
A MARSHALL CAVENDISH 33 COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 3 	 No 33

APPLICATIONS 20

YOURS FOR YEARS TO COME 1017

Plan your year on your computer with our

combined calendar and diary program

BASIC PROGRAMMING 69

'FLICKER-BOOK' ANIMATION 	 1022

Simple paged graphics techniques are used to
demonstrate computer animation

GAMES PROGRAMMING 33

ARMING THE BANDIT 	 1028

Enjoy the thrill of gambling in the comfort of your
own home with a computer one-armed bandit

MACHINE CODE 34

CLIFFHANGER: SET THE SCENE 	_1034

In this issue we put the cliff in Cliffhanger
together with the rest of the scenery

BASIC PROGRAMMING 70

SENDING SECRET MESSAGES-2=1044
All111•11.

Even if you're not a secret agent you can still
make rise of these secret codes

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents
of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Projection Audio Visual. Pages 1017, 1018, 1019, 1020, 1021, Paul
Chave/Spectrum. Pages 1022, 1024, 1027, Phil Dobson. Pages 1029, 1033,
Spectrum. Pages 1031, 1044, 1047, 1048, Peter Reilly. Pages 1034, 1037, 1038,
1041, 1042, Gary Wing. Pages 1045, 1046, Projection Audio Visual.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.
Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA.
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries-and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B +, and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

ta
a

SPECTRUM 161L,
481028, and + 	COMMODORE 64 and 128

ACORN ELECTRON,
BBC B and B+ 	DRAGON 32 and 64

TANDY TRS80 a U81 	VIC 20 	COLOUR COMPUTER

USING THE PROGRAM
LOOK AT THE CALENDAR

LOOK AT THE DIARY
ADDING ENTRIES

REVIEWING THE LISTS

The combined calendar and diary
program will help to keep your
affairs in order and plan out the
coming year* Make an early New
Year's Resolution and use it now

The program lines given here add some more
routines to those given last time. So LOAD in
the first part and enter the new lines now.

When you first RUN the program you are
asked if you have any diary lists already saved.
You won't have at this stage, so answer N.
The program goes on to display the main
menu. The menu for the Spectrum, Acorn,
Dragon and Tandy has nine options:

1 Look at monthly calendar
2 Look at year calendar
3 Look at month diary
4 Review/edit finance
5 Review/edit appointments
6 Review/edit celebrations
7 Review/edit holidays
8 Save the lists
9 Leave the program

The program for the Commodore offers the
same number of options but they are grouped
together slightly differently and only four
appear on the main menu. These are:

1 Year calendar
2 See diary
3 Alter diary
4 Leave program

You can look at the monthly or year calendars
without entering any data so try these out
first.

LOOK AT THE CALENDAR
Choose option 1 and you can see a calendar
for any month of any year within the limits of
the program. The limits for the Spectrum,
Commodore, Dragon and Tandy are from
1753, when the modern Gregorian calendar
started, and the year 29,999. The Acorn is
slightly different in that it only works up to
3299, due to the way the date is stored.
However, that should be far enough into the
future for anyone! The month, by the way,
should always be entered as a number (from 1

to 12) the program won't accept words.
If you have a printer attached to your

computer you can choose to have a printout of
the calendar, otherwise it is just displayed on
the screen. The name of the month, and the
year are printed at the top and the days and
dates are underneath. The week starts with
Sunday which is printed in red on some of the
computers. The date of Easter Sunday is
calculated automatically and is printed out
underneath if it falls in the month displayed
(either March or April).

There are several things you can do while
looking at the monthly calendar, and the
range of options are listed at the bottom of the
screen (or on the previous page on the Dragon

 and Tandy). Pressing 'BREAK I, IESCAPEI or
CLEAR (or M on the Commodore) takes you
to the menu. Other keys allow you to step
forwards or backwards by one month. The
Spectrum uses the Z and X keys, the Commo-
dore uses L and N, the Acorn uses the left and

right cursor keys and the Dragon and Tandy
use the up and down arrow keys.

The other keys that do something are F, A,
C and H which highlight entries relating to
Finance, Appointments, Celebrations and
Holidays. But they won't show anything until
you've made some entries using the next
options.

The Commodore has one extra facility—S
for swap—that lets you swap back and forth
between the monthly calendar and the
monthly diary planner.

WRITING UP THE DIARY
Option 2 on the Commodore and option 3 on
the others let you see the monthly diary. But
first you should make some entries. On the
Commodore choose option 3 followed by the
category, on the other machines
simply choose the

category directly from the main menu.
Whichever option you choose, press A to

add an entry, D to delete an entry and M to
return to the menu.

As described last time, the Finance section
offers a choice of Monthly, Quarterly, Annual
or Single entries. Make your choice by press-
ing the initial letter—either M, Q, A or S. You
are then prompted to enter a name or sentence
of up to 20 letters to describe the entry,
followed by the first significant date. For a
recurring entry, this would be the first time it
occurred—say the first rate payment or your
first salary cheque. The program automati-
cally fills in details for the following months
and years. Appointments and Holidays are
treated as single events but Celebrations are
taken as annual so use this option for birth-
days and anniversaries.

You can make up to 150 entries in each
category on the Spectrum, Acorn and
Dragon, and 100 entries on the Commodore.

Next time you can add the final part of the
program which lets you SAVE, LOAD and print
out the lists. There will also be changes for
disk drives and for the Electron.

165 GOSUB 1480:IF KB = 1 THEN GOSUB
1690

1120 PAPER 0: INK 7
1130 LET K$="123456789": GOSUB 1480

LET C= KB:RETURN
1140 LET KK = KB
1150 LET KB= KK: GOSUB 1330
1160 LET B = Q(KK):FOR y = 4

TO 20:PRINT AT y,0;Z$:
NEXT y: PRINT AT 4,0

1170 IF B=0 THEN GOTO 1210
1180 FOR N = 1 TO B
1190 LET K$=L$(KK,N): LET K2 = N:

GOSUB 1370
1200 NEXT N
1210 LET K$="adm": GOSUB 1480: LET

A= KB
1220 FOR 1=1 TO 100: NEXT I
1230 IF A< >1 THEN GOTO 1280
1240 LET K2= B: LET T7= KK: GOSUB

1550: LET V$ = STR$ T7: GOSUB
1400

1250 LET W$ = STR$ DA: IF LEN W$
=1 THEN LET W$ = "0" + W$

1260 LET V$ = V$ + W$: LET W$ =
STR$ MO: IF LEN W$ =1 THEN
LET W$ = "0" + W$

1270 LET V$ = V$ + W$ + STR$ YR:
LET L$(KK,B +1) = V$ +
B$: LET Q(KK) = Q(KK) + 1

1280 IF A< >2 THEN GOTO
1310

1290 INPUT "WHICH NUMBER

TO DELETE (MIN 1)"; NN: IF NN <1
OR NN> B THEN GOTO 1290

1300 FOR Z=NN +1 TO B: LET L$(KK,
Z-1) = L$(KK,Z): NEXT Z: LET Q(KK)=
Q(KK) —1

1310 IF A< >3 THEN GOTO 1160
1320 RETURN
1330 PRINT "Current List"'T$(KB)
1340 PRINT AT 0,17; INVERSE 1;"A";

INVERSE 0;"DD Ill"; INVERSE 1;"D";
INVERSE 0; "ELETE111"; INVERSE 1;"M";
INVERSE 0;"ENU"

1350 PRINT AT 3,0;
1360 RETURN
1370 LET F$ = L$(KK,K2): LET E$=P$(VAL

F$(TO 1)) +" "+ F$(2 TO 3) +
":" + F$(4 TO 5) +":"+ F$(6 to 9)

1380 PRINT E$;" ❑ ";F$(10 TO 30)
1390 RETURN
1400 LET B$="": LET VP = 5
1410 INPUT "To be called ?(Max 22 letters)"'

LINE B$
1420 LET VP =VP —1
1430 PRINT AT VP,0;"";

1440 INPUT "SIGNIFICANT DAY:";DA: IF
DA <1 OR DA > 31 THEN GOTO 1430

1450 GOSUB 2510
1460 LET KB = MO: GOSUB 270: IF DA> KB

THEN GOTO 1430
1470 LET K$= B$: GOSUB 1520: LET

Y$=K$: RETURN
1480 LET a$=1NKEY$: IF a$="" THEN

GOTO 1480
1490 FOR n=1 TO LEN K$: IF a$< > K$(n)

THEN NEXT n
1500 IF n> LEN K$ THEN GOTO 1480
1510 LET KB= n:RETURN
1520 LET PP= (INT (YR/100)-17)16+ MO
1530 LET K2=100: LET QQ= FN M(YR)
1540 LET K$ = CHR$ PP + CHR$ QQ+K$:

RETURN
1550 IF T7 < >1 THEN GOTO 1580
1560 PRINT AT 20,0; INVERSE 1;"M";

INVERSE 0;"ONTHLY ❑ "; INVERSE 1;"Q";
INVERSE 0; "UARTERLYIII"; INVERSE 1;
"A"; INVERSE 0;"NNUAL ❑ "; INVERSE 1;
"S"; INVERSE 0;"INGLE"

1570 LET K$="mqas": GOSUB 1480: PRINT
AT 20,0;Z$: PRINT AT 3,0;: LET T7= KB:
GOTO 1600

1580 IF T7=3 THEN RETURN
1590 LET T7=4
1600 RETURN
1610 CLS : PRINT FLASH 1;AT 10,5;

"PREPARE CASSETTE PLAYER"
1620 IF INKEY$ < >"" THEN GOTO 1620
1630 SAVE "data" DATA 00
1640 F0R N=1 T0 4
1650 IF Q(N) =0 THEN GOTO 1670
1660 F0R M=1 TO Q(N): LET 0$(1)=

L$(N, M):SAVE "data"DATA 0$():NEXT M
1670 NEXT N
1680 RETURN
1690 CLS : PRINT AT 10,5; FLASH 1;

"PREPARE CASSETTE PLAYER"
1700 LOAD "data" DATA 00
1710 F0R N=1 T0 4
1720 IF Q(N)= 0 THEN G0T0 1740
1730 FOR M=1 T0 Q(N): L0AD "data"

DATA 0$():LET L$(N,M)= 0$(1):NEXT M
1740 NEXT N
1750 RETURN

1100 DR=1
1110 POKE 53281,3:PRINT"ID gg

gggg•"TAB(9)"DIARY EVENTS EDIT
MODE"

1120 PRINTTAB(9)"M
❑❑❑❑❑❑❑❑❑❑❑❑❑

❑❑❑11gga"
1130 FOR N=0 TO 3:PRINTTAB(11)

N+1;" ❑ ";ST$(N)"gg":NEXT N
1140 PRINTTAB(12)"5111ORETURN TO MENU"
1150 PRINTTAB(13)".gg ggENTER

CHOICE ?"
1160 PRINTTAB(13)"M7 ❑ 717 ❑

❑❑❑❑❑❑❑❑❑ "

1170 GET A$:IF A$="" GOTO 1170
1180 A=VAL(A$)-1:IF A<0 OR A>4

GOTO 1170
1190 IF A=4 THEN RETURN
1200 POKE 53281,1:PRINTl0 gg"

TAB(20-(LEN(ST$(A)) *.5)) -a"
CHR$(CL(A));ST$(A)"gy

1210 MX = VAL(DL$(A,0)):IF MX=0 GOTO
1290

1220 FOR N=1 TO MX
1230 A$=STR$(N)+" ❑ ":IF LEN(A$) <3

THEN A$= A$ + "CI"
1240 PRINT*
1250 FOR N1 =1 TO 4:CD(N1)=ASC

(MID$(DL$(A,N),N1,1)):NEXT N1
1260 CD(4) = CD(4) + (ASC(MID$

(DL$(A,N),5,1))*256)
1265 CD(2) = CD(2) -35

270 PRINTCD$(CD(1));" ❑ ";STR$
(CD(2));"111";STFI$(CD(3));"111";
STR$(CD(4));"111".

' 1280 PRINT MID$(DL$(A,N),6) NEXT N
1290 PRINTTAB(9)"gg(A)D0,

(D)ELETE,(M)ENU"
1300 GET A$:IF A$=`"' GOTO 1300

13101F A$="M" GOTO 1110
1320 IF A$= "A" GOTO 1350
1330 IF A$="D" AND MX>

0 GOTO 1560
1340 GOTO 1300
1350 PRINT" gg gg gg EVENT

(16 LETTERS MAX)"
1360 INPUT A$
1370 PRINT"0ggarTAB(12)

"DIARY ENTRY DATEgg gg"
i 1380 INpur"pi pi pi HEIN

YEARPJ";Y:IF Y<1753 OR
Y > 29999 GOTO 1380
1390 INPUT"PJMJIHN

MONTHIPT;M: IF M<1 0R
M>12
GOTO 1390

1400 LY=0
1410 IF M=2 AND Y/4- INT

(Y/4)=0 THEN LY=1
1420 INPUT"PJIMIMIPINDAYPJ";

D:IF D<1 OR D>VAL(MID$(ML$,
M*2 -1,2)) + LY GOTO 1420

1430 IF A=0 GOTO 1480
1440 FR =4:IF A=2 THEN FR=3
1450 MX = MX + 1:DL$(A,0) =STR$(MX):

Y9 = INT(Y/256):Y8=Y- (Y9*256)
1460 DL$(A,MX)=CHR$(FR)+CHR$

(D + 35) + CHR$(M) + CHR$(Y8) +
CHR$(Y9) + LEFT$(A$,16)

1470 GOTO 1200
1480 PRINT"gggfiggc(M)ONTHLY,

(Q)UARTERLY,(A)NNUAL,
(S)INGLE"

1490 FR =0:GET X$:IF X$=`"'
GOTO 1490

1500 IF X$="M" THEN FR=1
1510 IF X$="Q" THEN FR =2
1520 IF X$ = "A" THEN FR=3
1530 IF X$="S" THEN FR=4
1540 IF FR=0 GOTO 1490
1550 GOTO 1450
1560 PRINT"WHICH NUMBER":

INPUT A$:X=VAL(A$)
1570 IF X<1 OR X>MX GOTO 1560

1580 F0R N = X +1 TO MX:DL$(A,
N —1) = DL$(A,N):NEXT N

1590 DMA,0) =STR$(MX —1): G0T0 1200
1600 IF Z=1 THEN RETURN
1610 IF C>3 THEN CC=WH:

RETURN
1620 IF M=EM AND CD = ED THEN

CC= CL(4):RETURN
1630 MX =VAL(DL$(C,0))
1640 IF MX=0 THEN CC = WH:

RETURN
1650 LX= 0
1660 LX=LX+1
1670 CD(2)=ASC(MID$(DL$(C,LX),2,1))-35
1680 IF CD< > CD(2) THEN CC = WH:

GOT01710
1690 G0SUB1740
1700 IF FL =1 THEN CC= CL(C):

RETURN
1710 IF LX< MX GOT01660
1720 CC=WH
1730 RETURN

1E1
125 IF FNget("YN")=1 PROCload
1270 DEF PR0CIist(type%)
1280 LOCAL n,a%,b%
1290 PROCheader(type%)
1300 REPEAT
1310 CLS
1320 b%=VAL(List$(type%,0))
1330 IF b%= 0 GOTO 1370
1340 FOR n =1 TO b%
1350 PROCop(List$(type%,n),n)
1360 NEXT
1370 a%=FNget("ADM")
1380 IF a%=1 List$(type%,b%+ 1)

= CHR$(FNtype(type%)) + FNadd:
List$(type%,0)=STR$(b%+1)

1390 IF a%=2 AND b%> 0 FOR
p%= FNnoln(1,b%,"Which number") +1
TO b%:List$(type%,p%-1)=List$
(type%,p%):NEXT:List$(type%,0) = STR$
(b%-1)

1400 UNTIL a%= 3
1410 ENDPROC
1420 DEF PROCheader(t%)
1430 L0CAL y
1440 FOR y=1 T0 2:PRINTF$+

Type$(t%):NEXT
1450 PRINTTAB(2,3)CHR$134+

"Current List"
1460 FOR y=21 TO 24
1470 PRINTTAB(0,y)CHR$132+

CHR$157+CHR$135TAB(35,y)
CHR$156;

1480 NEXT
1490 PRINTTAB(4,23)"Add Delete Menu";
1500 VDU28,0,21,39,4
1510 ENDPROC
1520 DEF PROCop(a$,no%)

1530 L0CALn%,b$,d$
1540 F0R n%=1 T0 4:code%(n%)

=ASC(MID$(a$,n%,1)):NEXT
1550 b$ = MID$(Pay$,code%(1) * 4 —3,4)
1560 d$ = STR$code%(2) +":" +

STR$(code%(3)MOD16) +":"+
STR$((code%(3)DIV16 + 17) *
100 +code%(4))

1570 PRINT;no%;CHR$131;b$;CHR$
133;d$;TAB(17,VP0S);CHR$135;
RIG HT$(a$,LENa$ — 4)

1580 ENDPR0C
1590 DEF FNadd
1600 L0CAL b$,vpos%
1610 PRINT"To be called ? (max 20

letters)":1NPUT,b$
1620 vpos%=VP0S +1
1630 REPEAT PRINTTAB(0,vpos%);
1640 PRINT"Significant data ?"
1650 Day°/0= FNnoln(1,31," 	Day:")
1660 PROCmydate
1670 UNTIL Day%< = FNmonthL

(Month%)
1680 =FNcode(b$)
1690 DEF FNget(a$)
1700 L0CAL b$,a%
1710 REPEAT b$=GET$:a%= INSTR

(a$,b$):UNTIL a%
1720 =a%
1730 DEF FNnoln(min,max,b$)
1740 LOCAL y,a$
1750 y = VP0S
1760 REPEAT PRINTTAB(0,y)SPC30
1770 PRINTTAB(0,y)b$;:INPUTa$
1780 UNTIL VALa$ > =mini IAND

VALa$ < =max
1790 =VALa$
1800 DEF FNcode(b$)
1810 LOCALp%,q%
1820 p%= (Year%DIV100 —17) * 16 +

Month%
1830 q%=Year%M0D100
1840 =CHR$Day%+CHR$p%+CHR$q%+

LEFT$(b$,20)
1850 DEF FNtype(t%)
1860 IF t%= 0 PRINT"Monthly,

Quarterly,Annual,Single": =
FNget("MQAS")

1870 IF t%= 2 =3
1880 =4
1890 DEF PR0Csave
1900 L0CALn%,p%
1910 X = OPENOUT("Diary")
1920 FOR n%= 0 T0 3
1930 F0R p%= 0 T0 VAL(List$(n%,0))
1940 PRINT#X,List$(n%,p%)
1950 NEXT,
1960 CLOSE # X
1970 ENDPR0C
1980 DEF PR0Cload
1990 LOCAL X,n%,p%,m%

