LDO N E
sends the processor back to perform this
instruction over and again until it hits a zero,
that marks the end of the BASIC line.

When it finds one and breaks out of the
loop, X has already been incremented so that
it points to the beginning of the next line of
BASIC.

TESTING FOR CORRUPTION
If the OLD command is invoked when there is
no recognizable program left in BASIC, you
don't want it to return a lot of gobbledegook.
So a test that checks whether the first line still
makes some sort of sense is required.

To do this, the pointer in X is transferred
into D, then SUBD ,S + + subtracts the last
item on the stack—the address of the beginn-
ing of BASIC—from the contents of D which
is the address of the start of the second line of
BASIC. The result is the length of the first
line and is left in D. And the stack pointer is
decremented, effectively pulling the address
of the beginning BASIC off the stack.

TSTA TeSTs A—that is, it looks at the
contents of the high byte of the D register (the
A and B registers together make up D) and
sets the flags accordingly. BEQ OLDTWO then

jumps over the next instruction if the zero flag
is set. But if the contents of A are not zero, so
the contents of D are more than 255—the
maximum number of bytes that can be
occupied by a line of BASIC. In that case the
branch is not made and the processor jumps
to the error message routine at 8B8D.

RE-INSTATING THE POINTERS
The U register still points to the first byte of
the first line of BASIC. So storing the value of
X in the address pointed to by U, with STX ,U
re-instates the 'beginning of next line'
pointer.

The next thing that you have to do is work
out where the end of BASIC is. This is done
simply with the 0 LDTHR loop.

As the two bytes at the beginning of each
line point to the beginning of the next line, it
is simple to jump up from line to line by
transferring the pointer in X into U and
loading X with the contents of the location
pointed to by U. X contains the address of the
beginning of the next line. That is put into U.
U then points to the two bytes that contain
the address of the line of BASIC after that.
And this is loaded into X.

This loop is executed over and over again
until it hits a line that starts with two bytes
containing 00 00. This is the end of the
BASIC program. And when it is found the
BNE OLDTH R no longer branches.

U is then loaded with the address of the
location two on from the beginning of this
marker. This simply jumps the pointer in U
over the two zero bytes so that it points to the
next one—which should be the beginning of
the variables area.

STU 27, STU 29 and STU 31 then copies this
address into the system variable at 27 and 28,
which is the pointer to the start of the
variables area, 29 and 30, which is the pointer
to the start of the array table, and 31 and 32,
which points to the end of RAM in use.

RTS then returns to BASIC.

THE INVERT ROUTINE
The memory location FF22 in the
input/output area of memory controls the
graphics output. And bit 3 of that location
controls the colour set being used.

LDA $FF22 loads the contents of that
location into the accumulator and bit 3 is
flipped by exclusively oring it with 8—which
is 00001000 in binary. The result is then
stored back in FF22 and RTS returns to
BASIC.

This routine simply changes between the
two colour sets, flipping everything that is
one into the other.

This program is not relocatable.

If you want to tidy up your typing
without the expense of a fully-
fledged wordprocessor, this easily-
programmed text editor is a simple
answer

The virtues of wordprocessing have already
been extolled in a previous issue of INPUT
(pages 541-543), and it is, indeed, one of the
most useful applications for any home com-
puter. To get the best results, you can buy
top-flight machine code software, but this is
usually designed for professional use and can
prove costly.

The part of the program covered by this
article represents a good standard first step
text editor which enables any first-time user
to get a real 'feel' for a program of this type.

With this program you can create memos,
letters or any other form of correspondence
for output to a printer. Text can be saved to
tape or disk (or Microdrive on the Spectrum)
and then recalled for further use by this
program or any other which can make use of
the sequential data files created.

Because of the program's overall length—
at least 7.5K—the listing is split up into three
easily digestible units and will not RUN
properly until the last part has been entered.
However, you will be able to create text files
after entering the second part. The third part
consists of the printer routine which you'll
need to obtain printouts of your text files.
Sort and search facilities plus a form letter
option are also included.

The length of the program also makes it
unsuitable for the unexpanded Vic 20.
Because of this, and because the Vic's screen
will only display a narrow measure of text,
there is no Vic version.

Before you enter the first part, which
follows, let's look at how the program is used.
It is set up for convenient use in most home
applications, but as with any program of this
type, you can customize the various menus
and screen displays to your heart's content. If
you do decide to adapt it, however, do stick to
the same line numbering conventions so that
the program links correctly, particularly
when further modules are added.

