
A MARSHALL CAVENDISH 	COMPUTER COURSE IN WEEKLY PARTS

LEARN PROGRAMMING - FOR FUN AND THE FUTURE

Vol. 4 	 No 41

APPLICATIONS 27

A COMPUTER INTERIOR DESIGNER 	1 269
• 	

Part one of a room planner program that lets you move the

furniture around without having to lift anything

MACHINE CODE 43

LIFFHANGER: ROCKY 1 	 1276 	40
Start the rocks rolling down the cliff and add to
Willie's troubles

GAMES PROGRAMMING 43

WARGAMING: OF MAPS AND MEN 	1 282

Organize your screen display-the part that lets you
keep an eye on the developing strategy

BASIC PROGRAMMING 84

RECURSION-LOOPS WITHIN LOOPS 	1 289

Understand one of the key techniques of structured
programming and try some interesting examples

LANGUAGES 2

TURNING TURTLE WITH LOGO 	 1296

Continuing a look at LOGO with more of the interesting
graphics that are easy to generate

INDEX
The last port of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside back cover.

PICTURE CREDITS
Front cover, Paul Chave. Pages 1269, 1270, 1271, 1272, 1273, 1274, 1275, Joe
Wright. Page 1276, Simon McBride/Chris Lyon. Page 1278, Ray Duns/Chris
Lyon. Page 1283, Dave King. Pages 1284, 1285, George Logan. Pages 1289,
1290, 1291, 1292, 1293, 1295, Kevin O'Keefe. Pages 1296, 1298, 1299, 1300,
Paul Chave.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved*

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London WI V 5PA,
England. Typeset by MS Filmsetting Limited, Frame, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester Ind Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (1R£5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT, Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
NZ) Ltd, PO Box 1595, Wellington

Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques or postal orders
For binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries - and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V 5PA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and textwhich are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, re;,-1
48K,128, and + EAL"__! COMMODORE 64 and 128

El ACORN ELECTRON,
BBC B and B+ 	DRAGON 32 and 64

ZX81 	 VIC 20 mr 1C.OL IO)YUR COMPUTER

THE STRENUOUS METHOD
USING GRAPH PAPER

MEASURING YOUR ROOM
SETTING A SCALE

ROTATING YOUR FURNITURE

Let your home computer take the
strain out of planning the layout of
any room so you can move your
furniture or refit your kitchen simply
by pressing a few keys

Planning a room in order to get the optimum
layout for all the various items of furniture
can be a tricky problem* Most people tackle it
in one of two different ways*

The most strenuous way is simply to move
all the furniture into the
room and move it around
until it fits* To do this,
however, requires a
considerable amount
of physical

effort, and there is no guarantee it will all go
into the space available*

The simpler method is to draw an accurate
scale plan, and work it all out on paper first.
It's a lot easier to draw a new rectangle on
your plan than to move a fridge!

Now, there's a third alternative, using
your home micro. Its graphic display can
be used just like pencil and paper, with the
advantage that it is easier to make correc-
tions* And its memory can be used to store
details of the furniture you are trying to fit

in, so that you can move it
from place to place on the plan

without tedious redrawing*
The computerized designer

works in much

the same way as you would draw a paper plan*
The first thing to do is to measure the room
accurately, preferably using a proper metal
measuring tape* (A piece of string and a short
ruler can do the job, but are likely to give you
a cumulative inaccurate measurement and
when planning a kitchen a couple of cen-
timetres can make a big difference.)

Once you have all the measurements, in-
cluding areas like alcoves around chimney
breasts and the positions of windows or doors,
the next thing is to draw a floor plan of the
room, scaled down from the actual measure-
ments* Next, you need to obtain the measure-
ments of all the items of furniture involved
and trace out their outlines to the same scale.
You can then move the individual items
around the main plan, checking whether
items like chests of drawers or pianos will
actually fit into convenient alcoves.