2000 X= 0PENIN("Diary")
2010 F0R n%= 0 T0 3
2020 INPUT#X,List$(n%,0)
2030 m%=VAL(List$(n%,0))
2040 IF m%= 0 G0T02080
2050 F0R p%=1 T0 m%
2060 INPUT#X,List$(n%,p%)
2070 NEXT
2080 NEXT
2090 CL0SE# X
2100 ENDPR0C
2110 DEF PR0Cannual
2120 L0CALm%,a
2130 Year%= FNnoln(1752,3299,

" ❑ Year:"):PR0Ceaster
2140 PR0Cprinter:CLS
2150 PRINTF$;"YEAR III";Year%;

TAB(35)CHR$156
2160 VDUP%:PRINTF$;"YEAR El";

Year%;TAB(35)CHR$156
2170 PRINT:PR0Cprintdays(0):PRINT
2180 PR0Cspacebar
2190 F0R Month%=1 T0 12
2200 PRINTCHR$129;MID$(Month

Name$,Month%*9 — 8,9)
2210 PR0Cprintmonth(5,0)
2220 IF P%= 0 a =GET
2230 NEXT
2240 VDU26,3
2250 ENDPR0C

115 KB$="YN":G0SUB 1590:IF KB =1
G0SUB 1870

1180 'LIST & UPDATE
1190 N = 0:A= 0:8 = 0:KK= KB
1200 KB= KK:G0SUB 1330
1210 REM
1220 F0R VU =1 T0 14:PRINT@VU*32:

NEXT:PRINT@32, — ;
1230 B=VAL(L3(KK,0))
1240 IF B=0 THEN 1280
1250 F0R N =1 T0 B
1260 KB$= LI$(KK,N):K2=N:G0SUB 1410
1270 NEXT
1280 KB$="ADM":G0SUB 1590:A = KB
1290 IF A=1 THEN T7= KK:G0SUB 1680:

G0SUB 1490:1_3(KK,B +1) = CHR$
(T7) +T8$:LI$(KK,0)= MID$
(STR$(B+1),2)

1300 IF A=2 THEN INPUT "WHICH
NUMBER";NN:IF NN <1 0R NN >B THEN
1300 ELSE F0R PP= NN +1 T0
B:1_1$(KK,PP — 1) = LI$(KK,PP):
NEXT:LI$(KK,0)=STR$(B —1)

1310 IF A< >3 THEN 1210
1320 RETURN
1330 'SET UP HEADER
1340 PRINTTY$(KB),"CURRENT LIST"
1350 F0R Y=2 T0 14
1360 PRINT@Y*32

1370 NEXT
1380 PRINT@480,"ADD DELETE MENU";
1390 PRINT@32,"";
1400 RETURN
1410 'OP
1420 N2 =0:BB$ = "":DD$ = "":K3 = K2
1430 FOR N2=1 TO 4:IF MID$(KB$,

N2,1) ="" THEN CO(N2)= 0 ELSE
CO(N2)=ASC(MID$(KB$,N2,1))

1440 NEXT
1450 BB$= MID$(PA$,C0(1) * 4 -3,4)
1460 K2 =16:DD$ = MID$(STR$(C0(2)),

2) +":" + MID$(STR$(FNM(CO(3))),2) +
":" + MID$(STR$((FIX(C0(3)/16) + 17) *

 100+C0(4)),2)
1470 PRINTMID$(STR$(K3),2);" ❑ ";

BB$;"0";DD$;"0";RIGHT$
(KB$,LEN(KB$) -4)

1480 RETURN
1490 'ADD AN ENTRY
1500 B3$ = "":VP =0
1510 PRINT"TO BE CALLED ? (MAX 22

LETTERS)":LINE INPUT B3$
1520 VP= INT((PEEK(136)"256+

PEEK(137) - 1024)/32)
1530 PRINT@VP * 32,"";
1540 PRINT"SIGNIFICANT DATE ?"
1550 INPUT "0 ❑ DAY:";DA:IF DA<1 OR

DA> 31 THEN 1530
1560 GOSUB 2750
1570 KB= MO:GOSUB 230:IF DA> KB THEN

1530
1580 KB$=B3$:GOSUB 1630:T8$= KB$:

RETURN
1590 'CHECK KBD FOR CHARACTER IN KB$

AND RETURN POSITION IN KB
1600 B$=INKEY$:IF B$="" THEN 1600
1610 KB =1NSTR(1,KB$,B$):IF KB= 0 THEN

1600
1620 RETURN
1630 'CODE INFO
1640 PP =0:QQ=0
1650 PP-- (FIX(YR/100) -17)16 + MO
1660 K2 =100:QQ = FNM(YR)
1670 KB$=CHR$(DA)+CHR$(PP)+CHR$

(QQ) + LEFT$(KB$,22):RETURN
1680 'GET TYPE
1690 IF T7=0 THEN PRINT"MONTHLY,

QUARTERLY,ANNUAL,SINGLE":KB$=
"MQAS":GOSUB 1590:T7=
KB:GOTO 1720

1700 IF T7=2 THEN T7 = 3:GOTO 1720
1710 T7=4
1720 RETURN
1730 'SAVE ARRAY
1740 N =0:P=0
1750 OPEN "0", # -1,"DIARY"
1760 FOR N=0 TO 3
1770 M=VAL(LI$(N,0))
1780 PRINT# -1,LI$(N,0)
1790 IF M=0 THEN 1840

1800 FOR P=1 TOM
1810 FOR J=1 TO 4:PRINT# -1,STR$

(ASC(MID$(LI$(N,P),J,1))):NEXTJ
1820 PRINT# -1,MID$(LI$(N,P),5)
1830 NEXTP
1840 NEXTN
1850 CLOSE # -1
1860 RETURN
1870 'LOAD ARRAY
1880 N= 0:P=0:M =0
1890 OPEN "1",# -1,"DIARY"
1900 FOR N=0 T03
1910 LINE INPUT # -1,LI$(N,0)
1920 M =VAL(LI$(N,0))
1930 IF M=0 THEN 1980
1940 FOR P=1 TOM
1950 FOR J=1 TO 4:INPUT# -1,

NN$:LI$(N,P) = LI$(N,P) +
CHR$(VAL(NN$)):NEXTJ

1960 LINE INPUT # -1,NN$:LI$(N,P)=
LI$(N,P) + NN$

1970 NEXT
1980 NEXT
1990 CLOSE # -1
2000 RETURN
2010 'YEARLY CAL

2020 M4 =0:A4=0
2030 INPUT "YEAR:";YR:IF YR <1753 OR

YR >29999 THEN 2030 ELSE GOSUB
650

2040 GOSUB 2720:CLS
2050 PRINT"YEAR ❑ ";YR
2060 IF P=2 THEN PRINT# -2,

"YEAR ❑ ";YR
2070 PRINT# - P:KB=0:GOSUB 2150:

PRINT# -P
2080 GOSUB 2660
2090 FOR MO=1 TO 12
2100 PRINT# - P,MID$(MN$,MO*9

-8,9)
2110 T2= 5:S2 =0:GOSUB 2240
2120 IF P=0 AND 1NKEY$=`"'THEN

2120
2130 NEXT
2140 RETURN
2150 'PRINTDAYS -KB
2160 X2 =0:C2 =0:D2=0
2170 IF KB =0 THEN X2=7
2180 IF P=2 THEN KB=KB+1
2190 PRINT# -P,STRING$(X2,32);
2200 FOR D2=0 TO 6
2210 PRINT# - P,STRING$(KB,"171")+

MID$(DN$,D2*3 +1,3);
2220 NEXT
2230 RETURN

Using the simple techniques of
paged graphics will give a real
insight into the world of computer
animation. And it makes an
interesting display for your micro

All types of animation rely on a phenomenon
of perception known as persistence of vision.
In effect, this means that an image which we
see is 'held' in memory for an appreciable
instant, even after the view is changed to
something else* If a sequence of still images is
shown rapidly, the brain cannot keep up with
changes of picture occurring more than
twelve or so times a second. As a result, it
ceases to see separate images—the pictures
blur into one another, and the brain is fooled
into seeing movement.

The process is very simply demonstrated
by the 'flicker-book', in which drawings on
each page of a book can be animated as the
pages are flipped over at speed. A more
sophisticated demonstration of the same thing
is the process of stop-frame animation, which
dates back to the early years of this century*

This type of animation consists of drawing
a shape on a piece of clear plastic, known as a
cell, and then photographing two or so frames
of film using a conventional cine camera
mounted on an overhead rostrum. The cell is
then replaced with one showing a slightly
altered version of the shape, and the whole
process is repeated. As you can imagine, this
type of animation requires an incredible
number of pictures to be painstakingly drawn
by hand, as about twenty-five frames are
needed for every second of the finished film.

COMPUTER GRAPHICS
So why not use computers to speed up the
process? Even the relatively humble home
micro can produce good pictures, while
purpose-built main frames are capable of
staggeringly sophisticated images.

The problem is that to produce a display of
the quality taken for granted by cinema
audiences nowadays requires a fantastically
extensive assortment of hardware* One
science-fiction film—The Last Starfighter-
relies on computer equipment to achieve 27 ,
minutes of breathtaking images* But to do this
needed a $12 million Cray X-MP interfaced
to two $1 million mainframes. This massive
expenditure was considered worthwhile as it
allowed pictures to be constructed which
would be difficult in the real world.

This technology is all very well for people

who have access to motion-picture or video
recording equipment, powerful computers
and plenty of time. But most people who
possess none of these things still find com-
puter generated graphics of enormous use*
Animated images are an important part of all
sorts of Computer-Aided Design (CAD)
packages, for example, and every good
arcade game relies heavily on smoothly-
animated, attractive screen displays*

The sophistication that can be achieved in
this is limited by the capabilities of the
computer you use* The Cray operates at 100
megaflops (100 million floating point oper-
ations per second). But as the images have to
be swapped many times a second for realistic
animation, even the Cray could not generate
film-quality images quickly enough for real-
time animation* Instead, the images that it
generated were filmed separately in a conven-
tional stop-frame process.

Lower levels of detail in the pictures
permit frames to be generated more quickly*
Indeed, there exists a flight simulator in
which reasonably accurate representations of
an aeroplane in flight are generated 50 times
per second, giving realistic animated effects*

The reason for the difficulty of high-speed
computer animation is the amount of inform -4
ation required by a picture. The more de-
tailed the image, the more memory is needed
to store it. Increase the number of colours
available and the amount of RAM required to
store the colour information is increased, too*

The more memory used to store the pic-
ture, the more work the CPU has to do to
update it* The reason why most commercial
computer-generated films use stop-frame
animation is simply that the processor is not
sufficiently powerful to update large areas of
memory quickly* If updating graphic displays
is a slow process, even to people with power-
ful computers, how can a home programmer
produce animation using a micro? One so-
lution is the use of paged graphics.

WHAT ARE PAGED GRAPHICS?
Every home computer has an area of memory
associated with the screen. It can either be
memory mapped, which means that for each
screen location there is a corresponding mem-

ory location, or it may be organized using a
display file*

With paged graphics, instead of building the
next picture up directly in the screen mem-
ory, an area is reserved somewhere else for
this purpose. Once the new picture has been
completed, it is copied to the RAM normally
associated with the screen. These extra screen

STOP-ACTION ANIMATION
COMPUTER GRAPHICS

PAGED GRAPHICS EXPLAINED
A MOVING CUBE

CREATING GRAPHICS

FURTHER EXPERIMENTS
REAL TIME ANIMATION

PERSISTENCE OF VISION
COMMERCIAL FILM

ANIMATION

areas are called pages, which is why the
technique is known as paged graphics*

But why do this? Writing to the other page
certainly doesn't save any time. In fact,
updating the display will take slightly longer
because of the time taken to copy the inform-
ation into the screen memory* The advantage

lies in the fact that while updating the
`hidden' page, there is no change on the
current screen display*

Obviously, if you only want to draw one
picture, paged graphics may seem of little use*
However, if you want to write a program in
which a page of text is followed by a picture,

say, think how convenient it would be to be
able to start creating the first graphical dis-
play somewhere else in memory while the
user is occupied reading the page full of
instructions. When the display is needed,
time is saved as it is already present in another
area of RAM* If convenient you can actually
perform all the time consuming calculations
yourself, and just use the computer to display
the pictures as quickly as necessary.

But the real advantage of paged graphics is
if you want to display more than one image in
rapid succession. BASIC graphics commands
usually only write to the screen memory. This
means that pictures are built up on the screen
and then saved afterwards* While using paged
graphics will not make the physical construc-
tion of a screen picture any quicker, once the
calculations have been performed, pictures
can be recalled from memory to the screen
very quickly* Paged graphics thus retain the
simplicity of BASIC, combined with much
greater display speeds. And if you set up
several images in different areas of memory,
they can be called up in sequence rapidly to
permit relatively complex displays.

CUBE ALGORITHM
Suppose that you want to set up a simple
animated sequence involving the rotation of a
cube* You have decided that four pictures will
be sufficient to represent one rotation of the
cube, and you want the cube to rotate five
times. A typical program structure might look
like this:

for count =1 to 5 do
beg in
clear the screen
construct picture number 1
clear the screen
construct picture number 2
clear the screen
construct picture number 3
clear the screen
construct picture number 4
end

The idea is simple enough: the screen is
cleared, each of the four pictures is drawn in
sequence and the process is repeated until the

The Spectrum display: a trampolinist The unusual graphics screen on the Commodore

cube has rotated five times. The disadvantage
of this method is that it will draw each picture
five times. The calculations each take some
time, so poor animation results—with an
appreciable 'jump' between each image.

Now look at the alternative algorithm
below, which shows the general procedure for
a program structured around paged graphics
techniques:

clear the screen
construct picture number 1
store the screen data to memory page 1
clear the screen
construct picture number 2
store the screen data to memory page 2
clear the screen
construct picture number 3
store the screen data to memory page 3

clear the screen
construct picture number 4
store the screen data to memory page 4
for count =1 to 5 do
copy memory from page 1 to screen
copy memory from page 2 to screen
copy memory from page 3 to screen
copy memory from page 4 to screen
end

Paged graphics: let's hear it for the Acorn A rotating asterisk makes the Dragon display

The program is longer and you still have to go
through the time-consuming process of cal-
culations and drawing the four pictures, but
animation does not start until this has been
done. Once stored in memory, the pictures
can be recalled very quickly.

Although the drawing is still done in
BASIC the actual piece of program to move a
particular picture in the memory will be a
short machine-code routine. This transfers an
entire screen of information faster than the
eye can see-the essence of animation.

GRAPHIC, DEMONSTRATION
The following programs demonstrate a
simple application of paged graphics on each
computer. As the programs contain machine
code to get the required speed of exchanging
the images, SAVE them before RUNning, in
case of mishaps.

In each case you are prompted to press a
key after each image has been drawn, and a
key has to be pressed to start the images
alternating.

You can use these programs as the basis for
your own experiments, by changing the
images that they draw. But a later article
explains the techniques involved in more
detail, and how to push the sophistication of
the animation to the limits of your computer.

a
This program-suitable for 48K Spectrums
only-will give you a simple animation of a
man bouncing on a trampoline. Although the
majority of the program is in BASIC, there is
some machine code that gives the speed
required to call the pages from memory.

10 BORDER 0: PAPER 0: INK 7: CLS
20 CLEAR 53230

30 GOSUB 220
40 LET srce = 64: LET dest = 208
50 CLS
60 CIRCLE 128,168,7: PLOT 128,161: DRAW

0,-15: DRAW -10,-10: PLOT 128,146:
DRAW 10,-10: PLOT 118,161: DRAW
11,-5: DRAW 10,5

70 PLOT 108,106: DRAW 40,0: PLOT
113,106: DRAW - 8, - 8: PLOT 145,106:
DRAW 8,-8

80 GOSUB 270: LET dest = dest +16
90 PRINT AT 21,0;"any key when ready":

PAUSE 0
100 CLS : CIRCLE 128,141,7: PLOT 128,134:

DRAW 0,-15: DRAW -5,-16: PLOT
128,120: DRAW 5,-17: PLOT 118,125:
DRAW 10,5: DRAW 11,-5

110 PLOT 108,106: DRAW 15,-4: DRAW
10,0: DRAW 15,4: PLOT 113,105: DRAW
-8,-8: PLOT 144,105: DRAW 8,-8

120 PRINT AT 6,4;"!!BOING!!"
130 GOSUB 270
140 PRINT AT 21,0;"any key when ready":

PAUSE 0
150 LET srce = 208: LET dest = 64
160 REM PRINT AT 17,0;"press any key to

RESTORE ": PAUSE 0
170 FOR n=0 TO 1
180 CLS
190 GOSUB 270: LET srce=srce +16
200 NEXT n
210 GOTO 150
220 DATA 1,0,16,17,0,0,33,0,0,237,176,201
230 FOR i = 53231 TO 53231+11
240 READ byte: POKE i,byte
250 NEXT i
260 RETURN
270 POKE 53236,dest
280 POKE 53239,srce
290 RANDOMIZE USR 53231
300 RETURN

Line 10 sets the colours of the screen, border
and the display: black, black and white re-
spectively. Line 20 reserves an area of mem-
ory for the machine code that you will be
using and then Line 30 sends the program off
to a subroutine at Lines 220 to 260 that sets
up the machine code. This subroutine reads
off the DATA in Line 220 and POKES it into the
memory area reserved by Line 20 before
returning to Line 40. Line 40 defines two
variables: srce and dest. srce is the high byte of
the address where the DATA is to be taken from
and dest is the high byte of the temporary
address store. These tell the computer where
to read the screen image from and where to
put it in memory.

With this out of the way the first of the two
images for the two passes is drawn-a man up
in the air poised over a trampoline-and this
is taken care of in Lines 60 and 70. Line 80
first sends the program off to Line 270 where
there is a routine that puts the dest and srce
numbers into the machine-code program and
then calls the machine code to copy the
portion of the screen in which the image of the
trampolinist is seen.

The next step is to create the image for the
second page that is to be stored. The two lines
that achieve this are 100 and 110, while Line
120 PR INTs a non-audible sound effect! This
second image is stored by Line 130 which
sends the program to the subroutine at 270
and the Line 150 swops over the values of srce
and dest which has the effect of downloading
the image from RAM onto the screen. Lines
150 to 210 set up a loop that will alternate the
two images that have been created. This will
RUN until you press the I BREAK key.

You can use this program to set up your
own two-frame animation by changing the
graphics commands in lines 60 and 70, and

lines 100 and 110 to make new images. But
under the right circumstances it is possible to
get as many as eight pages to run in sequence.
The program to do this becomes rather more
complicated, and is covered in detail in a later
article.

Use of the Commodore's excellent resolution
graphics—accessible by using either a
Simon's Basic Cartridge or INPUT's high-
resolution graphics facility starting on page
748—gives an unusual and interesting alter-
nating pair of images.