THE MAIN MENU
When you RUN your completed copy of the
program, you are immediately prompted for
choice of input/output options. This sets the
system up for tape and/or disk use, which you
can choose by pressing either T or D. Spec-

trum users who have a Microdrive can adapt
the program for this by making the indicated
program amendments.

Note that you can input from one device
and output to another, and change devices
later should you wish to do so.

The general menu is then displayed and
you are presented with the following options:

[L]OAD
[S]AVE
[I]/0 CHANGE (except on Spectrum)
[E]DIT
[C]LEAR
[MINT
[QUIT

LOAD
If you wish to continue working on existing
text which has previously been SAVEd, press L
to initiate the LOAD routine. On the Spectrum
the options are numbered. As any text pre-
sently in memory is overwritten in the pro-
cess, an 'Are You Sure' message is displayed.
Press Y to continue (or any other key to
abort). You are asked for a file name and have
to make an entry to proceed. The nominated
text file then LOADs into memory and can be
worked on as required.

SAVE
The SAVE routine is used for creating sequent-
ial data storage files. When you select this
option by pressing Sand providing there's
something in memory—you are first asked for
a file name. The Spectrum saves irrespective
of whether you have any text in memory. A
null entry won't be accepted. The system
already 'knows' which device you are using
and continues to prompt you accordingly on
preparing the tape or disk unit. Finally, press
I RETURN I or I ENTER I to effect the SAVE.

Dragon and BBC disk users must be
careful over the choice of names and
procedures if named files are not to be
overwritten unintentionally. Commodore
users should resist using the "@0:filename"
disk SAVE procedure except when the text file
to be overwritten is the last one listed.

Additional file SAVE routines can be added
to permit file protection, renaming, and re-

placement. Specimen routines are given in the
listing in the next part of this article.

IN PU T, OUTPUT
If, for any reason, you decide to change the
start-up input/output parameters, you can do
so at any time by selecting I from the main
menu. Key in your choice. This automatically
sets up the program for the new configur-
ation. The Spectrum program is for tape or
Microdrive. The appropriate amendments for
the latter appear after the main listing.

EDIT MODE
Selecting E puts you into edit entry mode and
a secondary menu is displayed:

SCANNING THE MENU
LOADING AND SAVING

FILE NAMES
EDITING

ADJUSTING YOUR COLOURS

INPUT/OUTPUT PARAMETERS
MANIPULATING TEXT
CLEARING MEMORY

TEXT EDITOR
PROGRAM

[T]OP
[B]OTTOM
[N]EXT LINE
[C]OLOUR (not Dragon/Tandy or
[M]ENU 	Commodore)

You can select one of the first two options to
take you to the start (TOP) or end
(BOTTOM) of the text you have in memory.
Or, using the third option, you can return to
the last line you were working on. Or you can
exit to the main menu.

Using the COLOUR option you can adjust
the screen 'ink', 'paper' and 'border' colours
to your liking.

Each of the first three options puts you into

entry mode. The screen displays lines depict-
ing the top and bottom of copy (it may display
only one or the other if there's already text in
memory). Towards the lower part of the
screen there's a separate 'work area' and a
`memory free' indicator (not on the Spec-
trum) which lets you know how many unused
characters remain.

Text entered in the lower area is transfer-
red to memory and to the display area when
RETURN 1 or 1 ENTER is pressed, or automati-
cally when two screen lines have been
completed.

A number of editing features are built into
the program. These (and the keys which
control them) vary slightly between machines

and are discussed in greater detail in the
relevant sections. Note that all editing and
entries have to take place in the work area.

Editing controls enable you to move back
and forwards along the line of text in the work
area for insertion or deletion of characters
before the text is transferred to memory.

Text already in memory—in other words,
displayed in the upper panel—has to be copied
a line at a time to the work area for
amendment.

New lines can be entered at any point in the
main body of text. Do this by pressing the
appropriate key for 'editor' mode (see the
detailed instructions) and position the marker
below the point where you wish to insert the
new line.

Text can likewise be removed a line at a
time by entering editor mode and positioning
the marker again below the victim line before
pressing the appropriate delete key.

Control keys are provided to enable you to
jump forwards or backwards through text in
memory ten lines at a time, except on the
Spectrum. This facility can be used to pre-
view text prior to printing or editing.