The complete program, just over half of
which is listed here, offers seven options on
the main menu* Option one allows you to
draw your room plan* This is automatically
scaled to fit the screen after the computer asks
you for the maximum dimension of the room*
All measurements must be keyed in in metres

and given a direction (Up, Down, Left or
Right). When drawing the sections of wall,
the computer offers you two options of
direction and distance on each section which
allow you to draw diagonals. You can also
insert doors and windows where necessary.

Once you have drawn the room plan,
option two allows you to position certain
standard-sized pieces of furniture which are
already defined in the program. All these
items relate to the kitchen—possibly the most
difficult room in the house to plan—and
include a cupboard, cooker, washing ma-
chine, sink and fridge. Only one cupboard,
for example, is necessary as any of these
items can be inserted as many times as you
wish. A key press allows you to select an item,
another allows you to position it. And there's
also a facility which allows you to rotate the
item to the angle you require.

Option three allows you to redefine the
size and shape of the five objects already
contained within the program and define five
more. Each shape can have no more than eight
sides (except on the Dragon), but this is more
than enough for most items of furniture. The
new furniture is also automatically scaled to
the length of the room you enter.

Option four allows you to save your
design (option one) and its contents (options
two and three) to tape or disk. Make sure you
have plenty of space on tape.

With option five, you can load a previ-
ously saved design. This is mainly for use
with option six—the print option. Only the
Spectrum can print out the screen display
directly, so this option is not complete for the
other computers. However, the routine can be
used to call either a machine code screen
dump or separate BASIC program to do this.
A future article in INPUT will give suitable
screen dumps, which will enable you to
produce a hard copy of your design. Option
seven allows you to quit the program.

The second part of this article tells you
how to use the different options and lists the
final part of the program. You will need to key
in the entire program before any of the
options can be used, so if you enter this part
separately, SAVE it to tape without running it.

5 POKE 23658,8
10 BORDER 0: PAPER 0: INK 4: CLS
12 GOSUB 8000
20 GOSUB 7000: PRINT INVERSE 1;

AT 2,23;"[1]ROOM";AT 3,23;"[2]PLAN";
AT 4,23;"[3]EQUIP";AT 5,23;"[4]SAVE";
AT 6,23;"[5]LOAD";AT 7,23;"[6] PRINT";
AT 8,23;"[7]QUIT"

30 LET K$="1234567": GOSUB 7040:
GOSUB 7000: IF Z=55 THEN STOP

40 GOSUB 1000*(Z — 49) + 1000: GOTO 20
1000 LET NF =1: GOSUB 6080
1005 PLOT 0,0: LET X = 0: LET Y = 0
1010 PRINT PAPER 2; INK 6;AT 21,

22;"MAXIMUM=";MAX
1015 PRINT INVERSE 1;AT

2,22;"[W]WINDOW ";AT
3,22;"[D]DOOR ";AT 4,22;"[B]BK
WALL";AT 5,22;"[❑]WT WALL";AT
6,22;"[Q]QUIT ";AT 7,22;" "