The two images are similar, and so they are
not drawn individually. Instead, thay are
constructed using a FOR... NEXT loop which
sends the program through the drawing rout-
ine twice, making small changes to the in-
structions the second time around.

When using a Simon's Basic Cartridge the
program below is correct. If using INPUT's
high resolution graphics facility, as has been
published so far on pages 748 to 751 and 872
to 877, delete Line 65, change the 224 in bold
in Line 240 to 32 and the 255 in bold in Line
250 to 63. When the remainder of INPUT's
high-res facility is published, Line 65 can be
left in but the changes to Lines 240 and 250
must still be made. Also, you must preface all
the graphics commands with @, as explained
on page 748.

20 POKE 51,255:POKE 52,29:POKE
55,255:POKE 56,29:CLR

30 GOSUB 220
40 D = 64
50 FOR N =0 TO 1
60 HIRES 0,1:MULTI 2,4,5:COLOUR6,6
65 CIRCLE 80,100,30 +10*N,30 +10"N,

1:PAINT 80,100,2
70 FOR X=0 TO 159:PLOT

RND(1)160,RND(1)*200,RND(1)*4
80 PLOT X,100+30*SIN((N +X/50) * n/4),3
85 LINE X, 50+N*50, 0, 100— N*50, RND (1)

*4+1
90 NEXT X
100 GOSUB 430:IF N=0 THEN D=96
110 TEXT 30,1,"PRESS ANY KEY",3,1,8:POKE

198,0:WAIT 198,1
120 NEXT N
150 D =64:FOR N=0 TO 1
170 GOSUB 440:IF N=0 THEN D=96
190 NEXT N
200 GOTO 150
220 FORZ = 7680 TO 7738:READ X:POKE

Z,X:NEXT Z:RETURN
230 DATA 169,0,141,14,220,169,53,133,1
240 DATA 169,0,133,251,133,253,169,224,

133,252,169,64,133,254,160,0
250 DATA 177,251,145,253,192,63,208,16,

165,252,201,255,208,10
260 DATA 162,1,142,14,220,162,55,134,1,96,

200
270 DATA 208,229,230,252,230,254,

76,25,30
430 POKE 7700,D: POKE 7706,251:POKE

7708,253:SYS 7680:RETURN
440 POKE 7700,D:POKE 7706,253:POKE

7708,251:SYS 7680:RETURN

Line 20 of the program clears some space in
the memory for the machine code and the
screens that will need to be stored. Line 30
then sends the program to the subroutine at
Lines 220 to 270, where the DATA is PO K Ed
into memory. Line 40 sets the position in the
memory where the first of the screens is to
stored and 50 is a FOR...NEXT loop for the
different screens. The graphics mode and
screen colour (blue) are set in Line 60.

The first and second of the designs is
drawn by Lines 65 to 85. In Line 100 the
program is first of all sent to Line 430 which
saves the screen before changing the screen to
its location. The two screens are swopped
over by a routine contained in Lines 150 and
200.

The end result of the Acorn program is a
singer giving his all and sending notes wafting
into the air. This is achieved using two pages
of graphics in which only the man's mouth,
eyes and the musical notes move. The pro-
gramming to produce these graphics on
screen, however, takes up a number of lines as
there are several shapes to be drawn (using a
simple ellipse routine).

10 VAR =0
20 MODE4
30 VDU 23,224,16,24,20,16,16,48,112,32
40 HIMEM =&3000:DIM MC% 100
50 PROCCODE
60 F%=&58:T%=F%— &14
70 FOR N =0 TO 1
80 CLS
90 PROCC(7.8,.018,200,640,240,752):PROCC

(7.8,.08,50,590,50,790):PROCC(7.8,.08,
50,690,50,790)

100 IFN =1 THEN 160
110 PROCC(7.8,.08,50,640,75,640)
120 PROCC(7.8,.08,15,605,10,820)
130 PROCC(7.8,.08,15,675,10,820)
140 PROCNOTES(0)
150 GOTO 190
160 PROCC(7.8,.08,75,640,50,640)
170 PROCC(7.8,.08,15,605,10,775):PROCC

(7.8,.08,15,675,10,775)
180 PROCNOTES(90)
190 PROCMOVE(F%,T%):T%=T%— &14

200 PRINTTAB(0,18);"PRESS ANY KEY":
A$=GET$

210 NEXT
220 PRINTAB(0,18)SPC(15)
230 T%=&58:F%=T%—&14
240 FOR N =0 TO 1
250 PROCMOVE(F%,T%):F%= F%— &14
260 D=INKEY(25)
270 NEXT N
280 GOTO 230
290 DEF PROCCODE
300 REM BLOCK MOVE CODE
310 FOR OPT%= 0 TO 2 STEP 2
320 P%= MC%
330 [
340 OPT OPT%
350 .MVBLKIII LDA #19
360 JSR &FFF4
370 LDX# &14
380 LDY# 0
390 .NXTO LDA(&70) ,Y
400 STA (&72) ,Y
410 DEY
420 BNE NXT
430 INC &71
440 INC &73
450 DEX
460 BNE NXT
470 RTS
480]
490 NEXT OPT%
500 ENDPROC
510 DEF PROCMOVE(F%,T%)
520 REM CALL BLOCK MOVE CODE
530 ?&70=0:?&71=F%
540 ?&72 = 0:?&73 = T%
550 CALL MVBLK
560 ENDPROC
570 DEFPROCC(A,B,C,D,E,F)
580 FOR X=1 TO A STEP B:PLOT

69,SIN(X)*C+ D,COS(X)1+ F
590 NEXT
600 ENDPROC
610 DEF PROCNOTES(F)
620 VDU 5
630 FOR T=1 TO 11
640 MOVE600+T*60+ F,630+T * 30+ F/2
650 VDU 224
660 NEXT
670 VDU 4
680 ENDPROC

Line 20 sets the MODE. A UDG for the notes
is established by Line 30. The next line, Line
40 allocates the area of memory into which the
two images are to be moved, above that of
the BASIC program and, then puts aside
some memory for the machine code. The
PROCCODE in Line 50 calls the routine to set
up the machine code. This machine code
moves the blocks of memory around.

The next thing to do is to define the
addresses of the area from which the block is
to be taken and to which it is to be directed.
Line 60 gives the high byte address, &58, of
where the memory is to be taken F(%)rom is
assigned. This is called F%. The position
where it is to go T(%)o, T%, is also given a high
byte address F% — &14. The program now
enters a short loop at Line 70 and after the
screen is cleared in Line 80, the fixed parts of
the singers face are drawn by Line 90 and the
subroutine at Lines 570-600. As N is only
equal to 0 on this first time round the loop,
the program continues past Line 100 to Lines
110 to 130 where the first of the two sets of
the singers' moving features are drawn. Line
140 then calls Line 610 to draw the first set of
notes. The program returns to Line 190
which first puts this completed first scene into
the page assigned in RAM, then moves the
pointer down to the second position in RAM
where the next face is to be stored.

Line 200 gives the PRESS ANY KEY
message and waits for the key press—when
this is detected, the program is sent to Line 80
by Line 210. The program is now going
round this loop for the second time and after
the screen is cleared in Line 80, the fixed face
features are drawn in Line 90 again. Now, as
N is equal to one, Line 100 sends the program
to Line 160. This and the next line draw the
second of the two sets of moving features.
Then in Line 180, PROCNOTES (90). calls the
PROCedure to draw the notes again, but this

time in a different position, thanks to the (90)
fed into the F variable of the PROCedure.

Line 190 now stores this second face in the
previously reassigned position. Once more,
200 waits for a key press, but this time as the
loop is finished the program proceeds to Line
220, where PRESS ANY KEY is deleted
from the screen, and then onto a loop starting
at Line 230 and ending at Line 280. The
PROCMOVE is used to call the first image to
the screen, and the program pauses for I of a
second (Line 260) puts it back into RAM and
then calls the second image onto the screen
and again shows it with a delay of of a
second. This will keep on going until you
press the I ESCAPE key.

14A
The program for the Dragon and Tandy is
slightly different from that used on the other
machines for two reasons. For a start, it uses
three, not two, pages and also, because the
permanent software for these machines has
already got the facility for eight pages of
paged graphics—accessible through the
PCOPY command—without machine code.
The command has the simple form: PCOPY
number of first page TO number of second
page—PCOPY 1 TO 8, for example. In fact the
alternation of the pages is so fast that a delay
has to be built into the program to stop the
images from being displayed too quickly.

This program gives a fairly smoothly rotat-
ing pointed star.

10 PC LEAR8: PMOD E2,1
20 SCREEN1,1:CLS
30 C = ATN (1)/45
50 FOR N = 0TO2
60 PCLS
70 FORK= 010360 STEP45
80LINE (127,95) — (127 + 59*SIN

(C * (K + N*15)),95 — 59 * COS
(C*(K + N*15))),PSET

90 NEXT
100 PC 0 PY1 T03 + N * 2: P CO PY2T04 + N*2
110 NEXT
140 FO RN = 3T07 STEP2
150 PCOPYN T01: PCOPYN + 1T02
160 FOR G = 1T030: N EXTG,N
170 G0T0140

Line 10 allocates the eight pages to graphics
and selects PMODE 2 at page 1 to give black
and white with medium resolution. In this
mode, one screenful uses two of the internal
graphics pages. In Line 20 the high resolution
on graphics are turned on.

The images that are to make up the three
pages are set up by Lines 30 to 110 while Line
100 PCOPYs each of these different images
onto the internal graphics pages. Each of the
screen displays takes up two of the internal
pages and the first two pages of the internal
pages are used to design the graphics.

Lines 140 to 160 copy the stored pages into
the display in sequence. There is a delay built
into Line 160 because the alternation would
otherwise be too quick.

Spin the reels and nudge yourself in
the direction of Las Vegas with
INPUT's Fruit Machine. Playing this
machine won't put a squeeze on
your pocket

Old fashioned mechanical fruit machines are
being replaced by modern electronic ones in
many arcades, with a television screen being
used to display the reels. This two-part article
in Games Programming will show you how to
imitate one of these machines using your
micro.

The game has all the features you would
expect in a real fruit machine-hold, gamble,
nudge, and so on-and there are animated
graphics to simulate mechanical reels.

Having a program like this to play with
saves you losing huge amounts of money to
the grasping one-armed bandits-although
on the other hand, you won't win anything
either! Now look at the section for your
machine, and as usual, don't forget to SAVE
this section of program ready for the second
half. You won't be able to RUN the program
successfully at this stage, although on some
machines, you will see the basic graphics.

a
SETTING UP THE GRAPHICS
Lines 120 to 140 hold the DATA for the
coloured fruit. To economize on memory, the
colour instructions are entered directly by
control codes as explained on page 775-and
the listings appear in colour. To enter these
lines, go into extended mode (CAPS SHIFT
and 'SYMBOL SHIFT), then press the appropri-
ate colour key. Then enter graphics mode
(CAPS SHIFT1and 9), followed by the letters in
the listing.

10 LET HFLAG = 0: POKE 23658,8: RESTORE
20: GOSUB 840

20 DATA 14,31,31,31,31,15,3,1,56,252,252,
252,252,248,224,192

30 DATA 49,42,51,42,50,255,255,255,152,84,
216,84,84,255,255,255

40 DATA 3,4,8,28,62,62,62,28,28,190,125,62,
28,0,0,0

50 DATA 0,0,16,28,15,7,3,0,4,12,26,56,248,
240,224,0

60 DATA 0,0,7,15,31,31,15,7,8,248,240,240,
224,224,192,128

70 DATA 1,3,3,7,15,15,24,1,128,192,192,224,
240,240,24,128

80 DATA 1,7,15,31,31,31,31,15,224,240,240,

240,240,224,192,128
90 DATA 8,8,8,8,73,42,28,8,16,56,84,146,16,

16,16,16
100 FOR i=USR "a" TO USR "P" +7: READ

a: POKE i,a: NEXT i
110 LET TOTAL =100
120 DATA "AB", "IJ", " ", "CD", "IJ",

"AB", "EF", "KL", "MN", "EF", "
"MN"

130 DATA "IJ", "AB", "KL", "MN", "EF",
" ", "DD", "EF", "AB", "CD", "MN"

140 DATA "EF", "MN", " ", "KL", "CD",
"AB", "IJ", "AB", "IJ", "CD", "IJ",
"MN"

150 DIM A$ (24,4): FOR i=1 TO 12 READ
A$ (i): LET A$ (i +12) = A$(i) NEXT i

160 DIM B$ (24,4): FOR 1=1 TO 12 READ
B$ (i): LET B$(1+12)= B$ (i) NEXT i

170 DIM C$ (24,4): FOR 1=1 TO 12 READ
C$= (i): LET C$ (i +12) = C$(i) NEXT i

840 BORDER 7: PAPER 9: INK 2: CLS
850 PRINT ""
860 FOR i = 0 TO 1: FOR j= 0 TO 31: PRINT

PAPER 7; AT i,j;" D": NEXT j: NEXT i
870 FOR i = 2 TO 5: PRINT AT 1,0; PAPER 6;

"I11111 ELI"; AT 1,28," El ❑ DO":
NEXT i

880 PRINT PAPER 6; INK 2;AT 0,8;"10
PENCE A GAME"

890 PRINT PAPER 6; INK 2;AT
1,4;" ❑❑❑❑❑❑❑❑❑❑❑❑❑
IIIEEIDDEDOCIOD";AT 2,4;"
❑❑❑ rliurur ❑ru
rnruu i❑❑❑ "

900 PRINT PAPER 6; INK 2;AT
1,4;" ❑❑❑❑❑❑❑❑❑❑❑❑❑
1=100000E CI 	0";AT 3,4;"

Doonuuurororwi
r ❑ r ❑niu1 ❑❑❑ "

910 PRINT PAPER 6; INK 2;AT
1,4;" ❑❑❑❑❑❑❑❑❑❑❑❑❑
El 	DEDEODE ❑ ";AT 4,4;
"Doononaaorion ❑

DE"
920 PRINT PAPER 6; INK 2;AT •

1,4;" ❑❑❑❑❑❑❑❑❑❑❑❑❑
O 00000111111111111111";AT 5,4;
"DODD"; INK 0;"/MIMMIll
•••••••••• 1=1 ❑ ❑

930 FOR i=6 TO 14: FOR j = 8 TO 23 STEP

5: PRINT INK 0;AT i,j," 	": NEXT j: NEXT i
940 F0R 1=8 T0 23: PRINT AT 15, i; INK

0;" ■ ": NEXT i
950 FOR I =6 TO 21: PRINT PAPER

6;AT 1,0;"1=1E10 ❑ 111 1111110";AT
1,24;"0E11110111111 CID": NEXT I

960 FOR 1=16 TO 21: PRINT PAPER 6;AT 1,8;
"170011101=1111111111111111000
❑ ❑ ": NEXT I

970 PRINT INK 1; PAPER 8;AT 2,2;"WIN";AT
2,27;"WIN";AT 3,2;"n 	n' ;AT
3,27;"n

980 PRINT INK 1; PAPER 8;AT 4,2;"10";AT
4,27;"100' ;AT 6,2;"20";AT 8,2;"50";AT
7,25;"JACKPOT";AT 8,25;"n

990 PRINT INK 1; PAPER 8;AT 20,3;"PRESS
SPACE-TO SPIN REELS";AT 21,1;"OR
HOLD OR NUDGE KEYS WHEN LIT"

1000 PRINT AT 17,7;" ❑❑❑ 1 CI ELIO 2
❑❑❑❑ 3 1110111C1";AT16,9;
• • • • • •El• •

1010 PRINT AT 18,7;"[J4=1 & 215=2 &
3E16=1 & 3";AT 19,7; INK 7; PAPER 2;
"III HOLD KEYS 1 to 6 ❑ "

1020 RETURN

Line 10 jumps to the subroutine at Line 860
which draws the fruit machine. All the in-
structions the player needs are displayed on
the machine's front.

Line 100 sets up the UDGs by READing
from the DATA in Lines 20 to 90. The UDGs,
when set up, appear in Lines 120 to 170 as
DATA ready for the reels to be set up. a$, b$
and c$ are the three reels, and the order of the
fruit on the reels is determined by the order of
the DATA.

THE REEL THING
180 G0SUB 1030
1030 PRINT A 5,0;A$(4): FOR X = 0 TO 3

STEP 2: PRINT AT7,X; A$(4); "El": NEXT
X: FOR X = 0 TO 5 STEP 2: PRINT AT 9,X;
A$(4): NEXT X: F0R X = 0 TO 5 STEP 2:
PRINT AT 10,X; A$(1); "El": NEXT X

1040 PRINT AT 11,0;C$(2);C$(2);C$(2);AT
12,0;B$(1);B$(1);B$(1)

1050 PRINT AT 5,26;C$(1);C$(1);C$(1);AT
6,26;C$(3);C$(3);C$(3);AT 9,26;C$(4);
C$(4);C$(4)

REPLACING MECHANICAL
FRUIT MACHINES

ARMLESS FUN
USING YOUR MACHINE'S
GRAPHICS TO THE FULL

SETTING UP THE FRUIT
GRAPHICS

BUILDING THE REELS
INITIALIZING THE MACHINE

STARTING THE DISPLAY

1060 PRINT AT 7,10;A$(1);AT 10,10;A$(2);
AT 13,10;A$(3)

1070 PRINT AT 7,15;B$(1);AT 10,15;B$(2);
AT 13,15;B$(3)

1080 PRINT AT 7,20;C$(1);AT 10,20;C$(2);
AT 13,20;C$(3)

1090 PRINT AT 16,26; INK 2; PAPER 6;
"NUDGE";AT 17,26;"KEYS";AT15,25;
"Q W Ej1";AT 18,25;"A S — D "

1100 PRINT INK 0; PAPER 7;AT 12,25;
❑❑ 16 ❑❑ " ; AT 13,25; "1";
AT 13,31; AI"; AT 14,25; " 	1!!1!!!!

nn!1"; AT 13,26; INK 2; "MEM

•."
1110 PRINT PAPER 6; INK 0; INVERSE 1; AT

15,0; "TOTAL"; INVERSE 0; AT 17,0; "f";
AT 18,0; "p"; AT 17,1; PAPER 7; BRIGHT
1;"111111 ❑ "; AT 18,1; TOTAL

1120 PRINT #1; AT 0,0; "D ❑ ❑ ❑ YOU
START WITH ONE POUND"

1130 PAUSE 0
1140 PRINT #1;AT0,0;" ❑❑❑❑❑❑❑

O 0 D000000000000
❑ ❑❑❑❑❑❑❑❑❑ "

1150 RETURN

The subroutine starting at Line 1030 draws
the reels at their starting positions and com-
pletes some of the display details. The player
is told that he starts with one dollar—each
spin costs ten cents.