You can return to the editor mode menu by
pressing the designated 'escape' key, and from
there to the main menu for resetting any of the
system parameters.

CLEAR OUT
A further option available from the main
menu is the clear memory function—but only
after you've answered 'yes' to the 'Are You
Sure?' prompt which follows keypress C. But
this option doesn't reset the input/output or
printer parameters. If you wish to start right
from scratch, pressing Q to quit does a
complete system reset and returns the com-
puter to BASIC.

S
10 POKE 23659,3
20 BORDER 7: PAPER 7: INK 9: CLS
30 DIM 1(8): FOR n=1 TO 8: READ 1(n):

NEXT n
40 LET Z$=" "
100 LET ext =200: DIM t$(ext,32): LET

11= 32: LET p1= 32
105 LET s$="00111111111111111111111

❑❑❑❑❑❑❑❑❑

❑❑❑❑❑❑❑❑❑❑

❑❑❑❑ "

110 LET t$(1)="TOP OF TEXT
FILE": LET t$(2) =" 	

- - -": LET t$(3)=s$
120 LET t$(4)=s$: LET t$(5)="- - -

	": LET t$(6) = "END OF
TEXT FILE"

130 LET t=1: LET b = 6: LET p = 4
140 CLS :PRINT INVERSE 1;AT 0,10;" ❑ MAIN

MENU LI"
150 PRINT AT 4,8;"1:- Load text";AT

6,8;"2:- Save text";AT 8,8;"3:- Change
paper";AT 10,8;"4:- Enter editor";AT
12,8;"5:- Clear text";AT 14,8;"6:- Print
out text";AT 16,8;"7:- Alter printer' ;AT
18,8;"8:- Quit program"

160 PRINT #1;TAB 7;"Select option (1-8)"
170 LET a$=1NKEY$: IF a$="" THEN GOTO

170
180 IF a$<"1" OR a$>"8" THEN GOTO

170
190 LET a =VAL a$: CLS
200 GOSUB 1(a)
210 GOTO 140
500 CLS : PRINT INVERSE 1;AT 4,10;

"IIIEDITOR MENU ❑ "
510 PRINT AT 8,8;"1:- Top of text";AT

10,8;"2:- End of text";AT 12,8;"3:- Next
line of text";AT 14,8;"4:- Quit edit menu"

520 PRINT AT 18,7;"Select option (1-4)"
530 LET a$=1NKEY$: IF a$="" THEN GOTO

530
540 IF a$ <"1" OR a$>"4" THEN GOTO

530
550 LET a =VAL a$: CLS
560 IF a=4 THEN RETURN
570 IF a=1 THEN LET p=4
580 IF a=2 THEN LET p= b -2
590 GOSUB 1000: GOSUB 2000
600 GOTO 500
900 PRINT AT 10,8;"Are you sure?": PAUSE 0
910 IF INKEY$="y" THEN RUN
920 RETURN
4000 RETURN
6000 REM load
6010 INPUT "Enter filename", LINE n$: LOAD

n$ DATA t$()
6020 LET b= VAL t$(1): LET t$(1) ="TOP OF

TEXT FILE": RETURN
6200 REM save
6210 LET t$(1)=STR$ b
6220 INPUT "Enter file name", LINE n$: IF

n$=' OR LEN n$>10 THEN GOT
6220

6230 SAVE n$ DATA t$(): GOTO 60

6500 INPUT AT 0,0;"Enter printer width
(1-80)",p1: IF p1<1 OR p1>80 THEN
GOTO 6500

6510 INPUT AT 0,0;"Enter
characters per line

(1 -";(p1);")";11: IF 11<1 OR II > p1 THEN
GOTO 6510

6520 LET 11=11+1: RETURN
9000 DATA 6000,6200,3000,500,900,

4000,6500,9999

To adapt for Microdrive use, omit Lines
6010, 6020, and 6230 and add the following
lines:

6005 CAT 1
6010 INPUT "Enter filename", LINE n$: IF LEN

n$<1 OR LEN n$>10 THEN GOTO 6010
6015 LOAD *"m",1; n$ DATA t$()
6205 CAT 1
6230 SAVE *"m",1; n$ DATA t$(): GOTO

6020

10 CLS
20 PMODEO:PCLEAR1:CLEAR17500
30 DIM TX$(500)
40 BL$ = CHR$(128):TL =1:CP =1:MW

=80:TW=60:PL =66:TH = 60:GP =10:
LF$ = STR1NG$(3,13):GOSUB5000

50 TX$(0) = STR1NG$(32,195)
60 TX$(TL)=STR1NG$(32,188)
70 CLS:PRINT@10,BL$"main"BL$

"menu"BMPRINT@104,"(L)OAD":
PRINT@136,"(S)AVE":PRINT@168,
"(1)/0 CHANGE".