1016 LET K$="WDBQ ❑ ": GOSUB 7040:
INK 3*(Z = 87) + 2"(Z = 68) + 7*(Z = 32)

1020 IF Z=81 THEN INK 4: RETURN
1025 GOSUB 7010: LET DX = X + D *

 ((D$="R")*SC)—D*((D$="L")*SC):
LET DY = Y + D*((D$="U")*SC) — D*
((D$="D")*SC): GOSUB 7010

1030 LET DX= DX + D*((D$="R")"SC)— D*
((D$="L")*SC): LET DY=DY+ D
*((D$= "U") * SC) — D*((D$="D")*SC)

1032 IF DX>175 OR DX<0 OR DY>175
OR DY < 0 THEN PRINT FLASH 1;AT
7,23;" ERROR ": PAUSE 100: GOTO 1015

1035 DRAW DX —X,DY —Y: LET X= PEEK
23677: LET Y= PEEK 23678: LET
X$=STR$ (X/SC): LET Y$=STR$ (Y/SC)

1037 IF LEN X$<3 THEN LET X$= F$(TO
3—LEN X$)+X$

1038 IF LEN Y$ <3 THEN LET Y$=F$(TO
3—LEN Y$)+Y$

1039 LET X$=X$(TO 3): LET Y$=Y$(TO
3): PRINT INK 7;AT 10,24;"DX=";XCAT
11,24; "DY= ";Y$

1040 GOTO 1016
2000 IF NF= 0 THEN RETURN
2005 FOR N=1 TO 10: LET Q$="["+STR

N +"]" + 0$(N): PRINT INVERSE 1;AT
N*2,24+ 4— LEN Q$;Q$: NEXT N

2010 LET R= 0: GOSUB 6060: LET CU =2
2020 PRINT INVERSE 1;AT CU,29;CHR$ 144:

FOR N=1 TO 10: NEXT N: PRINT
INVERSE 1;AT CU,29;" El"

2030 LET K$=1NKEY$: LET CU= CU —
2*(((K$ = "7")*(CU > 2))) + 2*(((K$ =
"6")"(CU <20)))

2040 IF K$< >"S" THEN GOTO 2020
2050 LET OB = CU/2: LET OX = 85: LET

OY = 85
2057 LET F=1: GOSUB 6010

2060 GOSUB 7000: PRINT AT 5,24; FLASH 1;
"OBJ=";0$(0B); FLASH 0;AT 7,22;
INVERSE 1;"[5-8] MOVE";AT 8,22;"[P]
PLACE' ;AT 9,22;"[C] CLKWSE";AT 10,22;
"[A] ANTCLK";AT 11,22;"[Q] QUIT"

2070 LET K$="5678PACQ": GOSUB 7040:
IF Z=81 THEN LET R=0: LET F=1:
GOSUB 6010: GOTO 6060

2080 LET F=1: GOSUB 6010: LET
OX = OX + 2*((Z = 56)*(QX <175)) —
2*((Z =53)*(0X>1)): LET OY=OY +2*
((Z =55)*(0Y <175)) — 2"((Z = 54)*
(0Y> 0))

2085 IF Z=67 OR Z=65 THEN GOSUB 6020
2090 GOSUB 6010
2100 IF Z=80 THEN LET F=0: GOSUB

6010: GOSUB 7000: GOTO 2000
2110 GOTO 2070
3000 PRINT AT 2,24;"DESIGN"
3012 INPUT "ENTER FIGURE TO

REDEFINE ";OB: IF OB <1 OR OB>10
THEN GOTO 3012

3013 INPUT "ENTER NUMBER OF SIDES
(1-15) ?";S(OB): IF S(OB) <1 OR
S(OB) >15 THEN GOTO 3013

3014 INPUT "TWO LETTER IDENTITY
CODE? ";0$(0B)

3016 LET R=0: GOSUB 6060: LET OX = 80:
LET OY = 80

3017 FOR S=1 TO $(0B)*2 STEP 2
3020 FOR N=1 TO 2: GOSUB 7010: LET

D= D/125: LET 0(0B,S)= 0(0B,S)+ ((D*
(-1*(D$ = "L") + (D$ = "R")))): LET
0(0 B,S + 1) = 0 (0 B,S + + ((D * (-1
(D$ = "D") + (D$ = "U"))))

3030 NEXT N
3040 NEXT S
3050 LET F=1: GOSUB 6010: INPUT "IS

THIS CORRECT (Y OR N)? ";S$: IF
S$="N" THEN GOSUB 6010: FOR N=1
TO S(OB)*2 +1: LET 0(0B,N) = 0: NEXT
N: GOTO 3012

3060 GOSUB 6010: RETURN
4000 GOSUB 6200

4015 IF Z=83 THEN
SAVE E$SCREEN$:
RETURN

4020 SAVE E$ DATA 00
4030 SAVE E$ DATA SO
4040 SAVE E$ DATA 0$0
4050 RETURN
5000 GOSUB 6200
5010 IF Z=83 THEN LOAD E$SCREEN$:

RETURN
5020 LOAD E$ DATA 00
5030 LOAD E$ DATA SO
5040 LOAD E$ DATA 0$0
5050 RETURN
6000 COPY : RETURN
6010 OVER F: INK 7: PLOT OX,OY: FOR N=1

TO (S(OB)*2) STEP 2:
DRAW 0(0B,N)*CY-0(0B,N +1) * CX,
0(0B,N)*CX+ 0(0B,N+1)*CY: NEXT N

6014 OVER 0: INK 4: RETURN
6020 LET R=R + (2 * (Z =65)) -

(2*(Z =67)): IF R>360

THEN LET R=0
6030 IF R<0 THEN LET R =360 - R
6060 LET A= R*(PI/180): LET CY=SC*COS

A: LET CX=SC*SIN A: RETURN
6080 INPUT "ENTER MAXIMUM

DIMENSION? ";MAX
6090 LET SC =175/MAX
6100 RETURN
6200 PRINT INVERSE 1;AT 10,23;

"[S]SCREEN";AT 11,23;"[V]VAR'S ": LET
K$="SV": GOSUB 7040: INPUT "ENTER
FILENAME ";E$: RETURN

7000 FOR N=0 TO 21: PRINT PAPER 4;AT
N,22;" ❑❑❑❑❑❑❑❑❑❑ ":
NEXT N: PRINT AT 0,25;"MENU ":
RETURN

0 IF FG =1 THEN GOSUB 30010:
CSET(2):GOTO 270

1 POKE 51,255:POKE 52,94:POKE 55,255:POKE
56,94:CLR

2 FOR Z=24320 TO 24431:READ X:
POKE Z,X:NEXT Z:FG =1

3 DATA 169,0,141,14,220,169,53,133,1
4 DATA 169,0,133,251,133,253,169,224,

133,252,169,96,133,254,160,0
5 DATA 177,251,145,253,192,63,208,16,

165,252,201,255,208,10
6 DATA 162,1,142,14,220,162,55,134,1,

96,200
7 DATA 208,229,230,252,230,254,76,25,

95
8 DATA 165,45,133,253,165,46,133,254
9 DATA 162,8,160,1,169,1,32,186,255,

162,113,160,95,173,112,95
10 DATA 32,189,255,169,0,133,251,169,

96,133,252,162,0,160,128,169,251
11 DATA 32,216,255,165,253,133,45,165,

254,133,46,96
20 HIRES 3,6:COLOUR 13,6
25 PRINT "Ejl":PT=1:GOSUB 70
30 GOTO 270
70 DIM DE(20,9)
80 FOR F=1 TO 10:H$(F)="111

NEXT F
110 FOR P=1 TO 9 STEP 2
120 FOR T=1 TO 9
130 READ DE(P,T),DE(P +1,T)
140 NEXT T,P
160 DATA 0.3,0.25,-0.6,0,0,- 0.5,0.6,0,0,

0.5,0,0,0,0,0,0,0,0
170 DATA 0.255,0.255,- 0.55,0,0,-0.55,

0.55,0,0,0.55,0,0,0,0,0,0,0,0
180 DATA 0.3,0.25,-0.6,0,0,- 0.5,0.6,0,0,

0.5,0,0,0,0,0,0,0,0
190 DATA 0.5,0.25,-1,0,0,-0.5,1,0,0,0.5,

0,0,0,0,0,0,0,0
200 DATA 0.255,0.255,-0.55,0,0,-0.55,

0.55,0,0,0.55,0,0,0,0,0,0,0,0
210 FOR T=1 TO 5:READ H$(T):

NEXT T
220 DATA CU,CO,WA,SI,FR
230 I =0:J =0:FL= 0:F1= 0:

F2= 0:F3 = 0:SC=50
240 RETURN
270 LOW COL 5,6,6:TEXT 5,160,"1)0

PLAN ❑ ROOM ❑❑❑❑❑❑❑❑
❑ 02) ❑ DESIGN El LAYOUT",1,1,8

290 TEXT 5,168,"3) ❑ DESIGN ❑
EQUIPMENTE111 ❑ 4) El SAVE
DESIGN",1,1,8

300 TEXT 5,176,"5)111LOAD ❑
DESIGN ❑❑❑❑❑❑❑❑ 6)
❑ PRINT ❑ ❑ 7)END",1,1,8:LOW COL
4,6,0

310 TEXT 0,188,"PRESS NUMBER OF
YOUR CHOICE",1,1,12

340 POKE 198,0:HI COL
360 GET N$:IF N$ <"1" OR N$ > "7" THEN

360
370 N=VAL(N$)
380 ON N' GOSUB500,960,1730,2100,2190,

2290,490:GOTO 270
490 PRINT "ag":NRM:END
500 OX= 58:0Y =159
520 HIRES 3,6
530 CSET(0):PRINT "0 gg ENTER MAXIMUM

LENGTH OF ROOM (METRES)"
531 INPUT LR:IF LR <1 THEN 531
540 L$= "LENGTH" + STR$(LR) +

"El M ETRES":TEXT 82,0,L$,1,1,8
550 SC =151/LR
600 IF OX <0 THEN OX= 0
601 IF OY < 0 THEN OY= 0
602 IF OY > 319 THEN OY= 319
603 IF OY >167 THEN OY = 167
609 PLOT OX,OY,1
610 CSET(0):PRINT "0 !PRESS W FOR

WINDOW":PRINT"OR D FOR DOOR"
611 PRINT "OR (SPACE) FOR WALL (CYAN)"
612 PRINT "OR B FOR (BLUE)"

To use this program with Hi-Res delete
Lines 1-11 and insert

1 	=1

Replace all SYS calls with colons.

613 GET Q$
614 IF Q$="C" OR Q$="D" THEN FL=1
620 IF Q$=" ❑ " THEN PT =1
630 IF Q$="B" THEN PT= 0
640 IF Q$< >"W" AND Q$< >"D" AND

Q$< >"E" AND Q$< >"B" THEN
613

660 CSET(2):GOSUB 780
661 IF Q$="D" OR Q$="W" THEN 672
663 GX = OX + SC * (NX(1) + NX(2)):

GY = OY SC * (NY(1) + NY(2))
664 IF GX<0 OR GX>319 OR GY<0 OR

GY >159 THEN 680
670 LINE OX,OY,GX,GY,PT
671 GOTO 680
672 EX= OX +SC*(NX(1)+ NX(2)):

EY = OY + SC*(NY(1) + NY(2))
673 DX= EX - OX:DY = EY - OY:

SX=SGN(DX):SY=SGN(DY):
X2 = SX:Y2 = 0:M =ABS(DX):
N =ABS(DY)

674 IF M< =N THEN X2= 0:Y2 = SGN
(DY):M =ABS(DY):N =ABS(DX)

675 S = INT(M/2):SH =S:FORI =1TOS:IF
OX < 0OROX > 3190ROY < 0OROY > 159
THENI= M:GOTO 679

676 PLOT OX,OY,1:S=S+ N:IF S<SH THEN
678

677 S =S - M:OX=0X+ SX*2:
OY= OY +SY*2:GOTO 679

678 OX=OX +X2*2:0Y=OY +Y2*2
679 NEXT I:GOTO 690
680 OX=0X+SC*(NX(1)+ NX(2)):

OY=0Y+SCINY(1)+NY(2))
690 GOSUB 30020:CSET(0):PRINT

"O PRESS C TO CLEAR ROOM PLAN"
692 PRINT "OR F WHEN FINISHED PLAN"
693 PRINT "OR <SPACE> TO CONTINUE"
700 GET C$:IF C$="" OR (C$ < >"C"