INITIALIZATION
40 P0KE53280,0:P0KE53281,0:A$ =

"E]PLEASE":B$ = " ❑ WAIT! El ":C$ =
"AM NEAR"

45 PRINT"pgaggggigggigggggg":
FORA = 1T07:FORB =1T013:PRINT"C";
MID$(C$,A,1);SPC(B);A$;

50 PRINTTAB(33 — B);B$:NEXTB:PRINT:
NEXTA

55 PO KE52,48: POKE56,48:CLR: POKE56334,
PEEK(56334)AND254:POKE1,PEEK(1)AND
251

60 FORA = 0T01023:POKEA + 12288,PEEK
(A + 53248):NEXT:POKE1,PEEK(1)0R4

65 POKE56334,PEEK(56334)0R1:P0KE53280,
8:FORA = 0T0655:READB:POKE12288 + A,
B:NEXTA

10000 DATA255,213,253,253,253,253,213,255
10005 DATA255,127,127,127,127,127,87,255
10010 DATA255,213,255,213,213,215,213,255
10015 DATA255,87,215,87,87,255,87,255
10020 DATA255,213,255,253,253,255,213,255
10025 DATA255,87,215,87,87,215,87,255
10030 DATA255,215,215,213,213,255,255,255
10035 DATA255,215,215,87,87,215,215,255
10040 DATA255,213,215,213,213,255,213,255
10045 DATA255,87,255,87,87,215,87,255
10050 DATA255,204,0,240,252,204,204,240
10055 DATA255,204,0,48,252,204,204,252
10060 DATA252,204,0,240,252,204,204,240
10065 DATA204,204,252,240,0,204,255,0
10070 DATA204,204,204,204,0,204,255,0
10075 DATA204,204,204,204,0,204,252,0
10080 DATA0,0,0,3,3,15,15,0
10085 DATA48,252,252,255,255,255,255,0
10090 DATA0,0,0,0,0,192,192,0
10095 DATA15,15,3,0,0,0,0,0
10100 DATA255,255,255,252,48,63,15,0
10105 DATA192,192,0,0,0,0,0,0
10110 DATA0,3,15,15,15,15,15,15
10115 DATA0,255,243,252,252,252,252,252
10120 DATA0,0,192,192,192,192,192,192
10125 DATA15,15,15,3,3,0,0,0
10130 DATA252,252,252,243,255,252,0,0
10135 DATA 192,192,192,0,0,0,0,0
10140 DATA0,0,10,34,170,136,170,162
10145 DATA12,48,254,186,42,162,170,34
10150 DATA0,0,128,32,168,40,168,136
10155 DATA170,40,10,2,0,0,0,0
10160 DATA0,0,0,0,0,0,0,0
10165 DATA168,138,170,34,168,168,32,0
10170 DATA102,102,102,0,0,0,0,0
10175 DATA168,160,128,0,0,0,0,0
10180 DATA0,0,0,0,0,3,3,3
10185 DATA4,16,84,252,252,255,255,255
10190 DATA0,0,0,0,0,0,0,0
10195 DATA3,15,15,15,15,15,3,0
10200 DATA255,255,255,255,255,255,255, 0
10205 DATA0,192,192,192,192,192,0,0
10210 DATA0,0,0,0,1,1,1,1
10215 DATA16,16,84,68,81,81,81,81
10220 DATA0,0,0,0,0,0,0,0
10225 DATA1,5,21,85,0,0,0,0

10230 DATA81,84,85,85,16,0,0,0
10235 DATA0,64,16,84,0,0,0,0
10240 DATA252,204,204,204,204,204,

252,0
10245 DATA240,48,48,48,48,48,252,0
10250 DATA252,12,12,252,192,192,252,0
10255 DATA252,12,12,60,12,12,252,0
10260 DATA204,204,204,252,12,12,12,0
10265 DATA252,192,192,252,12,12,252,0
10270 DATA192,192,192,252,204,204,252, 0
10275 DATA252,12,12,12,12,12,12,0
10280 DATA252,204,204,252,204,204,252, 0
10285 DATA252,204,204,252,12,12,12,0
10290 DATA0,0,0,0,10,32,40,42
10295 DATA12,48,48,240,12,130,130,130
10300 DATA0,0,0,0,160,8,136,168
10305 DATA10,0,0,0,0,0,0,0
10310 DATA0,40,130,162,170,40,0,0
10315 DATA160,0,0,0,0,0,0,0
10320 DATA252,192,192,192,192,192,252, 0
10325 DATA240,204,204,204,204,204, 240,0
10330 DATA252,192,192,240,192,192,252, 0
10335 DATA252,192,192,240,192,192,192,0
10340 DATA48,204,192,192,204,204,60,0
10345 DATA204,204,204,252,204,204,204,0
10350 DATA252,48,48,48,48,48,252,0
10355 DATA192,192,192,192,192,192,252, 0
10360 DATA192,240,252,204,204,204,

204,0
10365 DATA48,204,204,204,204,204,48,0
10370 DATA240,204,204,240,192,192,192,0
10375 DATA240,204,204,240,204,204,

204,0
10380 DATA48,204,192,48,12,204,48,0
10385 DATA252,48,48,48,48,48,48,0
10390 DATA204,204,204,204,204,204,48, 0
10395 DATA12,48,48,252,48,240,204,0
10400 DATA0,0,0,60,60,0,0,0
10405 DATA255,255,255,255,255,255,255, 255

Lines 40 to 50 set up a display asking the
player to wait. The Commodore 64 takes
some time to set up the UDGs needed
for the fruit.

Lines 55 to 65 READ the DATA from the end
of the program—see Lines 10000 to 10405—
to set up the UDGs.

INSTRUCTIONS
70 POKE53282,7:POKE53283,2:POKE53280,7:

POKE53281,7
75 PRINT"1:].";CHR$(14);SPC(15);111

0 ❑ 8BB62111[111"
80 PRINT"gg E]OU HAVE f1 TO START

WITH. OT IS 10P A"
85 PRINT"GAME AND YOU PLAY UNTIL YOU

HAVE NO"
90 PRINT"MONEY LEFT.":PRINT"N.E1

95 PRINT"gill<EI ❑ .Elt>",

"-OE PIN REELS/GAMBLES"
100 PRINT" <1 > "," — EIANCELS HOLDS"
105 PRINT" <2 > "," El] OLD LEFT REEL"
110 PRINT" <3 >"," — EUOLD MIDDLE

REEL"
115 PRINT" <4 >","11EOLD RIGHT REEL"
120 PRINT" <5> "," — IZIUDGE LEFT REEL

MD"
125 PRINT" <6 >"," -EIUDGE MIDDLE

REEL Err
130 PRINT" <7 >"," 	UDGE RIGHT

REEL MP"
135 PRINT" <8 > ","—IZIUDGE LEFT REEL

E 0 0"
140 PRINT" < 9 > "," — OUDGE MIDDLE

REEL t ❑
145 PRINT" < 0 >","—EIUDGE RIGHT

REEL t ❑ 01Z1"
150 PRINT"<8171121.40>",

" — BOLLECT WIN"
155 PRINT"gg gg.pi ['LEASE PRESS THE

gm PACE-BAR TO PLAY ..."
160 GETA$:IFA$< >"111"THEN160

Lines 70 to 160 set up the instructions screen.

PREPARING THE GAME
165 PRINT" 0";CH R$(142): POKE53280,10:

POKE53281,10:P0KE53272,29
170 POKE53270,PEEK(53270)0R16: POKE

53282,7: PO KE53283,2: I FXX = 1TH EN 190
175 DIMR1%(15),R2%(15),R3%(15),W%(9),

F$(6)
180 FORA = 0T015:READR1%(A),R2%(A),

R3%(A):NEXT: FORA = 0709: R EADW%
(A):NEXTA

185 FORA = 0T06: READ F$(A): N EXTA
190 POKE53280,13: POKE53281,1: PRI NT

"ID gr,F$(3);" ❑ 11";F$(3);" ❑ PJ";
F$(3);

195 PRINT" ❑ HNIME ❑ 2 ❑ 00":
PRINT" gr,F$(2);"0 PJ";F$(2);
"C PJ";F$(2);

200 PRINTI❑ JIMM2 ❑ 1 ❑ 50":
PRINT"gg",F$(5);"D 	F$(5);
"011";F$(5);

205 PRINT" ❑ PMPJPJ2 ❑ 1 ❑ 00":
PRINT"gg",F$(4);"011";F$(4);
"DP.1";F$(4);

210 PRINT"[AMPJPJ21707180":
PRINT"gg",F$(6);"0pj";F$(6);
"0 11";F$(6);

215 PRINT" ❑AMIN ❑ 1707160":
PRINT"gr,F$(0);"01.1";F$(0);
"01.1";F$(0);

220 PRINT"Opnipnl21707140":
PRINT"M",F$(1);"011";F$(1);
"DPJ";F$(1);

225 PRINT" ❑ MAJPJ2 ❑ 07130":
PRINT"g",F$(0);"Clpj";F$(0);"0
PRZ ❑❑❑ N";

Colourful graphics adorn SUPERFRUIT on the Acorn 	and SUPERFRUIT on the Spectrum

230 PRINT" ❑ PIMINIEZ ❑ 0 ❑ 30":
PRINT"gr,F$(1);"13p1";F$(1);"0
PJ121 ❑❑❑ gIl";

235 PRINT"C MINIM 7107120":
PRINT"gg",F$(1);"0 Pm El ❑ ci

71171171PJ PI PIPJ1707110"
240 PRINT"MMIEDDIMININ

NPJPJP.DJOEIDEOLLED
EID:16101KIE ❑ ";

245 GETA$:IFA$< > CHR$(13)THEN245
10410 DATA0,1,2,3,5,6,6,2,0,5,3,4,4,6,5,6,4,

3,1,2,0,3,0,5,2,1,4,6,5,1,0,6,6
10415 DATA1,4,3,2,0,1,5,3,2,4,6,6,6,4,5
10420 DATA200,150,100,80,60,40,30,20,10,

0
10425 DATA" 	+ gg 	•/",

"II:;< ggiiiiii = >?","1111PCIRgg
II II IISTU","OJKLgg IIIIIIMN
0 "

10430 DATA"liflIg 	II ! #
"OVWXggliiiilYZ[","NIVAgg
111111()"

Lines 170 to 185 prepare the reels. The arrays
DI Mensioned in Line 175 are used as follows:
R1%, R2% and R3% contain the arrangement
of the fruit on each of the reels, W% are the
wins from each of the win lines, and F$ the
information necessary to display the fruit.
The arrays are filled with DATA READ from
Lines 10410 to 10430.

Lines 190 to 245 set up the second screen
the player sees—the winning line
information.

SETTING UP THE MACHINE
250 P0KE53280,0:POKE53281,1:PRINT

"0 II";: FORA = 1T024
255 PRINT"000.0.40000

00000000000141110
0 4114, 0 SOO 0 0 IP 0

lio";:NEXT:FORA =1984T02023

260 POKEA,81:POKEA+54272,13:NEXTA:
PRINT"ggi","PJPJPJHO ❑❑
2100:10EIE1121819 ❑ "

265 PRINT"l§ gig g";:FORA=0T09:
PRINT"PJPJPJPIPJPJPJ111111
❑1111❑❑❑❑❑ NIN ❑❑❑❑
❑ PJPJ:1 ❑ ";

270 A$=RIGHT$("00"+ MID$(STR$(W%
(A)),2),3):PRINTLEFT$(A$,1);" ❑ ";
RIGHT$(A$,2);

275 PRINT"PJMIIPINNIPJ";:NEXTA
280 PRINT"gglIPMPJPJPJPJUD

EllEI•MPJ ❑ tElE•1111
❑8111[E":

285 PRINT"gggglipipipipipipil
PJ 1J PJ PJ 111 PJ PJ PJ 	Ell 123
ooto] 111©APJBCPIDEPJFGPJ
HIEJMPJPIPJPIPJNIJP1";

290 PRINT"gggpipipipipipipipi
111111PJPJEIDIDOBISIPJP.1

295 M=RND(—TI):M=100:H%= -1:I%=
—1:J%= —1:P%= INT(RND(1)16):Q%
=INT(RND(1)16)

300 R%=INT(RND(1)16):N%=0
305 GOSUB9500

Lines 250 to 305 draw the fruit machine with
windows ready for the reels, and the nudge,
gamble and money areas.

GRAPHICS AND SOUND

Don't type in Line 10 until you are sure the
program is finished and debugged.

10 ONERRORRUN
20 VDU23,224,1,3,7,7,15,15,15,31,23,225,

128,192,96,160,176,208,208,216,23,226,
31,63,63,63,63,3,1,0,23,227,232,252,252,

252,252,192,128,0
30 VDU23,228,0,0,0,3,7,14,31,15,23,229,0,0,

0,0,128,192,96,192,23,230,7,27,60,118,
251,126,60,24,0,23,231,152,60,118,251,
126,60,24,0,23,232,15,248,128,0,0,0,0,0

40 VDU23,233,0,1,1,3,3,7,7,15,23,234,128,
192,192,224,224,240,240,248,23,235,15,0,
15,7,3,3,1,0,0,23,236,248,0,248,240,224,
192,136,240

50 VDU23,237,255,0,255,255,0,225,146,227,
23,238,255,0,255,255,0,142,73,206,23,
239,146,226,0,255,255,0,255,0,23,240,73,
73,0,255,255,0,255,0

60 VDU23,241,0,2,15,27,30,55,63,23,23,242,
0,8,60,246,254,223,123,238,23,243,31,13,
7,7,2,3,1,0,23,244,190,236,120,248,208,
240,224,192,23,245,32,64,192,0,0,0,0,0

70 VDU23,246,0,0,0,0,3,3,7,7,23,247,0,0,0,
0,240,216,216,220,23,248,15,15,15,7,7,3,
3,1,23,249,236,252,252,248,240,240,224,
192,23,250,12,112,64,240,0,0,0,0

80 VDU23,251,0,0,0,0,0,1,3,3,23,252,0,0,0,
192,192,224,160,176,23,253,7,7,15,15,31,
31,15,7,23,254,208,208,248,248,252,252,
248,240,23,255,28,112,192,0,0,0,0,0

90 *FX9,5
100 *FX10,5
110 *FX11,0
120 A%= RND(—TIME):©%= 0:ENVELOPE

1,1,1,1,0,5,5,0,126,0,0,-8,126,0

Each of the lines contains instructions for
drawing the fruit graphics in a VDU statement.
Line 20 is the bell; Line 30, the cherry; Line
40, the acorn; Line 50, the bar; Line 60, the
strawberry; Line 70, the blueberry; and Line
80, the pear. Lines 90 and 100 set the flash
rate, while Line 110 turns off the auto repeat.

Line 120 chooses a random seed, and sets
each of the 14 parameters needed for the
ENVELOPE for the blip.

INSTRUCTIONS
130 MODE6:VDU23;8202;0;0;0;:PRINT'TAB

(13)"SUPERFRUIT"'
140 PRINTTAB(3)"WELCOME TO THE BBC

FRUIT MACHINE !"
150 PRINT"' 0You are given f1 to start with. It

costs 10p per game to play and you play
until you run out of money."

160 PRINT"'Controls :'‘ <SPACE> ❑ ❑ -
1=ISpin reels/gambles""' <1 > ❑ ❑ ❑ ❑
❑ ❑ -111Cancel Hold' <2 > ❑ ❑ ❑
❑ ❑ ❑ - ❑ Hold left reel"

170 PRINT"<3> ❑ 0 CI 	- 111Hold
middle reel' < 4> 0 0 ❑ 1=1 0 ❑ -1=1
Hold right reel'"" <5 > ❑ ❑ ❑ 171 ❑ ❑
- ❑ Nudge left reel up"

180 PRINT"<6>
Nudge middle reel up"'" <7> ❑ ❑ ❑ ❑
❑ ❑ - ❑ Nudge right reel up'"" <8> ❑
❑ ❑ ❑ ❑ ❑ - ❑ Nudge left reel down"

190 PRINT"<9>DEIDOE1C1-111
Nudge middle reel down' < 0 >DEE
❑ ❑ ❑ - ❑ Nudge right reel down'
" < RETURN> ❑ - ❑ Collect winnings"

200 PRINTTAB(4,24)"Press the space-bar to
continue ...";:*FX15,1

Lines 140 to 200 set up the first screen the
player sees-the instructions that are needed
for playing the game.

PREPARING THE GAME
The symbol ❑ denotes the underline
character:

210 REPEATUNTILGET=32:MODE2:VDU19;7;
0;19,7;0;0,23;8202;0;0;0;19,8,1;0;19,9,1;
0;19,10,1;0;19,11,1;0;19,12,1;0;19,13,9;0;
19,15,12;0;

220 DIMF$(6),R1%(15),R2%(15),R3%(15),
W%(9)

230 FORA%= 0T06:REPEAT:READB%:F$(A%)
= F$(A%) + CHR$B%:UNTILB%=13:F$
(A%) = LEFT$(F$(A%),LEN(F$(A%)) -1):
NEXT

240 DATA18,0,7,237,238,8,8,10,239,240,13,
18,0,2,233,234,8,8,10,235,236,13,18,0,4,
246,247,8,8,10,248,249,8,11,18,0,5,250,
13,18,0,1,241,242,8,8,10,243,244,8,11,18,
0,2,245,13

250 DATA18,0,2,251,252,8,8,10,253,254,8,11,
18,0,7,255,13,18,0,3,224,225,8,8,10,226,
227,13,18,0,1,228,229,8,8,10,230,231,8,
11,18,0,2,232,13

260 FORA% = 0T015:READR1%(A%),R2%
(A%),R3%(A%):NEXT

270 DATA0,1,2,3,5,6,6,2,0,5,3,4,4,6,5,6,4,3,1,
2,0,3,0,5,2,1,4,6,5,1,0,6,6,1,4,3,2,0,1,5,3,
2,4,6,6,6,4,5

280 FORA%= 0T09:READW%(A%):NEXT
290 DATA200,150,100,80,60,40,30,20,10,0

300 PROCwinlines
1040 DEFPROCwinlines:VDU5:MOVE64,992:

PRINTSTRING$(3,F$(0) +
CHR$11 + CHR$32);:GCOL0,6:
PRINT"E ❑ £2.00"

1050 MOVE64,896:PRINTSTRING$(3,F$(1) +
CHR$11 + CHR$32);:GCOL0,6:PRINT

❑ 0.50":MOVE64,800:PRINT
STRING$(3,F$(2) + CHR$32);:GCOL0,6:
PRINT" ❑ ❑ E1.00"

1060 MOVE64,704:PRINTSTRING$(3,F$(3)+
CHR$32);:GCOL0,6:PRINT" ❑ ❑ f0.80":
MOVE64,608:PRINTSTRING$(3,F$(4) +
CHR$32);:GCOL0,6:PRINT"LEf0.60"

1070 MOVE64,512:PRINTSTRING$(3,F$(5) +
CHR$32 + CHR$11);:GCOL0,6:PRINT
"L ❑ £0.40":MOVE64,416:PRINT
STRING$(3,F$(6) + CHR$32);:GCOL0,6:
PRINT" ❑ ❑ E0.30"

1080 MOVE64,320:PRINTSTRING$(2,F$(5) +
CHR$32+ CHR$11);" ❑ ❑ 0" ;:GCOL0,
6:PRINT" ❑ ❑ f0.30":MOVE64,224:PRINT
STRING$(2,F$(6) + CHR$32);"E ";:
GCOL0,6: PRINT" L:10 f 0.20"

1090 MOVE64,128:PRINTF$(6);
"0 ❑ 0111[10111";:GCOL0,6:PRINT
"Elilf0.10":GCOL0,15:MOVE64,32:
PRINT" ❑ ❑ Space to start"

1100 * FX15,1
1110 REPEATUNTILGET = 32:VDU4:CLS:

ENDPROC

After setting up the graphics mode in Line
210, four arrays are DIMensioned.