80 PRINT@200,"(E)DIT TEXT":PRINT
@232,"(C)LEAR MEMORY":PRINT
@264,"(P)RINT OUT":PRINT
©296,"(A)LTER PRINTER":
PRINT@328,"(Q)UIT PROGRAM";

90 B$=INKEY$:IF B$="" THEN 90
100 B = INSTR("LSIECPAQ",B$):

IF B =0 THEN 90
110 ON B GOSUB 4500,4000,5000,

1000,160,3000,5500,130
120 GOTO 50
130 CLS:PRINT" ARE YOU SURE (Y/N) ?"
140 R$=INKEY$:IF R$ < >"Y" AND

R$ < >"N" THEN 140
150 IF R$="Y" THEN CLS:END ELSE RETURN
160 CLS:PRINT@8,BL$;"clear";BL$;

"memory";BL$:PRINT:PRINT" ARE YOU

SURE (YIN) ? "
170 B$=INKEY$:IF B$< >"N" AND

B$< >"Y" THEN 170
180 IF B$="N" THEN RETURN
190 FORK =1 TO TL:TX$(K)="":

NEXT:TL =1:CP = I:RETURN
1000 CLS:PRINT@42,BLVedit"BL$

"menu"BLVPRINT@104,"tOP OF
TEXT":PRINT@168,"bOTTOM OF
TEXT":PRINT@232,"nEXT LINE OF
TEXT": PRINT@296,"mAIN MENU"

1010 B$=INKEY$:IF B$="" THEN 1010
1020 B=INSTR("TBNM",B$):IF B=0 THEN

1010
1030 ON B GOTO 1050,1060,1070,

1080
1050 CP =1:GOTO 1070
1060 CP=TL
1070 GOSUB 2090:GOSUB 1500:

GOTO 1000
1080 RETURN
1500 A$=" ❑ "
1510 P=0:PRINT@384,A$
1520 CH = PEEK(1408+ P):T$=1NKEY$:

IF T$="" THEN CH = (CH + 64)AND
1 127:POKE1408+p2..CH:CH = (CH +64)

AND127:POKE1408 + P,CH:GOT01520
1530 IF LEN(A$) =65 OR T$=

CHR$(13) GOSUB2000
1540 IF T$="T" THENSF=0:GOSUB

2500:GOT01510
1550 IF P< LEN(A$) -1 AND T$=CHR$

(10) THENA$=LEFTVA$,P)+MID$
(A$,P+2):GOT01600 ELSE IF 1-$=

CHR$(10) THEN 1520
1560 IF TS =CHR$(12) THEN RETURN
1570 IF T$=CHR$(21) THEN P=

- (LEN(A$)-1) . (P=0):GOT01600
1580 IF T$< >CHR$(8) AND T$< >

CHR$(9) AND ASC(T$) <32 THEN 1510
1590 IF T$< >"" AND T$< >CHR$

(8) AND T$ < >CHR$(9) THEN A$=
LEFT$(A$,P)+T$+ M1D$(A$,P +1):
P= P +1

1600 PRINT@384,A$
1610 IF TS = CHR$(9) AND P < LEN

(A$) - 1 THEN P = P +1
1620 IF T$=CHR$(8) AND P>0 THEN

P= P -1
1630 GOTO 1520
2000 X =1:1F LEN(A$) >33 THEN X=2
2010 FOR K=TL+X ❑ TO CP+X STEP-1:

TX$(K) =TX$(K-X):NEXT
2020 IF LEN(A$) > 33 THENTX$(CP) =

LEFT$(A$,32):TX$(CP +1) = MID$
(A$,33,LEN(A$) -33) ELSE TX$(CP)=A$

2030 FOR K=0 TO X-1
2040 IF R1GHT$(TX$(CP+K),1)="0"

THENTX$(CP+K)=LEFT$(TX$(CP+K),
LEN (TX$(CP + K)) -1):GOT02040

2050 NEXT
2060 A$=" ❑ ":P=0:PRINT@384,A$
2070 PRINT@416,""
2080 TL=TL+ X:CP = CP + X
2090 IF CP <5 THEN ST=0 ELSE

ST = CP - 5
2100 PRINT@O,;:FORK =ST TO ST + 9:

PRINT TX$(K);:IF LEN(TX$(K)) <
32 THEN PRINT

2110 IF K = CP- I THEN PRINT" > "
2120 NEXT:PRINTSTRING$(32,140)
2130 PRINT@481,BL$;"mem";BLS;

"free= ";32'(501 - TL);BL$;Ba;
"clear = menu";BM:POKE1 534,
32:POKE1529,61:RETURN

10.FX4,1
20 ON ERROR GOTO 1360
30 RV$=CHR$(17)+CHR$(0)+CHR$(17)

+ CHR$(129):NM$ = CHR$(17) + CHR$
(1) + CHR$(17) + CH R$(128)

40 MODE6
50 P= 0:A$ = STRING$(120," ❑ ")
60 N%=190 when using disk drive
70 DIM TX$(N%-1)
80 TL = I:CP =1:MW= 80:TW= 60:PL =

66:TH =60:GOSUB 1440:GOSUB 1100
90 FOR T=0 TO N%-1:TX$(T)=

STRING$(40,CHR$(32)):TX$(T)
="":NEXT

100 TX$(0) =CHR$(0)+ RV$ + "START OF
TEXT" + NM$

110 TX$(TL)=CHR$(0)+ RV$ + "END OF
TEXT" + NM$

120 CLS:PRINTTAB(13,3)RV$"MAIN
MENU"NM$TAB(10,6)"(L)OAD"
TAB(10,8)"(S)AVE"TAB(10,10)
"(1)/0 CHANGE"

130 PRINTTAB(10,12)"(E)DIT TEXT"
TAB(10,14)"(C)LEAR MEMORY"
TAB(10,16)"(P)RINT OUT"TAB
(10,18)"(A)LTER PRINTER"
TAB(10,20)"(Q)UIT PROGRAM"

140 B$ =GETS
150 B=INSTR("LSIECPAQ",B$):IF B=0

THEN 140
160 ON B GOSUB 920,800,1100,270,

190,1480,1390,200
170 IF B=5 THEN 230
180 GOTO 120
190 RETURN
200 CLS:PRINTTAB(13,3)RVVQUIT

PROGRAM"NM$:PRINT-"ARE YOU SURE
(YIN) ?',

210 R$=GET$:IF R$="N" THEN RETURN
220 IF R$="Y" THEN CLS:END ELSE 210
230 CLS:PRINTTAB(10,5)RV$"CLEAR

MEMORY"NMVPRINT""ARE YOU SURE
(YIN) ?"

240 B$=GET$:IF B$="N" THEN 120
250 IF B$< >"Y" THEN 240
260 FOR K=1 TO TL:TX$(K)="":

NEXT:TL = 1:CP =1:GOTO 100
270 CLS:PRINTTAB(13,5)RV$;"EDIT

MENU"NMS;TAB(10,10)"(T)OP OF
TEXT"TAB(10,12)"(B)OTTOM OF
TEXT"TAB(10,14)"(N)EXT LINE OF
TEXT"TAB(10,16)"(M)AIN MENU"

280 B$=GET$
290 B=INSTR("TBNM",B$):1F B=0 THEN

280
300 CLS
310 ON B GOTO 320,330,340,350
320 CP =1:GOTO 340
330 CP=TL
340 GOSUB600:GOT0360
350 RETURN
360 A$ = ""
370 P=1
380 VDU 23,1,0;0;0;0;31,0,15:

PRINTAV ❑ ":VDU 31, (P-1) MOD
40,15+ (P-1) DIV 40,23,1,1;0;0;0;

390 TB =GET
400 'FX21,0
410 IF TB>31 AND TB<127 THEN 500
420 IF TB=I3 AND TL<N%-8 THEN

GOSUB530

430 IF TB =136 AND P> 1 THEN VDU
8:P= P-1

440 IF TB =137 AND P< =LENA$ THEN
VDU 9:P = P +1

450 IF TB= 0 OR TB =4 OR TB = 19 OR
TB=135 OR TB =138 OR TB =139 THEN
SF =0:GOSUB 700 ELSE 480

460 IF P> LEN(A$) +1 THEN
P= LEN(A$) +1

470 IF TB=135 THEN 380 ELSE 410
480 IF TB=127 AND P>1 THEN P= P-1:

A$= LEFT$(A$,P -1) + M1D$(A$,P +1)
490 GOTO 380
500 A$ = LEFT$(A$,P -1) + CHR$(TB) +

M1D$(A$,P):P= P+1
510 IF LENA$ =120 AND TL < N%- 8 THEN

GOSUB 530
520 GOTO 380
530 X= (LENA$ DIV 40) +1 + ((LEN(A$)

MOD 40) = 0)- (LEN(A$) =0)
540 FOR K =TL + X TO CP + X STEP

-1:TX$(K)=TX$(K-X):NEXT
550 IF LENA$ >40 THEN TX$(CP)=

LEFT$(A$,40):A$ = M1D$(A$,41):CP
= CP + 1:GOTO 550 ELSE TX$(CP)=A$

560 CP = CP -X +1
570 A$=" ":P =1
580 TL=TL + X:CP= CP+ X:VDU

23,1,0;0;0;0;
590 PRINTTAB(0,15)SPC(120)
600 VDU 23,1,0;0;0;0;
610 IF CP<5 THEN ST=0

ELSE ST = CP - 5
620 VDU30,10:FOR K = ST TO ST +10:

PRINTTX$(K);SPC(40-LEN(TX$(K))
-9'(K=0 OR K=TL));

630 IF K= CP -1 THEN PRINT">";SPC
(39);

640 NEXT:PRINTSTRING$(40,"#")
650 PRINTTAB(0,23)"MEMORY FREE

=";40*(N%-TL)TAB(20)
"LINE NO.=";CP"O 	Ill";

660 VDU 31, (P-1) MOD 40,15+(P-1)
DIV 40,23,1,1;0;0;0;:RETURN

10 PRINT"013";CHR$(8)
20 P0KE53280,6:POKE53281,0
30 DIMTX$(501):OW= 0:EM = 0:DN =4
35Gcs="Eigggggggigggg

gggggiggglAgggiggglAggg

40 BL$ = CHR$(160):TL =1:CP =1:
MW = 80:TW = 60:PL = 60:TH =40:GP=
10:LF$ = CH R$(13) + CH R$(13)

42 LF$=LF$+CHR$(13):
GOSUB5000

50 TX$(0)="pa":sws= - :FOR
F = 0T039:TX$(0) =TX$(0)+"+":
SW$=SW$+" ❑ ":NEXTF

55 FORZ=1T040:SP$=SP$+" ❑ ":NEXT

60 TX$(0) = TX$(0) + "Mra":TX$(1)
="alLI ❑❑❑❑❑❑❑❑

. ❑❑❑❑❑❑❑❑❑ •
❑❑❑❑❑❑❑❑❑ .
❑❑❑❑❑❑❑❑❑ .

13"
70 PRINTCHR$(142)
71 PRINT"0gga"TAB(15);"LMAIN

MENUIMI":PRINT"gg";TAB
(14);"aL•OADgg"

72 PRINTTAB(14)"aS•AVEgg":
PRINTTAB(14)".21M/0 CHANGEgg"

80 PRINTTAB(14)"aE•DIT TEXTgg":
PRINTTAB(14)"ac• LEAR
MEMORYgg"

81 PRINTTAB(14)"a PERINT OUTgg"
82 PRINTTAB(14)"ZIA•LTER PRINTER

gg":PRINTTAB(14)",110•UIT
PROGRAMg"

85 PRINITAB(12)"MaL ❑ ❑ SELECT
OPTIONEI rip"

90 GETB$:1FB$=""THEN90
100 B=0:FORF=1T08:IFB$=MID$

("LSIECPAQ",F,1)THENB= F
102 NEXTF:IFB=OTHEN90
110 ON B GOSUB4500,4000,5000,

1000,160,3000,5500,130
120 GOT070
130 PRINTQD$;TAB(11);

"CalLARE YOU SURE ❑ (Y/N)?",

140 GET R$:1FR$< >"Y"ANDR$< >"N"
THEN140

150 IF R$="Y"THENPRINT"0":
END

155 RETURN
160 PRINT"0gga";TAB(13);"L

CLEAR MEMORYEr:PRINTTAB
(10)"gg ggARE YOU SURED (Y/N)?"