The next section of program contains DATA
for the arrays. F$ contains the information
needed to colour each fruit-they are PRINTed
after a VDU 5, with the colour set by GCOL0,
followed by the colour number, or in charac-
ter codes. R1%, R2%, and R3% contain the
contents of the reels, each number corre-
sponding to a fruit. The final array, W%,
contains the amounts paid out, in ascending
order.

Line 300 calls PROCwinlines-to be found
at Lines 1040 to 1110-which sets up a
display telling the player what the winning
combinations are.

DRAWING THE MACHINE
310 COLOUR130:CLS:COLOUR128:VDU28,3,

15,6,4,12,28,8,15,11,4,12,28,13,15,16,4,
12,26:COLOUR130:COLOUR3:PRINTTAB
(5,1);"SUPERFRUIT"

320 VDU5:FORA%=1T05:VDU29,
224+ (A%-1)*96;224;:MOVE0,0:GCOL
0,7 + A%:FORA = 0T02*PI ❑ STEPPI/15:
MOVE0,0:PLOT85,30"SINA,30*COSA:
NEXT:MOVE - 32,8:GCOL0,0:PRINTA%:
NEXT

330 VDU29,0;0;:GCOL0,4:FORA%=0T02:

MOVE192 + A%*320,384:PROChbox:NEXT
340M%= 100:H%= TRUE:1% = TRUE:J%=

TRUE:P%=RND(16)-1:Q%=RND(16
-1:R%=RND(16)-1:N%=0

350 @% = &2020A:GCOL0,4:MOVE256,160:
PRINT"NUDGE":MOVE704,152:GCOL0,1:
PRINT"GAMBLE":GCOL3,4: MOVE256,60:
PRINT"Credit ❑ f";M%/100

Line 310 clears the screen to green, sets up the
white reels, and PRINTs the title. The nudge
lights are drawn in Line 320, while the blue
hold boxes are drawn in Line 330.

Line 340 initializes a series of variables.
H%, 1%, and J% are hold flags for the reels-
FALSE if held, TRUE if free. M% is money; P%,
Q% and R% are pointers to each reel, and N% is
the number of nudges available.

Finally, in this section of program, Line
350 sets the format-two decimal places-of
the money display.

If you RUN the program at this stage it will
stop with an error in Line 330 as PROChbox is
undefined so far.

SETTING UP THE GRAPHICS
10 PMODE3,1:PCLS:CLS
20 DIM B(12),C(12),A(12),BR(12),S(12),

PL(12),P(12),R1(15),R2(15),R3(15),W(9),
H(29)

30 DRAW"BM16,0C2L2GLG4DG4D2R7FRFR3
ER ER7U2H4UH4LH":PAI NT(14,10):DRAW
"BM17,2C1 F4DF"

40 GET(0,0) - (31,15),B,G
50 DRAW"BM62,0C2L6GL6G2C4L3GLGLGFD

GLGLGLGFRFRFR3ERERER5FRFR3ERERE
HLHLHL5HEHLHLH":PAINT(48,8):DRAW
"BM41,8C1 FRFRFRNFUR2UR2URBM -4,
-2HBM-5,7HBR17H"

60 GET(32,0) - (63,15),C,G
70 DRAW"BM80,0C3G8R17NH8BD2LNL15GL

GLGLGL3NH3RFR7E":PAINT(80,4):PAINT
(80,13)

80 GET(64,0) - (95,15),A,G
90 DRAW"BM96,0C4R30BD2L30DR30BD6U

BU2HL4D2NR4D2BL7U3HL3GDNR4D2BL1
2R4EHEHL5D2NR2D2BD2R30DL30BD2R3
0"

100 GET(96,0) - (127,15),BR,G
110 DRAW"BM148,0C2GL3GC4LHLGL3G4RF

3RF5RFR3ERE4UER2E3LH3LHLGL5GL":
PAINT(144,8):DRAW"BM138,3C1RBR13RB
DBL10LBDBL5LBDBR8RBR9RBDBL4LBL
13LBDBR10RBR4BDLBL9LBDBR4RBG2LB
R6R"

120 GET(128,0) - (159,15),S,G
130 DRAW"BM186,0C3L2GL5DGR6DF4DG2L

G3LGL5H6E5R2":PAINT(176,8):DRAW"BR
6BDC1D2F"

140 GET(160,0) — (191,15),PL,G
150 DRAW"BM218,0C2L4DL3D3F4DF4LGLGL

13HLHUE7REU2":PAINT(208,8):DRAW
"BM211,6C1DF2"

160 GET(192,0) — (223,15),P,G

The Fruit Machine is drawn in PMODE3, and
the GET and PUT commands are used to
display the fruit symbols on the reels. The
arrays needed for the fruit symbols are
DIMensioned in Line 20—B for the bell, C, for
the cherry, A for the acorn, BR for the bar, S
for the strawberry, PL for the plum, and P for
the pear. R1, R2 and R3 are the contents of the
three reels; W contains the win amounts; and
H is used for holding the reels.

Each pair of lines from Line 30 to Line 160
DRAW the fruit and then GET them into the
appropriate array.

INSTRUCTIONS
170 B$= CHR$(128):CLS:PRINT@9,

B$"superfruit"B$
180 PRINT" YOU HAVE $1 TO START WITH.IT

IS 10C A GAME AND YOU PLAY UNTIL 111
❑ E YOU HAVE NO MONEY.";

190 PRINT"controls:—":PRINT" <SPACE > "
TAB(8)"—SPIN REELS/GAMBLES":PRINT
"<1 > "TAB(8)"—CANCELS HOLDS"

200 PRINT" <2> "TAB(8)"—HOLD
LEFT REEL":PRINT" <3> "TAB(8)
"—HOLD MIDDLE REEL":
PRINT" < 4 > "TAB(8)"—HOLD RIGHT
REEL"

210 PRINT" <5> "TAB(8)"—NUDGE
LEFT REEL UP":PRINT" <6 > "
TAB(8)"—NUDGE MIDDLE REEL UP":
PRINT" <7> "TAB(8)"—NUDGE RIGHT
REEL UP"

220 PRINT" <8> "TAB(8)"—NUDGE
LEFT REEL DOWN":PRINT" <9>"
TAB(8)"—NUDGE MIDDLE REEL
DOWN":PRINT" < 0 > "TAB(8)
"—NUDGE RIGHT REEL DOWN":
PRINT" < ENTER > "TAB(8)
"—COLLECT WIN";

Lines 170 to 220 display the instructions on
the text screen.

PREPARING THE MACHINE
230 IF INKEY$ < > " LI" THEN 230
240 FORA = 0T015:READR1(A),R2(A),R3(A):

NEXT
250 DATA 0,1,2,3,5,6,6,2,0,5,3,4,4,6,5,6,4,3,

1,2,0,3,0,5,2,1,4,6,5,1,0,6,6,1,4,3,2,0,1,5,
3,2,4,6,6,6,4,5

260 FORA =0T09:READW(A):NEXT
270 DATA 200,150,100,80,60,40,30,20,10,0
280 GOSUB4000
290 SCREEN1,0:PCLS3:DRAW"BM84,4C2S20

LDRDLBR2NU2RU2BRND2RDLBEBRNRD

NRDRBRU2RDLFBRUNRURBRND2RDLFB
RNU2RU2BRD2BR2U2LR2"

300 FORK = 0T02:LINE(40 + 64*K,20)
— (87 + 64 * K,115),PRESET,BF:NEXT

310 FORK = 0T02:DRAW"BM" + STR$
(40+64*K) +",124S16R12D4L12U4BFD2
BRUNLUBR2RD2LU2BR3D2RBR2U2S8RF
D2GL":NEXT

320 GET(38,122) — (91,143),H,G
330 COLOR4:FORK =1T05:LINE(10 + K*16,

158) — (21 + r16,169),PSET,BF:NEXT
340 DRAW"BR30C1S24U2F2U2BRD2RU2BRD

2S8RE2U2H2LS24BR3LD2RUBENRDNRD
R"

350 GOTO 350
4000 CLS:PRINT@11,"winlines"
4010 PRINT@65,"BAR DEED BARE ❑

0 BAR":PRINT" C1 ACORN 0 ❑ ACORN
❑ EACORN":PRINT"IIIPLUM111 ❑ ❑

PLUME ❑ ❑ PLUM"
4020 PRINT" ❑ STRWBYIIISTRWBYD

STRWBY":PRI NT" D PEAR ❑ ❑ ❑ PEAR ❑

1=ICIPEAR":PRINT"E BELLED 0 BELL
0 0 LIBEL"

4030 PRINT" CHERRYDCHERRYE

CHERRY":PRINT" E BELL ❑ 0 0 BELLO
D ❑ D ❑ —":PRINT" ❑ CHERRY D
CHERRY ❑ 	—":PRINT"ECHERRYD
❑❑ -1=10111D ❑❑ —"

4040 FORA= 0T09:IF A<7 THENPRINT
@89+ A * 32,USING"$$# • # # ";W(A)/
100;:GOT04060

4050 PRINT@89+ A*32,USING
"$$ #•# # ";W(A —1)/100

4060 NEXT
4070 PRINT@449,"PRESS SPACE TO

CONTINUE"
4080 IFINKEY$ < > "E" THEN4080
4090 RETURN

Lines 240 and 250 set up the reels—each
number represents one of the fruit. Lines 260
and 270 set up the win values. Line 280
jumps to the subroutine starting at Line 4000
which displays the winning lines and their
values.

Lines 290 and 340 initialize the screen.
Notice that Line 290 switches on the high
resolution screen for the first time so the
completed machine appears.

You can't have a Cliffhanger without
a cliff* It's now time to slip on the
slope which Willie will have to scale,
plus the sky above it and the land
below

The titles and credits have rolled. The over-
ture has played. Now's the time to roll on the
scenery-or in the case of Cliffhanger,
INPUT's computer game-to scroll on the
scenery.

This is a fairly simple process. You already
have the data which defines the profile of the
slope. Above the slope is sky and below it is
the land-and they are simply a matter of
filling in colours. But then you have to scroll
off the instruction page and scroll on the sky
and slope.

The routine listed below scrolls on the
scenery.

org 58303
Isi 	Id a,16

Id (57328),a
Id ix,58034
Id b,32
push bc
call scl
Id a,0
Id (57329),a
Id a,(ix+ 0)
dec ix
cp 33
jr nz,lv
dec b
Id a,(57328)
dec a
Id (57328),a
Id a,1
Id (57329),a

Iv 	Id a,(57328)
Id b,a
Id h1,31
Id a,45
call Ig
Id bc,57264
Id a,(57329)
cp 1
jr nz,3
Id bc,57272
Id a,44
call print
Id a,(57328)
Id b,a
Id a,23

elb 	ret
org 58155

me 	"
org 58217

print

And you need some extra data:

5 CLEAR 57000
10 FOR n=57973 TO 58034
20 READ a: POKE n,a: PRINT n;" ";CHR$ a
30 NEXT n
40 DATA 83,67,79,82,69,45,48,48,48,48,48,48,

76,73,86,69,83,45,53,71,65,77,69,32,79,86,
69,82,32,33,33,33,35,35,33,35,35,35,33,35,
35,33,35,33,35,35,35,35,33,35,33,35,35,35,
35,33,35,35,33,35,35,35

SETTING THE SCENE
The Y coordinate-16-of the top right of the
horizon is loaded in the first workspace
location, memory location 57,328. Then the
last byte of the slope profile data is loaded into
the IX register pair. The last byte of the slope
profile data is the one that defines the slope of
the top right-hand end of the horizon, of
course.

The B register is loaded with 32 so that it
can be used as a counter to count across the 32
columns of the screen. This is then stored on
the stack.

The scl routine is called. This is the routine
that scrolls the screen to the left.

The second workspace, memory location
57,329, is going to be used as a flag to tell the
routine whether the slope is level or it is going
down. A 0 in this location means that the
slope continties flat. A 1 means that it is going
down. But to initialize it the contents of this
location are set to zero.

The Id a,(ix +0) instruction loads the
accumulator with the last byte of the contour
data. The zero offset is used here because the
indirect addressing with the IX register has to
be indexed. There is no Id a,(ix) instruction.
The IX register is then decremented so that it
points to the next byte of data.

The cp 33 compares the contents of the
accumulator with 33-the data byte that tells
the routine that the slope goes down. If the
contents of the accumulator are not 33-in

sub b
Id b,a
Id a,32
Id de,32
add hl,de
call Ig
pop bc
djnz 175
Id h1,49
Id b,12
Id a,41
Id ix,57973
call me
Id h1,113
Id b,7
call me
call elb
ret

scl 	Id h1,16384
Id b,216

Ipi 	Id c,31
Ipj 	inc hl

Id a,(hl)
dec hl
Id (h1),a
inc hl
dec c
jr nz,lpj
inc hl
djnz Ipi
ret

Ig 	push bc
Id bc,15616
call print

Id de,32
add hl,de
pop bc
djnz Ig
ret

PICKING UP THE PROFILE DATA
SCROLLING IT ON

THE EDGE GRAPHICS
COLUMNS OF COLOUR

REDEFINING CHARACTERS

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

other words the slope continues flat—jr nz,lv
jumps straight on to the lv routine.

If it is going down the B counter and the Y
coordinate of the landscape—stored in
57,328—are decremented. And the flag in
57,329 is set to 1. Then the program is ready
to go into the lv routine.

THE LV ROUTINE
The Y coordinate of the landscape is loaded
into the B register. This has to be done via the
accumulator as the B register cannot be
addressed indirectly from a memory location,
only from a register. There is no Id b,(57328)
instruction.

HL is then loaded with 31, the screen
position of the top right-hand corner of the
screen. And the accumulator is loaded with
45, the number that will give cyan on cyan.
The Ig routine is then called. This prints a
block of spaces from the HL position down-
wards, in the colour specified by A, B spaces
long.

When it returns, Id bc, 57264 loads BC with
the position of the image data for sloping
ground. The slope/flat flag in 57329 is then
loaded into the accumulator and compared to
the number one.

If the contents of the flag are not 1—that is
they are 0 and the slope profile is flat—the jr
nz,mp jumps straight to the mp routine. If the
flag is set to 1 and so the slope is going down,
Id bc,(57329) reloads BC with the address of
the image data for sloping ground. You
should be able to pick these two pieces of
image data out of the graphics data supplied
in the last part of Cliffhanger.

Whether the landscape is sloping or flat,
the processor now enters the mp routine.

THE MP ROUTINE
To print the character squares which mark the
border between the sky and the land needs
two colours. So Id a,44 sets the ink colour to
green. The background colour remains cyan.
Then the print routine given in part one of
Cliffhanger is called again which prints the
top of the landscape.

The Y coordinate of the horizon is then
loaded into the B register and it is subtracted
from 23 to give the number of character

squares left below the horizon line. The result
appears in A and is then transferred back into
B where it is required when the Ig routine is
called. Note that the full 24-line screen
including the two edit lines usually reserved
by the system is being used.

The Id a,32 sets the colour to green on
green. Then 32 is loaded into DE and added
to the print position in HL. This moves the
print position one character square down the
screen. The Ig routine is then called to print
the block under the horizon in green.

The pop bc pulls the column counter back
off the stack. Then djnz decrements it and
jumps back to the beginning of the whole
procedure again to cope with the next
column.

SCORING
On the screen you also need an area set aside
to print the score in. So HL is loaded with 49,
to set the print position. The string length,
12, is loaded into B. And A is set to 41, to give
blue on cyan.

IX is then loaded with 57973, which is the
position of the memory byte being used to
store the score. And the me routine given in
part one of Cliffhanger is called again. This
translates the score into ASCII characters and
prints them on the screen.

After that the elb routine is called. This is
the extra level bits routine which adds the
snakes and the pits when you move onto a
higher level. The routine hasn't been written
yet and you will see that the elb label marks a
single ret at the end of this routine. So for now
the processor will return straight away. This
ret will be overwritten later though when the
proper elb routine is given.

When the processor returns from the elb
routine it hits another ret. At the moment this
returns the processor to BASIC. But when
the whole program is finished it will return to
the main driver program which will call the
next routine in the game.

JUST SCROLLING
The label scl marks the beginning of the scroll
routine. This scrolls the instruction page off
and the slope on sideways.

HL is loaded with 16,384, the start of the
display file. B is loaded with the number of
rows in the display file and attribute file. And
C is loaded with 31, the number of columns
per row.

The display file pointer in HL is then
incremented. So the Id a,(h1) loads the cont-
ents of the second screen location into the
accumulator. HL is then decremented so it
points to the first screen location and the
contents of the A are loaded back there.

The HL pointer is then incremented again
and the column pointer in C is decremented.
And if this hasn't been decremented to zero at
the end of the screen, jr nz,lpj loops back to
deal with the next column. But if the end of
the screen has been reached the pointer in HL
is incremented again.

The djnz instruction always acts on the BC
register pair. And as C is always zero at this
point, it effectively decrements B and loops
back to the beginning of the routine to scroll
the next row. When it has scrolled the last
row, B has counted down to zero and the ret
returns the processor to the place where the
scroll routine was called.

THE LG ROUTINE
The push bc stores the counter in BC on the
stack. BC is then loaded up with 15,616. This
is the address of the beginning of the
Spectrum's character set—and it starts with a
space. So when the print routine is called
again, it prints a space of the appropriate
colour on the screen. 32 is loaded into DE and
added to HL to move the print position down
one 1 character square.

The pop bc gets the counter back again and
djnz Ig decrements it and jumps back to print
the next character square down the screen,
unless the last character square has been dealt
with. In that case the processor moves onto
the ret and returns to the place the Ig routine
was called from.

•

Unfortunately, it is very difficult to scroll on
the scenery on the Commodore. It is easy to
make it scroll between scenes once the first
one has been put up—as all the scenes are
basically the same it is just a matter of taking
what comes off one end of the screen and
putting it back on at the other. But putting a
fresh bit of scenery on the screen is a different
matter. So it is going to be dropped like a flat
as soon as the instruction page has
disappeared.