170 GETKIFB$< >"Y"ANDB$< >"N"
THEN170

180 IF B$="N"THENRETURN
190 IF TL= 1 THEN RETURN
195 FORK =1TOTL -1:TX$(K) ="":NEXT:

TX$(1)=TX$(TL):TX$(TL)="":
TL=1:CP=1:RETURN

1000 PRINT "Ding a";TAB(15);
"LtIDIT 	EXTIMI":PRINT
"gigg";TABoaraELN
OP OF TEXT"

1002 PRINTTAB(14)"ggam•
OTTOM OF TEXT":PRINTTAB(14)
"ggaIZIMEXT LINE OF TEXT"

1004 PRINTTAB(14)"gg as MAIN MENU"
1010 GETB$:1FB$=""THEN1010
1020 B=0:FORF=1T04:1FB$=MID$

("TBNM",F,1)THENB = F:GOTO 1030
1022 NEXTF:GOTO 1010
1030 ON B GOT01050,

1060,1070 1080
1040 IFTL= <30RCP=1THEN1070
1050 CP =1:GOT01070

1060 CP = TL
1070 PRINT"0":GOSUB2090:GOSUB

1500:GOT01000
1080 RETURN
1500 A$="111":P= 0
1505 IFEM=1THEN2500
1510 POKE 198,0
1515 PRINT LEFT$(GC$,23)A$;
1520 CH =PEEK(1904+P):GETT$
1521 1FLEN(A$) =81 OR T$=CHR$(13)

THEN GOSUB2000:GOTO 1515
1522 CH = (CH +128)AND255:POKE1904

+ P,CH:CH = (CH +128)AND255:POKE
1904+ P,CH

1530 1FT$=""ORT$=CHR$(34)THEN
1520

1540 IFT$="0"ORT$="gg"THEN
1520

1550 1FP<LEN(A$)-1ANDT$=CHR$(10)
THENA$=LEFT$(A$,P)+M1D$(A$,
P+2):GOT01600

1551 1FT$=CHR$(10)THEN1520
1555 IFT$=CHR$(136)THENRETURN
1560 1FT$=CHR$(134)ANDCP=1THEN1520
1561 1FT$=CHR$(134)THEN

A$ = TX$(CP -1) 	= "":
P=0:GOSUB2090:GOT01510

1562 1FT$ =CHR$(135)THEN OW =ABS
(1 -0W):GOSUB 2090:GOTO 1510

1563 1FT$ = "g"THENCP =1:
GOSUB2090

1564 1FT$=CHR$(133)THENEM =1:
PM =CP:GOSUB2090:GOT01505

1565 IFT$="0"THENGOSUB2090:
GOT01500

1567 1FT$ < >CHR$(20)THEN1580
1570 IF P=0 THEN 1510
1572 A$= LEFT$(A$,P -1) + M1D$(A$,

P+1):P=P-1
1575 PRINT LEFT$(GC$,23);:

FORF = 1TOLEN(A$) -2:PRINT
"P1 " ; : NEXT

1577 PRINT"111111":GOT01510
1580 KJ =0:1FT$=CHR$(148)THEN

T$="0":KJ =1
1582 1FT$ < >CHR$(157)ANDT$< > CHR$

(29)ANDASC(T$)<32THEN1510
1590 IF T$=CHR$(29)ORT$=CHR$

(157)THEN1610
1591 IFOW=1ANDJ< >1THEN1595
1593 A$=LEFT$(A$,P)+T$+MID$

(A$,P + 1):P = P +1:GOT01600
1595 B$ = A$:A$ = LEFT$(A$,P)+T$+

M1D$(A$,P + 2)
1598 P= P+1:A$=A$+" ❑ "
1600 PRINTLEFT$(GC$,23)A$;
1610 1FT$=CHR$(29)ANDP< LEN(A$) -1

THENP=P+1
1620 1F(T$ = CHR$(157)ANDP>0)OR

KJ =1THENP = P-1
1630 GOT01520

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Applications

text-editor program 	852-856
ASCII codes

of f keys
Acorn 	 829
Commodore 64, Vic 20 826

Assets in games 830-837
ATTR

adding a new instruction
Spectrum 	844-847

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum

844-851
Basic programming

designing a new typeface
838-843

programming function keys
825-829

Business strategy game
see Goldmine

BYE
adding a new instruction

Acorn 	 847-849

C
Command strings

use of with f keys
Commodore 64, Vic 20

826-828
Control codes

of f keys
Commodore 64, Vic 20 	826

D
DATA statements

use of for custom typeface
838-843

Datafiles
use of in text editor 	852

Drawing a new typeface
838-843

E
Editing

using f keys
Acorn 	 829

Also see text-editor program
Enlarging a typeface 838-843

F
Function keys, programming

advantages of 	 826
Acorn 	 828-829

Commodore 64, Vic 20 826-828
FX command

use of with f keys
Acorn 	 829

G
Games

goldmine 	 830-837
Goldmine game

part 1—basic routines 830-837
Graphics

hi-res for custom typeface
838-843

in goldmine game 	832-837

INKEY
use of to detect keypresses

Acorn 	 829
Input/output options

in text editor 	 852
Instructions, adding to

BASIC
Acorn, Dragon, Spectrum

844-851
Interface 1

Spectrum
	

846
INV

adding a new instruction
Acorn
	

847-849
INVERSE

adding a new instruction
Spectrum
	

844-847
INVERT

adding a new instruction
Dragon
	

849-851

K
Keypresses

detecting
Acorn
	

829
Commodore 64, Vic 20

	
827

how they work
	

826
Keys, function

Acorn, Commodore 64,
Vic 20
	

825-829

L
Letter-generator program

Acorn, Commodore 64, Dragon,
Spectrum, Tandy 	838-843

LINE
use of to design typeface

Dragon, Tandy 	840-843
* LINE

Acorn 	 847-849

LIST
with f keys

Acorn 	 829
Commodore 64, Vic 20 	827

Loader program, use of
Acorn, Dragon, Spectrum,

Tandy 	 842-843
LOADing

a custom typeface
Acorn, Dragon, Spectrum,

Tandy 	842-843

M
Machine code

routine to add to BASIC
Acorn 	 847-848
Dragon 	 849
Spectrum 	 844

Memory
storing new keystrokes in

Acorn 	 829
Commodore 64, Vic 20

827-828
storing new typeface in

Acorn, Commodore 64,
Dragon, Spectrum,
Tandy
	

842
Menus

in text-editor program
852-853

0
OLD

adding a new instruction
Dragon 	 849-851

Operating system software
Acorn 	 828
Commodore 64, Vic 20 	826

P
PLOT

use of to design typeface
Acorn, Spectrum 	838-843

Pointers
re-setting with OLD

Dragon 	 849-851
POKE

use of to design typeface
Commodore 64 	839-842

R
RETURN

use of with f keys
Acorn 	 828-829
Commodore 64, Vic 20

827-828

RND function
in goldmine game 	832-837

ROM
switching between old and new

Spectrum 	846-847

S
SAVEing

custom typeface
Acorn, Commodore 64,

Dragon, Spectrum,
Tandy 	842-843

Scaling a custom typeface
841-843

Screen display
SAVEing and LOADing
Acorn, Dragon, Spectrum,

Tandy 	 842-843
Strings

in custom typeface program
841

use of with f keys
Acorn 	 828
Commodore 64, Vic 20

826-827
Stubs

Dragon 	 849-850

T
Text-editor program

Acorn, Commodore 64,
Dragon, Spectrum

part 1
	

852-856
Tokens,

recognizing new
	

844-851
Typeface. setting up new

Acorn, Commodore 64,
Dragon, Spectrum,
Tandy
	 838-843

Typing
speeding up using f keys

Acorn, Commodore 64,
Vic 20 	825-829

U
Utility packages

Commodore 64, Vic 20 	827

V
VECTORS, redirecting 844-851

Work area
of text-editor
	 853

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

—ISlice into the world of CONIC
SECTIONS, and lick the problems of
drawing this fascinating family of curves
on your Micro

-nes off to the Gold Exchange for
successful tycoons in part two of
GOLDMINE

‘,.../Arm yourself with a ROBOT. Control
these exciting devices as the Age of
Robotics dawns

Continue with part two of the TEXT
EDITOR. Find out about the editing
functions

JP1us ...for Commodore 64 users,
extending the graphics capabilities of the
HI-RES UTILITY

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