But first you need to paint the flat. The
following BASIC program carries the cliff
data. It puts it up on the screen so that you can
see the outline of the scene. It won't make
much sense at the moment because it is put up
as ASCII strings. But you will be able to see
what goes where.

The BASIC program then stores the
screen in another area of memory where the
machine code can pick it up. When it does, it
will convert it into ROM graphics so what is
shown on the screen then actually looks like a
cliffl

10 PRINT"E]galgigiggglAggigi

giggglgOgggaggi ❑ ff❑ iff ❑
fflafffEnflafffaffECINCI
if ❑ iff";

20 PRINT" ❑ f❑ ffff ❑ E"
30 FORX =0T039:F= 0:FORY = 01 .024
40 SC =1024:CL = 55296
50 P=INT(RND(1)*3)+1:IFP=1THENV= 30
60 IFP =2THENV =31
70 IFP =3THENV =63
80 C= X + Y*40:IFF =1THENPOKESC + C,V:

POKECL + C,0
90 IFPEEK(SC + C)=28ORPEEK(SC + C)= 29

THENF=1
100 NEXTY,X
110 PRINT"I§MILIVESMIIIII 111111

LEVELM 11 11 II IIIISCOREIJ 00000
01§1"TAB(27)"g1 pni pj ="

120 FORI 0T0999:P= PEEK(SC+1):POKE
13312+ I,P:NEXT

130 PRINT12IFINISHED":STOP

You can SAVE the data by using your machine
code monitor. The data table runs from
13,312 for 999 bytes.

PAINTING THE SCENERY
The following routine picks up the scenery
data and puts it on the screen as part of the
game:

ORG 25344
LDA # $00
STA $FB
LDA # $04
STA $FC
LDA # $34
STA $FE
LDA # $00
STA $FD
LDY # $00
LDA ($FD),Y
STA ($FB),Y
JSR $5150

You can assemble and SAVE this program now,
but do not call it. It calls the subroutine given
below and without that in memory it will
crash.

PAINTING BY NUMBERS
The first four instructions set the screen
pointer. And the second four establish ano-
ther zero-page pointer for the data.

Then the Y offset is set to zero because
you're going to increment the zero-page. And
the byte pointed by the data pointer is loaded
into the accumulator and stored in the screen
position pointed. The routine at $5150 is then
called. This is given below. What it does is set
the colours.

The next six instructions increment the
pointers. The BNE instructions in that part of

INC $FB
BNE $631F
INC $FC
INC $FD
BNE $6325
INC $FE
LDA $FB
CMP #$E8
BNE $6312
LDA $FC
CMP #$07
BNE $6312
RTS

the routine check whether the low byte of the
pointer has reached the end of page and jumps
the subsequent INCs—which increment the
high byte—if the end of the page has not been
reached.

The six instructions after that check to see
if the end of the screen has been reached. And
exits the program if it has been. The RTS here
will be overwritten when the rest of the
program is added.

ADDING COLOUR
The following routine fills in the colour:

OR G 20816
LDY # $00
LDA ($FB),Y
STA $0384
LDA $FC
CLC
ADC # $D4
STA $FC
LDA $0384
CMP #$1C
BEQ $5181
CMP #$10
BEQ $5181
CMP #$3F
BEQ $5186

The subroutine starts off by loading up the
same byte of data that the main program has
been dealing with and stores it in $0384. This
is a temporary store because the accumulator
has to be used for something else just for the
moment.

The next four instructions add $D4 to the
high byte of the screen pointer in $FC. This
shifts the pointer from its position in the
graphics screen—which starts at $0400—to
the corresponding position on the colour
screen—which starts at $D800.

Then the data byte is loaded back from
$0384 into the accumulator. Then it checks
for various control codes in the data. Depend-
ing on the control code found, the processor
branches to the instruction at $5181 or the
one at $5186.

The instruction at $5181 is LDA # $05
which loads the accumulator with the ink
colour green. And LDA # $01 at $5186 loads
up ink colour white. This gives the green of
the grass and the white is the white of the cliff
itself. The two tones of the grass and the cliff
are given by graphics characters which mix
the ink colour with the paper.

If none of the control characters are picked
up, the accumulator is loaded with red. So
everything that is on the screen, which is not
green or white is coloured red.

No, this doesn't mean the sky is red. Willie

is not a shepherd. Red is the ink colour so it
only appears when data is written on the
screen. So the number of lives, level and score
are written in red, but the sky is in the paper
colour, grey. Unfortunately, it was rather
overclouded on the day Willie decided to
have his picnic—in the Commodore version
at least.

If the character is printed in white or green,
the processor jumps back to the instruction at
$5177, which is the one after the red colour is
set for the rest of the data. This stores the
chosen colour on the colour screen in the
appropriate place.

The next four instructions subtract $D4
from the high byte pointer in $FC, to move it
back from the colour screen to the graphics
screen. So when the RTS returns to the main
routine the next graphics character can be
picked up and put on the screen.

Rather a lot of BBC programming has to be
given at this point. You need a couple of
routines to deal with user-defined graphics
and a third to define the colours. Don't forget
to key in PAGE = &3000 and NEW before you
kpt in thic nrnoram

30 FORPASS = 0TO3STEP3
40 P%= &17D4
50 [OPTPASS
60 .Chardef
70 LDA # 23
80 JSR&FFEE
90 TXA
100 JSR&FFEE
110 LDA#0
120 STA&71
130 TYA
140 ASLA
150 ROL&71
160 ASLA
170 ROL&71
180 ASLA
190 ROL&71
200 CLC
210 ADC # &34
220 STA&70
230 LDA&71
240 ADC # &15
250 STA&71
260 LDY# 0
270 .Lb1
280 LDA(&70) ,Y
290 JSR&FFEE
300 INY
310 CPY#8
320 BNELb1
330 RTS
340 .Pt

640 .Lb3
650 LDA&72
660 CLC
670 ADC # 224
680 TAX
690 LDY&72
700 JSRChardef
710 INC&72
720 LDX&72
730 CPX # 23
740 BNELb3
750 RTS
760]NEXT
770 DATA6,1,5,0,3,

7,4,6,2,1,5,0,3,7,6,6
780 FORA% = &1845

TO&1854:READ?A%:
NEXT

790 FO R PASS
= 0TO3STEP3

When you have keyed in this program SAVE it,
then RUN it. To test it, the rest of the program
must be in memory then key in the following
instructions:

PAGE = &2000
NEW
MODE 2
CALL &182D
FOR A% = 224 TO 255:VDU A%:NEXT

This tests the first routine. To test the second
key in:

FOR A% = 128 TO 211:CALL &1803:NEXT

And to test the third routine:

CALL &1855

USER DEFINED GRAPHICS
The first routine redefines some of the char-
acter set as user-defined graphics. As always
when you are dealing with the screen, the
routine at &FFEE is called and directed by

CMP #$1E
BEQ $5186
CMP #$1F
BEQ $5186
LDA # $02
STA ($FB),Y
LDA $FC
SEC
SBC # $D4
STA $FC
RTS
LDA # $05
JMP $5177
LDA # $01
JMP $5177

350 STA&72
360 TXA
370 PHA
380 TYA
390 PHA
400 LDA&72
410 AND # &80
420 BNELb2
430 LDA&72
440 JSR&FFEE
450 JMPLb4
460 .Lb2
470 LDA&72
480 AND # &7F
490 TAY
500 LDX# &FF
510 JSRChardef
520 LDA# &FF
530 JSR&FFEE
540 .Lb4
550 PLA
560 TAY
570 PLA
580 TAX
590 LDA&72
600 RTS
610 .Def
620 LDX# 0
630 STX&72

800 P%= &1855
810 [OPTPASS
820 .Colour
830 LDX # 0
840 .Lb5
850 LDA # 19
860 JSR&FFEE
870 TXA
880 JSR&FFEE
890 LDA&1845,X
900 JSR&FFEE
910 LDA#0
920 JSR&FFEE
930 JSR&FFEE
940 JSR&FFEE
950 INX
960 CPX#16
970 BNELb5
980 RTS
990]NEXT

the parameter in A. A value of 23 in A tells the
routine that you want to redefine a character.

The parameter in X when you enter this
program is the ASCII code of the character in
the machine's character set which you want to
redefine. And the parameter in Y is the
number of the user-defined graphic you want
it redefined as.

So the contents of X are transferred into A
and the &FFEE routine is called again. This
tells the machine which character you want to
redefine.

The new data for the user-defined graphic
is stored in a data table. Characters take up an
eight by eight square. So the data for each
character takes up eight bytes—which are
each eight bits long. So to count along the
data table, you have to multiply the new
character number by eight. The result is
going to be stored in &70 and &71.

The number in the Y register must be less
than 255—that's the capacity of an eight-bit
register. So the high byte of the answer is set
to zero before you start.

The contents of the Y register is than
transferred into the accumulator where it can
be manipulated. The contents of the ac-
cumulator is then shifted to the left and the
contents of &71, the high byte of the answer
store, are than rotated to the left.

SHIFTS AND ROTATES
When performing a multiplication on a num-
ber which might yield a two byte result, the
different properties of a shift and a rotate
become very useful.

A shift left moves all the bits one place to
the left, effectively multiplying the contents
by two. Bit zero is filled with 0 and the
overflow from bit seven goes into the carry
flag.

A rotate left also shifts all the bits one place
to the left. But it loads bit zero with the
contents of the carry flag and rests the carry
flag with the overflow from bit seven. In other
words, it shuffles—or rotates—all the bits
round, rather than just shifting them along.

Using the two of them in conjunction, as
here, effectively gives a 16-bit shift. If there is
any overflow from the ASL instruction it is
automatiacally picked up by the ROL through
the carry flag.

Here the ASL and ROL combination is used
three times, multiplying the Y parameter by
eight. Then &34 is added to the low byte and
&15 is added to the high byte. The data table
starts at &1534.

ENTER THE DATA
The Y register is then loaded with zero, then
the accumulator is loaded indirectly from the

location in the data table pointed to by &70
and &71, offset by Y. The &FFEE routine is
called yet again and the first byte of UDG
data is entered.

Y is then incremented, compared to 8 and
the BNE Lbl branches back to enter the next
byte of the data table if Y hasn't clocked up to
eight yet.

When it has clocked up that far, the
processor hits the RTS and exits the routine.

You will notice that this routine redefines a
character and is followed by nine parameters.

The first is the number of the character to be
redefined and the next eight are the data for
the new character. This is exactly what is fed
into &FFEE subroutine and you'll find the 23
in line 70.

WHICH CHARACTER?
The next little routine decides whether a
ASCII character or a UDG is to be printed.
The character codes up to 127—the alphabet,
the numbers and the punctuation marks—are
going to be printed as normal but the codes

from 128 to 255 are going to be UDGs.
The first thing that has to be done is to

store the contents of A, X and Y. They may be
required later. A is stored in &72, then X is
transfered into A and and pushed onto the
stack and the Y register is transferred into A
and pushed onto the stack.

Then the contents of &72 is loaded back
into the accumulator and AN Ded with &80.
This checks to see if the most significant bit is
set—in other words, if the number in the
accumulator is greater than or equal to 128.

The AND instruction sets the zero flag if the
result of the AND is zero. So if the number in
A is 127 or less, the BNE instruction does not
branch and the processor continues. The
accumulator is again loaded with the contents
of &72 and that corresponding ASCII charac-
ter is output to the screen. Then the processor
jumps on to the routine that restores the
contents of A, X and Y.

But if the number in the accumulator is 128
or more, the BNE instruction branches the
processor onto the label Lb2, where the

accumulator is loaded up with the contents of
&72 yet again and AN Ded with &7F. This
resets the most significant bit to 0 and leaves
the rest of the bits alone, effectively subtract-
ing 128 from the ASCII to give the number of
the UDG required. This number is then
transfered into the Y register.

X is then loaded with 255 and the Chardef
routine above is called. This redefines charac-
ter 255 as the one you specify in Y. Then 255
is loaded into the accumulator and the
&FFEE routine is called. This prints the
redefined character 255 on the screen.

The rest of the routine, from Line 550 to
590, restores the contents of A, by reloading it
from &72 yet again, and X and Y by pulling
them off the stack.

STOCK CHARACTERS
Some UDG characters are going to be used
frequently during the program and you don't
want to have to define them every time they
are used. It would be much more convenient
if you could just go straight to central casting
and pull them out.

The routine carried in Lines 620 to 750
redefines characters 224 to 246 as UDGs 0 to
22. This leaves these characters permanently
changed for the duration of the game and they
can be printed up immediately at any time by
loading the accumulator with one of the
appropriate numbers and calling the routine
at &FFEE without having to go through the
whole rigmarole of redefining a character each
time.

The routine is initialized by loading X with
zero and storing that in the zero page location
&72. Once past the label Lb3 which marks the
beginning of a loop, the contents of &72 are
loaded back into the accumulator. Then 224 is
added to take it to the start of the characters to
be redefined.

The result of the additon is transferred into
the X register. Y is loaded with the contents of
&72 and the Chardef routine is called. This
redefines the character given by 224 plus the
number of the loop you're onto as the charac-
ter pointed to by the number of the loop.

The contents of &72 are then incremented
to move onto the next character. X is loaded
with the result so that it can be compared to
23. The processor branches back and rede-
fines the next character until it has gone
round the loop 23. Then it drops out and
returns.

COLOURING
Next the colour has to be defined. The
LDA # 19 and JSR &F FEE in Lines 850 and 860
acts like a VDU19, which changes the original
colour.

The value in X is then transferred into the
accumulator. This is the number of the loop
you're on and, when &FFEE is called, is the
number of the colour that is to be defined.

The new colour number is supplied by the
data in Line 770 and is picked up by the
LDA&1845,X in Line 890. Then &FFEE is
called. The VDU 19 instruction always ends
with three zeros which are left open for future
expansion. This is done by loading A with 0
and calling &FFEE three times.

X is incremented to move onto the next
colour and the next byte in the data table and
compared to 16 to see whether all 16 colours
have been defined. When they have the
processor leaves the loop and exits.

DISPLAY AND PLAY
This program prints up the first screen.

80 DATA 17,8,31,19,6
90 FORA% = &1877T0&187B:READ?A%:NEXT
140 DATA44,61,24,61,21,61,24,43,25,61,21,

47,13,51,12,51,14,54
150 FORA% = &187CT0&188D:READA$:

?A%= EVAL("&" + A$):N EXT
200 DATA239,239,0,239,241,240
210 FORA% = &188ET0&1893:READ?A%:

N EXT
250 FOR PASS = 0TO3STEP3
260 P%= &1894
270 [OPTPASS
280 .Screen
290 LDX # 0
300 .Lb1
310 LDA&1877,X
320 JSR&FFEE
330 INX
340 CPX # 5
350 BNELb1
360 LDX # 0
370 STX&70
380 .Lb2
390 LDA&187C,X
400 LSRA
410 LSRA
420 LSRA
430 LSRA
450 PHA
460 TAY
470 LDA&188D,Y
480 STA&71
490 LOAM 87C,X
500 AND # &F
510 TAX
520 .Lb3
530 LDA&71
540 JSR&FFEE
550 LDA # 8
560 JSR&FFEE
570 TXA

1000 LDA# 10
1010 JSR&FFEE
1020 .Lb6
1030 DEX
1040 BNE Lb3
1050 PLA
1060 INC&70
1070 LDX&70
1080 CPX#18
1090 BNELb2
1100 LDA # 241
1110JSR&FFEE
1120 RTS
1130]:NEXT

After you have SAVEd and RUN this program
key in:

PAGE = & 2000
NEW
MODE 2
CALL 6292

The result of CALLING this program will look
strange unless you have the graphics data in
memory at the same time. The colours are
going to look funny anyway—the program
that redefines them is going to be CALLED
later.

WHAT'S THE DATA?
Lines 80 and 90 READ in the DATA which
selects colour 8 and moves the cursor to its
start position at 19,6. The DATA in Line 140
supplies details of the slope encoded bit by
bit. Bit seven is not used. Bits six to four
specify which way the slope is going next. Bit
six set to 1 means it stays level. Bit five set to 1
means that it is going left and bit four set 1
means that it is going right. On the Acorn
computer's screen the slope is doubled back
on itself to give Willie enough height to scale.

The last three bits stand for the number of
character squares in the direction specified.

The DATA in Line 200 is the character data.
These numbers define the shape of the top of
the slope on the screen.

SLOPING OFF
The routine in Lines 290 to 350 set the colour
and position the cursor. The LDA&1877,X
picks up the DATA given in Line 80 which is
then output through the screen routine by the
JSR&FFEE. When the first data byte 17 is
output it gives a VDU 17, so the colour is
defined as the following byte which is 8. And
colour 8 has been redefined in the routine
above to COLOUR 2 which is green. The
background colour stays as it was.

The 31 in the DATA gives a VDU 31, which
positions the cursor at the point specified by
the two bytes that follow.

The main routine starts with Line 360.
Line 390 reads in the display data. To isolate
the direction data in bits six to four, four
logical shifts right are down. This shifts bit
four into bit zero, bit five into bit one, bit six
into bit two and shoves bits zero to three out
of the register. Line 450 saves the direction
data by pushing it onto the stack.

Line 460 transfers the same direction data
into the Y register so that it can be used for
indexing. And Line 470 loads up the byte of
character data. This is stored in &71.

The display data is loaded up again in Line
490 and it's AN Ded with F to isolate bits zero
to three. The result is then transferred into X
so that it can be used as an index.

The character byte just stored in &71 is
output to the screen by Lines 530 and 540.
Lines 550 and 560 then load up 8 and output
that to the screen. This moves the cursor back
to the position it has just printed in.

The index is transferred into A and stored
on the stack. Then A is loaded with &86 and
the routine at &FFF4 is called. This reads the
position of the cursor and returns the X and Y
values in the appropriate registers. The Y
values is stored in &72.

The cursor is then moved forward again by
loading 9 into A and calling &FFEE. This
may seem a little unnecessary as the Y
coordinate is the same in the next position
along the screen. But the print position may
have been at the end of the screen and cursor
would have moved down a line.

Then, lo and behold, in Lines 650 and 660
the cursor is moved back again! But this is
inside the loop that prints the green spaces
under the slope, so in this loop the cursor has
to be shifted back to the same position—and
then moved down one line—at the beginning.

The move down one line is done by loading
A with 10 and calling &FFEE. Then charac-
ter 224 is printed on the screen. This has been
redefined as a solid block. Y is then incremen-
ted and the loop is executed again until it
reaches 30 which means the cursor has
reached the bottom of the screen.

Lines 750 to 790 return the cursor to its
original position. The X index is then pulled
off the stack again and transferred back into
the X register. The direction data byte used to
draw the top of the slope is then pulled off the
stack and pushed back on again. This copies it
back into A and leaves it on the stack.

WHICH WAY NOW?
A series of ANDs look at the state of the
direction data and decide which way the slope
is going next. AND # 1 looks at bit zero and
BEQ branches if it is not set.

If it is set, the slope is continuing right and

580 PHA
590 LDA # &86
600 JSR&FFF4
610 STY&72
620 LDA # 9
630 JSR&FFEE
640 .Lb7
650 LDA # 8
660 JSR&FFEE
670 LDA # 10
680 JSR&FFEE
690 LDA # 224
700 JSR&FFEE
710 INY
720 CPY # 30
730 BNELb7
740 LDA # 31
750 JSR&FFEE
760 TXA
770 JSR&FFEE
780 LDA&72
790 JSR&FFEE
800 PLA
810 TAX
820 PLA
830 PHA
840 AND#1
850 BEQLb4

860 LDA # 9
870 JSR&FFEE
880 .Lb4
890 PLA
900 PHA
910 AND#2
920 BEQLb5
930 LDA # 8
940 JSR&FFEE
950 .Lb5
960 PLA
970 PHA
980 AND# 4
990 BEQLb6

the branch is not made. A is closed with 9 and
the screen routine is called. This moves the
cursor to the right.

Lines 890 and 900 copy the direction data
back into A and it is AN Ded with 2 to check
whether bit one is set. If it's not, the processor
branches forward. If it is, the slope is going to
the left* So A is loaded with 8 and the screen
routine is called. This moves the cursor to the
left*

Lines 960 and 970 copy the direction data
back into A again, then AND # 4 checks to see
if bit three is set* If it's set, A is loaded with 10
and the screen routine is called again* This
moves the cursor down.

The counter in X, which is the number of
spaces that the slope continues in any parti-
cular direction is decremented, and the pro-
cessor loops back if it hasn't counted down to
zero*

If it has, that particular section of the slope

is finished and the processor moves on. The
main loop counter in &70 is then incremen-
ted* This was intialized to zero at the start of
the main loop in Lines 360 and 370. Its
contents are now loaded up into the X register
and compared to 18—there are 18 distinct
sections in the slope. If the counter has not
counted up that far, the processor branches
back and starts on the next section of the
slope* If it has, the processor continues*

A is loaded with 241 and the screen routine
prints character 241 on the screen* This is the
last character of the slope and is one of the
UDGs you redefined earlier.

Ital
The following program scrolls on the
dragon's scenery* This is a bit different from
that on the other machines because of the
limitations of the Dragon and Tandy's colour
set* With green grass on the slope and a blue

sea, you have little alternative but to have a
yellow sky! But then it is a very hot day.

	

0 R G 	19109

	

JSR 	M0DE

	

JSR 	GCLS

	

LDX 	# 5631

	

LDY 	# 17503

	

LDB 	# 32
LOOP PSHS

	

JSR 	SCR0LL

	

JSR 	PRINT
PULS
DECB

	

BNE 	L00P

	

LDY 	# 17604

	

LDX 	#1569

	

JSR 	PRSUN
RTS

	

MODE EQU 	19182
GCLS 	EQU 	19161

	

SCROLL EQU 	19197
PRINT 	EQU 	19218

	

PRSUN EQU 	19267

Key this in, assemble it and SAVE it. But
don't EXECute it at the moment* It won't work
until the subroutines given below are in
memory as well.

MOVING THE MOUNTAIN
The first thing that has to be done is to put the
computer into graphics mode and select the
appropriate colour set. This is done by the
subroutine MODE—which is called by JSR
MODE. The screen is then cleared by jump-
ing to the GCLS routine which sets it all to
yellow.

LDX # 5631 loads the X register with the
left-hand end of the horizon which is at the
right-hand end of the screen before it is
scrolled on. LDY # 17503 loads the Y register
with the address of the start of the slope
profile data* And LDB # 32 loads B with 32,
the number of columns on the screen. The
column counter is then pushed onto the stack
for safekeeping.

Then the SCROLL routine is called, which
scrolls on the first column of the scenery*
After that the PRINT routine is called* This
prints the column of green below the horizon.

The column counter is then pulled off the
stack again and decremented* Then the
processor loops back to deal with the next
column unless, of course, the last column has
been completed.

If it has the processor continues and loads
Y with the start of the data for the sun. It
loads X with the position of the sun, and then
jumps to the PRSUN subroutine.

CURIOUS YELLOW
The GCLS routine clears the screen by
turning it all yellow—the sky colour in this
version of the game.

	

ORG 	19161
GCLS 	LDX 	# 1536

	

LDA 	# 85

	

GCLSI STA 	,X+
CMPX #7680
BLO GCLSI
RTS

The X register is loaded with the address of
the beginning of the screen. A is loaded with
85, which is the code for the colour yellow.

STA ,X + stores the yellow in the position
pointed to by X and increments X* X is then
compared to 7,680 the first location past the
end of the screen and the BLO GCLS branches
back to fill the next character square with
yellow if the end of the screen has not yet been

reached. When it has the routine returns to
where it was called from.

A LA MODE
The following four subroutines can be en-
tered together as they follow on from the
previous one.

To change graphics mode you have to
address the Video Display Generator chip
and the Synchronous Address Multiplexor
chip. These have to be set up for the new
graphics configuration you require*

A is loaded with the number 229 which is
stored in memory location FF22. This mem-
ory location controls the control lines for the
VDG and other output functions. Each bit of
this byte controls a separate function*

Here the number 229-11100101 in
binary—sets the control lines. The 1 in bit
seven sets the VDG to graphics mode, as
against alphanumeric* Bits six and five are set
to give graphics mode P3. Bit three switches
between colour sets-0 here gives colour set
one which comprises green, yellow, blue and
red.

Bits two, one and zero control have nothing
to do with the VDG chip. They control the
RAM size, single-bit sound and the printer
respectively and are usually set to 101. So
when you change the setting of the control
lines, make sure you put 101 back in these
bits—unless, of course, you have some good
reason for changing them.

When you change the settings of the
control lines of the VDG chips you have to
change the control register of the SAM chip
as well* The SAM chip has a 16-bit register
whose bits correspond to memory locations
FFCO to FFDF* You'll notice that there are

32 memory locations in that range. Each bit of
the control register is set by writing to the
odd-numbered byte associated with it, and
cleared by writing to the even-numbered
byte. And when you write to these bytes you
should put into them the same values you put
into the VDG control location* The bits that
are set here tell the SAM chip that the screen
starts at 1,536.

	

ORG 	19182

	

MODE LDA 	# 229

	

STA 	65314

	

STA 	65475

	

STA 	65477

	

STA 	65479
RTS

SCROLL ON
The SCROLL routine moves the scenery on
from the right.

SCROLL PSHS X,Y

	

LDX 	# 1536

	

LDY 	# 1537

	

SCRO LDA 	,Y+

	

STA 	,X +
CMPX #7679

	

BLO 	SCRO

	

PU LS 	Y,X
RTS

\ The SCROLL routine wants to use the X
and Y registers, but important values
have been stored in them on the main
program* So the first thing that has to

be done is push these onto the stack*
The X and Y registers are then

, loaded with the addresses of the first
and second memory locations of the

screen. The contents of the second screen
location is then loaded into first. Both address
pointers are updated. Then the value of X is
compared with the address of the one before
the last screen location and the processor
branches back to shift the contents of the
third screen location into the second, and so
on, if the last location has not been shifted.

You will notice that this not only scrolls
everything on the screen one location to the
left, it also brings the contents of the last
screen location on the left round into the last
screen location on the right, one line above.
This does not matter as the last column is
going to be overwritten with the new bit of
scenery that is about to appear.

And when the contents of the last memory
location on the screen has been moved into
the location before last, the contents of the X
and Y registers which were stored on the stack
at the beginning of the routine are pulled off
again. Then the processor returns to the point
where the SCROLL routine was called.

PRINTING THE NEW SCENERY
The extreme right-hand column of the screen
has to be dealt with separately. The new
scenery is printed in there by this routine:
PRINT PSHS X

LDA 	,Y+
SUBA 	# 33
BNE 	PRZ
PULS 	X
LEAX 	—256,X
PSHS 	X
PSHS
LDY 	#17536
LDB 	#8

PRI 	LDA 	,Y+

STA 	,X
LEAX 	32,X
DECB
BNE 	PRI
PULS

PRZ 	CLR 	,X
LEAX 	32,X
CMPX 	# 7680
BLO 	PRZ
PULS 	X
RTS

This time the data pointer held in the Y
register is going to be needed. And the
horizon height held in the X register might
have to be adjusted too—if the routine is not
on a flat bit of the cliff. But for now X has to
be stored on the stack.

The byte of data pointed to by the pointer
in Y is loaded into A and the pointer is
incremented. Then 33 is subtracted from it. A
33 in the data—which is the ASCII for !-
means that the slope continues flat. In the
programming it means that the BNE instruc-
tion following makes the processor branch to
PRZ label. If not and the slope is set to rise, the
processor continues.

The horizon height is then pulled off the
stack and 256 is taken away from it. 256 is
32 x 8, so the X pointer is moved up the
screen eight pixel lines or one character
square. This is stored back on the stack as it
will be needed when the next column has to be
dealt with. The data pointer is pushed onto
the stack to preserve it too.

The Y register is then loaded with 17,536
which is the start of the data for a sloping
piece of horizon. B is loaded with eight—it is
going to be used as a counter to count the
eight bytes of data that are needed to make up
the sloping section of horizon.

LDA ,Y + loads A with the first byte of data
and increments the pointer. This is stored in
the pixel position pointed to by the address in
X. In this mode the pixels are set two at a
time, by two bits of data. With two bits, there
are four possible values—one for each of the
four colours in the colour set. How these are
set is covered in the article on Better Graphics
on pages 248 and 249.

B is decremented and the processor bran-
ches back to pick up the next byte of data and
fill in the next line of pixels, unless B has been
counted down to zero and the last line has
been dealt with.

When B reaches zero, the slope data
pointer is pulled back off the stack and the
processor goes into the PRI routine. This is
the same routine it would have jumped to
earlier, if the slope had continued flat. It fills
in the solid blocks of green that form the land.

GOING GREEN
CLR ,X clears the contents of the address
pointed to by X. X, you remember, points to
the screen position you're dealing with and
clearing it—setting the contents to Mills it
with the colour green. LEAX 32,X adds 32 to
the value of X and moves the pointer one
position down the screen.

CMPX #7680 checks to see whether the
processor has reached the end of the screen. If
it hasn't, it branches back to next pixel line
with green. If it has, the horizon height is
pulled off the stack again—whether it has
been updated or not—and returns to the place
it was called from.

HERE COMES THE SUN
The print and data positions for the sun has
been given before the PRSUN routine is
given and the following routine fills in a patch
32 by 30 in the sky:

	

PRSUN LDB 	# 30
PRSUNI PSHS

	

LDB 	#4

	

PRSUNZ LDA 	,Y+

	

STA 	,X+
DECB

	

BNE 	PRSUNZ

	

LEAX 	28,X
PULS
DECB
BNE PRSUNI
RTS

B is loaded with 30 to count down the lines of
pixels to be filled. This counter is then
pushed onto the stack and B is loaded again
with 4. This gives a patch four bytes—or
4 x 8, 32 bits—wide on the screen. If you
want to fill in a graphic pattern 30 by 30
pixels, you would have to put it on a patch 30
by 32 pixels—you would have to use four
bytes and leave two columns of pixels in the
background colour.

Again, LDA ,Y + picks up the appropriate
piece of data and increments the pointer and
STA ,X + stores it in the appropriate screen
position and increments that. B is decremen-
ted, counting across the four horizontal
screen locations.

When the last of the row has been filled,
LEAX 28,X adds 28 to X, moving the pointer
onto the first location of the next row. The
vertical counter is pulled back off the stack,
decremented and—if the last row hasn't been
dealt with—BNE PRSUNI branches back to
deal with the next row.

If the last row has been dealt with the RTS
returns the processor to the place in the main
program it was called from.

Take a look at some more subtle
ways of concealing missives that
might fall into the wrong hands* But
first, find out the code-breaking
methods that might be employed

As the article on pages 960 to 965 showed,
there are many different approaches to the
problem of coding sensitive information.
Some of these are relatively easy to crack, but
with the aid of computers, it has been possible
to employ even more complicated methods.

CODE BREAKING
As the cryptographers struggle to invent
better and more secure codes, so the code-
breakers strive to frustrate them. A powerful
tool when trying to decode the simpler trans-
positions or substitution ciphers is the letter
frequency count. In English, the letters E, T,
A, 0, N, I, S—in that order—occur most
frequently. So, if in the encoded text the
letters ETAONIS still appear most frequ-
ently, the odds are that you will be dealing
with a transposition code. Should other let-
ters occur more frequently, then you must
consider the possibility of a substitution
cipher.

In either event it will be necessary to count
the letter frequencies in the message. This is
both time-consuming and susceptible to
error. The frequency distribution program
given below comes in useful here. All you
need to do is type in your text and when
you've finished, the computer displays the
complete letter frequency count.

The picture below shows the letter distri-
bution for 100 words from a newspaper
article. You will see that the numbers are in
good agreement with the ETOANIS prin-
ciple. Now type in the program which shows
how this works in practice:

The table of letter frequency is useful
for code-breaking

15 POKE 23658,8
20 BORDER 0: PAPER 0: INK 7: CLS
30 PRINT TAB 8;"FREQUENCY COUNT""
40 PRINT TAB 12;"WARNING""
50 PRINT FLASH 1;AT 4,6;"DO NOT LEAVE

SPACES";AT 5,9; `BETWEEN WORDS""
60 DIM n(28)
70 PRINT "To end input of text and

outputO ❑ 011111111101=Iresults — type
*3/

80 FOR t=1 TO 28: LET n(t) =0:
NEXT t

90 INPUT "Enter text ";a$
100 IF a$="' THEN GOTO 180
110 CLS
120 FOR i =1 TO LEN a$
130 FOR j=1 TO 26
140 IF j = CODE (a$(i TO i)) —64 THEN LET

n(j)=n(j)+1
150 NEXT j
160 NEXT i
170 GOTO 90
180 CLS
190 PRINT "Letter ❑ ❑ ❑ Freq'

❑ ❑ ❑ Letter ❑ 111Freq'"
200 FOR i =1 TO 13
210 PRINT TAB 2;CHR$ (64+ i);TAB

10;n(i);TAB 19;CHR$ (77 + i);TAB
27;n(13+i)

220 NEXT i
230 STOP

ECK
30 PRINT "0 > PJ a FREQUENCY

COUNT"
50 PRINT "Ag Ag DON'T LEAVE

SPACES":PRINT "BETWEEN
WORDS !"

60 DIM N(28)
70 PRINT "g1TO END INPUT/OUTPUT OF

TEXT RESULTS-TYPE *"
80 FOR T=1 TO 28:N(T)= 0:

NEXT T
90 INPUT "gg ENTER TEXTPJ";A$
100 IF A$="*" THEN 180
110 PRINT "0"
120 FOR 1=1 TO LEN(A$)
130 FOR J=1 TO 26
140 IF J = ASC(MID$(A$,I,1)) —64 THEN

N(J)= N(J) +1
150 NEXT J
160 NEXT I
170 GOTO 90
180 PRINT "0"
190 PRINT "aLETTERJJFREQFJ FJL

HIJIJFAg"
200 FOR 1=1 TO 13
210 PRINT CHR$(64+1);TAB(6);N(1);

TAB(13);CHR$(77+ I);TAB(16);
N(13+I)

220 NEXT I

20 MODE1:VDU 19,0,3,0,0,0,19,7,4,0,0,0

CODE BREAKING
LETTER DISTRIBUTION PROGRAM

NEW CODING METHODS
THE RAIL FENCE CODE

MULTIPLICATION CODE PROGRAM

USING MULTIPLICATION KEYS
CODING DICTIONARIES

SETTING UP A CODEBOOK
PROGRAMMING YOUR OWN

CODEBOOK SYSTEM

30 PRINTTAB(13)"FREQUENCY COUNT"'
40 PRINTTAB(16)"WARNING'"'
50 PRINTTAB(2)"DO NOT LEAVE SPACES

BETWEEN WORDS""
60 DIM N(28)
70 PRINT"TO END INPUT OF TEXT AND

OUPUT RESULTS—TYPE "'
80 FOR T=1 TO 28:N(T)= 0:NEXT T
90 INPUT"ENTER TEXT";A$
100 IF A$="*" THEN GOTO 180
110 CLS
120 FOR 1=1 TO LEN(A$)
130 FOR J=1 TO 26
140 IF J = ASC(MID$(A$,I,1)) —64 THEN

N(J) = N(J) +1

150 NEXT J
160 NEXT I
170 GOTO 90
180 CLS
190 PRINT"LETTER" TAB(8)"FREQUENCY"

TAB(20)"LETTER" TAB(28) "FREQUENCY"
200 FOR I =1 TO 13
210 PRINTTAB(4) CHR$(64+1);TAB(12)N(1);

TAB(24);CHR$(77 +I)TAB(33)N (13 +I)
220 NEXT I
230 END

M
20 CLS
30 PRINT@8,"FREQUENCY COUNT"

40 PRINT@76,"WARNING"
50 PRINT@134,"do not leave spaces":

PRINT@169,"between words"
60 DIM N(28)
70 PRINT@224,"TO END INPUT OF TEXT

AND OUTPUT ❑❑❑❑❑❑❑❑
RESULTS — TYPE *"

80 FOR T=1 TO 28:N(T) = 0:
NEXT

90 INPUT"ENTER TEXT ❑ ";A$
100 IF A$="*" THEN 180
110 CLS
120 FOR 1=1 TO LEN(A$)
130 FOR J=1 TO 26
140 IF J = ASC(MID$(A$,I,1)) —64 THEN

N(J)=N(J) +1
150 NEXT J
160 NEXT I
170 GOTO 90
180 CLS
190 PRINT"LETTER ❑ ❑ ❑ FREQ'

❑ ❑ ❑ LETTERE ❑ ❑ FREQ"'
200 FOR 1=1 TO 13
210 PRINTTAB(2);CHR$(64+ I);

TAB(10);N(1);TAB(19);CHR$
(77 +1);TAB (27);N (13 +I)

220 NEXT
230 END

The operational structure of this program
simply provides a counting mechanism. In
the first phase of the program, 28 index
variables are set equal to zero. These are used
to store the frequency counts of the 26 letters.
The final two variables are included in case
you want to amend the program in order to
produce percentages or other summary
statistics.

MULTIPLICATION CODES
During the American Civil War the Rail
Fence code was used to send secret messages.

It works like this: suppose you wish to pass on
the commercially sensitive warning: SELL
CONSULS SOONEST. Then, take a sheet
of lined paper and write the first letter on the
top line, the second on the second line, third
letter on the first line, and so on to get:

SLCNUSO NS
ELO S LS OET

—a pattern like the Western railroad fences.
This message can then be encoded as
SLCNUSONS ELOSLSOET or divided
into more realistic word lengths as SLCNUS
ONSELO SLSOET.

Now, the fence post code is really a special
case of the more modern multiplication code.
Ignoring spaces, the original plain text mes-
sage contained 18 characters. These can be
stored in a 2x 9, 9x 2, 3 x 6 or 6 x 3 array as
shown.

Anyone trying to break the code without
knowledge of the multiplication key would
have a hard time. All that is really happening
is that the message is written down the page
until the first column of our array is filled, and
then continued at the top of the second
column. When the whole array is used up the

encrypted text is read off across the page.
Sometimes it is a good idea to add a few extra
dummy letters to the end of a message—just
to fool would-be code breakers.

The multiplication program again uses the
MID$ function to provide a coding or decod-
ing facility in just a few short lines (Lines
140-210). The multiplication code simply
reads a message into an array in one direction
and prints it out in the other; easy but
effective.

20 BORDER 0: PAPER 0: INK 7: CLS
30 PRINT TAB (6);"MULTIPLICATION CODE"
40 PRINT : PRINT : PRINT
50 PRINT FLASH 1; PAPER 2;"DON'T LEAVE

SPACES BETWEEN WORDS"
60 INPUT "ENTER TEXT'"m$
70 INPUT "ROWS ?111111";m
80 INPUT "COLUMNS ? ❑ ❑ ❑ ";n
90 INPUT "CODE (c) OR DECODE

(d) ? ❑ ";e$
100 PAUSE 50: CLS
110 IF e$ = "c" THEN LET x = m
120 IF e$ = "d" THEN LET x = n
130 DIM d$(x,LEN m$/x)

Using the multiplication code with several keys, you can encrypt the same message in different ways

140 FOR i=1 TO x
155 LET a$="": LET m$=M$+" ❑ "

160 FOR J=1 TO LEN m$ — 1 STEP x
180 LET a$=a$+m$(i+j-1

TO i+j-1)
190 NEXT j
195 LET d$(i)=a$
197 LET m$=m$(TO LEN m$ —1)
200 PRINT d$(i);: IF e$="c" THEN PRINT

210 NEXT i
220 STOP

FAX
30 PRINT "pm > pi aMULTIPLICATION

CODE"
50 PRINT "gg gg DON'T LEAVE SPACES

BETWEEN WORDS"
60 INPUT "g1TEXTPJ";M$
70 INPUT "ROWSIVM
80 INPUT "COLUMNS(C) OR

DECODE(D)";INPUT E$
100 PRINT "a"
110 IF E$="C" THEN X=M
120 IF E$="D" THEN X=M
130 DIM D$(X)
140 FOR 1=1 TO X
150 D$(1)=""
160 FOR J=1 TO LEN(M$) STEP X
170 B$ = MID$(M$,1+J —1,1)
180 D$(1)=D$(1)+B$
190 NEXT J
200 PRINT D$(1);
210 NEXT I

20 MODE1:VDU 19,0,4,0,0,0,19,7,
3,0,0,0

30 PRINT TAB(10)"MULTIPLICATION CODE"
40 PRINT"'
50 PRINTTAB(2)"DO NOT LEAVE SPACES

BETWEEN WORDS""
60 INPUT"TEXT";M$
70 INPUT"ROWS";M
80 N=INT(LEN(M$)/M) + 1
90 INPUT"CODE(C) OR DECODE(D)";E$

100 TIME= 0:REPEAT UNTIL TIME>150
110 IF E$="C" THEN X=M
120 IF E$="D" THEN X=N
130 DIM D$(X)
140 FOR 1=1 TO X
150 D$(1)=" "
160 FOR J=1 TO LEN(M$) STEP X
170 B$ = MID$(M$,1+J —1,1)
180 D$(1)=D$(1)+B$
190 NEXT J
200 PRI NTD$(I);
210 NEXT 1
220 PRINT""':INPUT"AGAIN";

AN$:IF AN$ ="Y" THEN RUN
230 END

141
20 CLS
30 PRINT@6,"MULTIPLICATION CODE"
40 PRINT:PRINT:PRINT
50 PRINT"DON'T LEAVE SPACES BETWEEN

WORDS"
60 PRINT:1NPUT"TEXT ❑ ";M$
70 INPUT"ROWS0";M
80 INPUT"COLUMNS ❑ ";N
90 INPUT"CODE(C) OR DECODE(D)0";E$
100 FORL=1T01000:NEXT
110 IF E$="C" THEN X=M
120 IF E$="D" THEN X=N
130 DIM D$(X)
140 FOR 1=1 TO X
150 D$(1) = "0"
160 FOR J=1 TO LEN(M$) STEP X
170 B$= MID$(M$,1+J —1,1)
180 D$(1)=D$(1)+B$
190 NEXT J
200 PRINTD$(I)
210 NEXT I
220 END

CODEBOOK
So far we have only considered ciphers.
Proper codes—that is whole words or phrases
which are encrypted by other words or
numbers—are traditionally favoured by large
organisations that operate from fixed prem-

ises. Embassies, ships and business houses fall
into this category. Operating from fixed loc-
ations is preferable because one or more bulky
coding dictionaries are necessary for translat-
ing the plain text.

The codebook program sets up a small
sample code dictionary of 20 words. Using a
two-dimensional array A$(I,J), in which 1=1
indicates plain text and I = 2 is coded text, the
program first READS in the data displayed in
the table. The next section (Lines 120-170 on
the Commodores, Dragon and Spectrum.
Lines 140-190 on the Acorn) takes in a word
from the message and then prints out the
corresponding entry in the table. If, for
example, A$(1,6) = GO TO is entered, then
A$(2,6) = "10327" will be printed.

The larger message: DEPART FROM
PARIS AT MIDNIGHT ON SATURDAY
ARRIVE AT ROME AT DAYBREAK ON
SUNDAY is coded as: 68677 90075 12128
26569 69783 27921 68719 12128 23874 12128
70355 69783 48553. The encrypted text:
74891 22317 12128 26569, translates to
SEND MONEY AT MIDNIGHT.

With the simple program given it would be
just as quick to perform the coding or decod-
ing operation by hand directly from the table.
However, once the number of words gets into
the hundreds or even thousands, the time
saving produced by the computer is
enormous.

20 BORDER 0: PAPER 0: INK 7: CLS
25 POKE 23658,8
30 PRINT TAB (10);"CODEBOOK"
40 PRINT : PRINT : PRINT
50 DIM a$(2,20,10)
60 FOR i =1 TO 2
70 FOR j =1 TO 20
80 READ a$(i,j)
90 NEXT j: NEXT i
100 INPUT "DO YOU WISH TO CODE(0)

❑❑❑❑❑❑❑❑❑❑❑❑❑❑❑
OR DECODE(1)";x

In order to use the Codebook system, both the sender of the message and the
recipient need to have a copy of a fixed dictionary

110 CLS
120 INPUT "enter word ";m$
125 IF LEN m$> =10 THEN G0T0 130
127 F0R n =1 T0 10— LEN m$: LET

m$= m$ + " El": NEXT n
130 IF m$ = "*" THEN G0TO 280
140 F0R t=1 T020
150 IF m$= a$(1 +x,t) THEN PRINT

a$(2—x,t)
160 NEXT t
170 G0T0 120
180 DATA "NEWY0RK","L0ND0N",

"PARIS","R0ME"
190 DATA "ARRIVE","DEPARTFR0M",

"G0 T0","ESCAPE T0","SATURDAY"
200 DATA "SUNDAY","N00N",

"DAYBREAK"," MIDNIGHT"
210 DATA "NIGHTFALL", "IN", "AT",

"0N","SEND"
220 DATA "M0NEY","F00D"
230 DATA "54982","73581","90075",

"23874"
240 DATA "68719","68677","10327",

"40476"
250 DATA "27921","48553","11072",

"70355"
260 DATA "26569","74832","10996",

"12128"
270 DATA "69783", "74891", "22317",

"98724"
280 ST0P

30 PRINT "Ogg > PjaC0DEB00K"
50 DIM A$(2,20)
60 F0R 1=1 T0 2
70 F0R J =1 T0 20
80 READ A$(I,J)
90 NEXT J,I
100 PRINT "g g D0 Y0U WISH T0

C0DE(0) 0R DEC0DE(1)":INPUT X
120 INPUT "AgENTER W0RDPJ";M$
130 IF M$ "*" THEN 280
140 F0R T=1 T020
150 IF M$ = A$(1 +X,T) THEN PRINT

A$(2 — X,T)
160 NEXT T
170 G0T0 120
180 DATA NEWY0RK,L0ND0N,PARIS,R0ME
190 DATA ARRIVE,DEPART FR0M,G0

T0, ESCAPE T0,SATURDAY
200 DATA SUNDAY,N00N,DAYBREAK,

MIDNIGHT
210 DATA NIGHTFALL,IN,AT,0N,SEND
220 DATA M0NEY,F00D
230 DATA 54982,73581,90075,23874
240 DATA 68719,68677,10327,40476
250 DATA 27921,48553,11072,70355
260 DATA 26569,74832,10996,12128
270 DATA 69783,74891,22317,98724
280 END

LI
20 M0DE1:VDU 19,0,3,0,0,0,19,7,

4,0,0,0
30 VDU 23,224,255,255,255,255,

255,255,255,255
40 PRINT'TAB(16)"C0DEB00K"
50 PRINT"'
60 DIM A$(2,20)
70 F0R I =1 T0 2
80 F0R J =1 T0 20
90 READA$(I,J)
100 NEXT:NEXT
110 INPUT"D0 Y0U WISH T0 C0DE(0) 0R

DEC0DE(1)";X
120 TIME= 0:REPEAT UNTIL TIME>150
130 CLS
140 INPUT"W0RD";M$
150 IF M$="*" THEN G0T0 300
160 F0R T=1 T0 20
170 IF M$= A$(1 +X,T) THEN PRINT

CHR$(224);A$(2—X,T)
180 NEXT T
190 G0T0 140
200 DATA NEWY0RK,L0ND0N,PARIS,

R0ME
210 DATA ARRIVE,DEPART FR0M,G0 T0,

ESCAPE T0,SATURDAY
220 DATA SUNDAY,N00N,DAYBREAK,

MIDNIGHT
230 DATA NIGHTFALL,IN,AT,0N,SEND
240 DATA M0NEY,F00D
250 DATA 54982,73581,90075,23874
260 DATA 68719,68677,10327,40476
270 DATA 27921,48553,11072,70355
280 DATA 26569,74832,10996,12128
290 DATA 69783,74891,22317,98724
300 END

20 CLS
30 PRINT@10,"C0DEB00K"
40 PRINT:PRINT:PRINT
50 DIM A$(2,20)
60 F0R I =1 T0 2

70 F0R J =1 T0 20
80 READ A$(I,J)
90 NEXTJ,I
100 INPUT"D0 Y0U WISH T0 C0DE(0)

❑❑❑❑❑❑❑❑❑❑❑❑❑

0R DECODE(1) ";X
110 CLS
120 INPUT"ENTER W0RD El";M$
130 IF M$ ="*" THEN END
140 F0R T=1 T020
150 IF M$= A$(1 +X,T) THEN PRINT

A$(2 — X,T)
160 NEXT
170 G0T0 120
180 DATA NEWY0RK,L0ND0N,PARIS, R0ME
190 DATA ARRIVE,DEPART FR0M,G0 T0,

ESCAPE T0,SATURDAY
200 DATA SUNDAY,N00N,DAYBREAK,

MIDNIGHT
210 DATA NIGHTFALL,IN,AT,0N,SEND
220 DATA M0NEY,F00D
230 DATA 54982,73581,90075,23874
240 DATA 68719,68677,10327,40476
250 DATA 27921,48553,11072,70355
260 DATA 26569,74832,10996,12128
270 DATA 69783,74891,22317,98724

Although the program listed above is
limited to 20 words, it can easily be amended
to include more. If, for instance, you wanted
to enter 50 words you will need to make the
following amendments.

On the Spectrum, Commodore and
Dragon/Tandy change 20 to 50 in Lines 50,
70 and 140 and on the Acorn change 20 to 50
in Lines 60, 80 and 160. You will also need to
enter the new codes and additional lines in the
program.

In the existing Spectrum program you are
limited to entering words of no more than 10
characters. If you wish to increase the max-
imum of characters to, say, 12, all you need to
do is to alter 10 to 12 in Line 50. This
restriction is not included in any of the other
programs.

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Animation

of UDGs in cliffhanger 	992-997
using colour fill techniques

Acorn 	 955-959
using GCOL 3

Acorn 	 999-1000
using paged graphics 	1022-1027

Applications
calendar and diary program

1010-1016,1017-1021
hobbies file, extra options 947-952
text-editor program

852-856,878-883,914-920

B
BASIC

adding instructions to
Acorn, Dragon, Spectrum 	844-851

Basic programming
animation with paged graphics 1022-1027
colour commands, Acorn 	953-959
Computer Aided Design 	998-1004
designing a new typeface 	838-843
drawing conic sections 857-863,889-895
mechanics, principles of 	933-939
multi-key control 	 974-979
musical chords and harmonies 985-991
programming function keys 	825-829
secret codes 	960-965,1044-1048
speeding up BASIC programs 921-927

C
Calendar program

part 1 	 1010-1016
part 2 	 1017-1021

Chords, musical
definition 	 985-986
programs to play

Acorn, Commodore 64 	986-991
Ciphers

see codes, secret
Circles, drawing 	858,863,893-894
Cliffhanger game

part 1—title page 	 904-913
part 2—adding instructions 	928-932
part 3—adding a tune 	966-973
part 4—graphics and merging 992-997
part 5—setting the scene 	1034-1043

Codebook program 	1047-1048
Codes, secret 	960-965,1044-1048
Colour

defining in machine code 	1034-1043
filling in with

Acorn 	 953-959
routines for changing

Commodore 64 	 872-877
Computer Aided Design

rubber-banding and picking
and dragging 	 998-1004

Conic sections 	857-863,889-895
Cryptography 	960-965,1044-1048
Curves, drawing 	857-863,889-895

D
Diary program

part 1
	

1010-1016
part 2
	

1017-1021
Digital clock routine
	

896-898

E
Ellipses, drawing 858-859,863,890-895
Engineering

see mechanics
Envelope, parameters of for sound

Acorn, Commodore 64 	968-971
in musical harmony programs 986-991

F
Fence post code 	 1046
Filling in with colour

Acorn 	 953-959
FOR ... NEXT loop

speed of 	 924
use of for animation

Commodore 64 	 1026
Frequency distribution program

for code -breaking 	1044-1046
Fruit machine game

part 1 —the graphics 	1028-1033
Function keys, programming

Acorn, Commodore 64, Vic 20 	826-829

G
Games

cliffhanger
904-913, 928-932, 966-973, 992-997,

1034-1043
fruit machine 	 1028-1033
goldmine 	 830-837,864-871
multi-key control for 	974-979
othello 	 980-984,1005-1009
wordgame 	899-903,940-945

Goldmine game
part 1—basic routines
	

830-837
part 2—option subroutines 	864-871

Graphics
colour commands, Acorn 	953-959
effects using curves 	857-863,889-895
hi-res

for custom typeface
	

838-843
setting up new commands

Commodore 64 	 872-877
in cliffhanger game 	992-997
in fruit machine game 	1028-1033
in goldmine game 832-837,870-871
in othello game
	

982,984
paged, for animation 	1022-1027
picking and dragging 	1000-1004
rubber-banding 	998-1000

H
Harmonies, in music

programs for
Acorn, Commodore 64 	986-991

Hobbies file, extra options for 	947-952
Hyperbolas, drawing 	860-863,894-895

Instructions, adding to BASIC
Acorn, Dragon, Spectrum 	844-851

K
Keyboard, matrix of 	 974-976
Keypresses

detecting
Acorn, Commodore 64, Vic 20 827-829
in cliffhanger game 	929-932

how they work 	 826,974
multiple, programming for 	974-979

L
Letter-generator program 	838-843

M
Machine code

games programming
see cliffhanger

merging routines
	 992-997

routines for hi-res graphics
Commodore 64
	

872-877
routine to alter BASIC
	

844-849
timer routine
	 896-898

tune routine
	

966-973
Mathematical functions

in mechanics 	 935
speedy use of 	 923-924
to draw curves 	857-863,889-895

Mechanics
programs to show principles 	933-939

Memory
mapping, definition 	 1023
paged graphics in 	1023-1027
saving vs speed 	 923

Merging machine code routines 992-997
Multi-key control, programming for

974-979
Multiplication code program 1046-1047
Music

chords and harmonies 	985-991
machine code routine for 	966-973

0
Othello board game

part 1
	

980-984
part 2
	

1005-1009
Overwriting, avoiding
	

994-997

P
Paged graphics 	 1023-1027
Parabolas,drawing 	859-863,891-893
Peripherals

robotics
	

884-888
Picking and dragging 	1000-1004
PLOT

new commands, Acorn
	

953-959
Polygons, drawing
	

893-894
PROCedures, Acorn

advantages of
	

922,924
use of to fill with colour 	954-959

R
Robotics 	 884-888
Rotating bits 	 1038-1039
Rubber-banding 	 998-1000

S
SAM chip, Dragon, Tandy 	1043
SAVEing

problems with when merging 	992-997
Scaling

custom typeface 	 841-843
parabolas and hyperbolas 859-861,863

Search routines
binary and serial 	 924-927
in text-editor program 	914-920

Singer, program to animate
Acorn 	 1026-1027

Sort routines
in hobbies file program 	947-952
in text-editor program 	914-920

Speeding up BASIC programs 921-927
Sprites, Commodore 64

in cliffhanger game 	 993-995
Star, program to animate

Dragon, Tandy 	 1027
Stop-frame animation 	 1022

T
Text -editor program

part 1—basic routines
	

852-856
part 2—editing facilities
	

878-883
part 3—sorting, searching,

formatting and printout 	914-920
Three Blind Mice program

Acorn, Commodore 64 	990-991
Timer routine

for BASIC lines
	

922
machine code
	

896-898
Typeface. setting up new

	
838-843

U
UDGs

in cliffhanger game
	

992-997
Acorn
	 1037-1038

in fruit machine game
	

1028-1033
stock, storing
	

1040

V
Variables

managing for program speed 	923-925
VDG chip, Dragon, Tandy 	1043

Wordgame
part 1—basic routines 	899-903
part 2—adding the options 	940-945

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

,j/ Computer modelling is a potent tool.
See how mathematics can be used to
understand GROWTH in nature

/Hit the jackpot with part two of FRUIT
MACHINE, but don't look for piles of
cash under your computer!

_/It's both good and bad news for Willie
in this part of CLIFFHANGER. Add
rewards, potholes and snakes

-"Plan Christmas 2084 with the
completed DIARY and CALENDAR
program ... or what about Bermuda in
Summer 2105?

J BBC users can produce bright and
colourful graphics, and save memory too,
using TELETEXT screens

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