AND C$< >"0" AND C$< >"F")
THEN 700

702 IF C$="C" THEN HIRES 13,6:
OX =58:0,Y =159

710 IF C$=" ❑ " THEN F1 = 0
720 IF C$="F" THEN F1 =1:CSET(2)
730 IF F1=0 THEN 600
760 GOSUB 270
770 RETURN
780 CO=1
820 BLOCK0,168,319,199,0
825 TEXT0,168,"ENTER DIRECTION (U,D,L,R)

SPACE- 0",1,1,8
830 GETA$:IFA$ = `"'OR(A$ < > "U"AND

A$ < > "D"ANDA$ < > "L"ANDA$ < >
"R"ANDA$ < >"0")THEN 830

831 TEXT 300,168,A$,1,1,8:
DI$(CO)=A$

832 IF A$< >" ❑ " THEN TEXT 0,176,
"ENTER DISTANCE",1,1,8:
GOSUB10000

833 DI(CO) = VAL(C$)

850 BLOCK 0,168,319,199,0
870 CO = CO +1:IF CO <3 THEN 820
880 FOR 1=1 TO 2
890 IF D1$(1)="U" THEN NY(I)=

— DI(I):NX(1) =0
900 IF D1$(1)="D" THEN NY(I)=

DI(1):NX(1) =0
910 IF D1$(1)="L" THEN NX(I)=

—DIM:NV(1)=0
920 IF D1$(1)="R" THEN NX(I) =

DIM:NV(1)=0
930 IF D1$(1)=" ❑ " THEN NX(I)=

0:NY(I) =0
940 NEXT I
950 RETURN
960 LOW COL 1,6,0
970 BLOCK 0,160,319,199,0
980 PH =0:C = SC*COS(PH):

S=SC*SIN(PH)
1020 FOR F=1 TO 5:TEXT 67 + ((F-1)*50),

171,STR$(F) + 	+ H$(F),1,1,8
1030 TEXT 67 + ((F-1)*50),187,STR$

(F+5)+"1=1"+ H$(F+5),1,1,8:NEXT F:
HI COL

1040 GOSUB 1310
1050 GOSUB 1070
1060 RETURN
1070 TA(1)= 35:TA(2) = 193:1= 1:G =1
1100 P1 =TA(1):P2=TA(2):GOSUB 1270
1130 CE=1:PT=1:P1=TA(1):P2=TA(2):

GOSUB 1270
1140 IF PG=1 THEN P3=1 * 2 —1:RF=1:

PT = 2:GOSUB1470:GOSUB1470:RF =0
1145 CP= PEEK(197):RF= 0
1150 IF CP=12 AND TAW —16>0 THEN

TA(1) = TA(1) —16
1155 IF CP=23 AND TA(1)+16<319 THEN

TA(1)= TA(1) + 16
1160 IF CP=50 AND TA(2) —16> 0 THEN

TA(2)= TA(2) —16
1170 IF CP=55 AND TA(2)+16<199 THEN

TA(2) =TA(2) +16
1180 IF CP=13 THEN GOSUB 1310
1190 IF CP=41 THEN GOSUB 1380
1200 IF CP=10 THEN GOSUB 1530:GOTO

1140
1210 P1 =TA(1):P2=TA(2):GOSUB 1270
1213 IF PEEK(197) = 49 THEN PG = PG +1:IF

PG >1 THEN PG =0:WAIT 197,64
1220 IF CP< >62 THEN 1130
1230 P1 = TA(1):P2 = TA(2):GOSUB 1270
1250 BLOCK 0,160,319,199,0:GOSUB

270:RETURN
1270 TEXT P1,P2,"*",2,1,8:RETURN
1310 BLOCK 8,192,24,198,0:1=1 + INT

((TA(1) — 75)/50):IF TA(2) >183 THEN
1=1+5

1315 IF 1<1 THEN 1=1
1370 TEXT 0,192,STR$(I),1,1,8:RETURN
1380 P1 = TA(1):P2 = TA(2):P3 =1 * 2 — 1:

P$=H$((1+1)/2):GG=1:GOSUB 1470:

RETURN
1470 G = P3
1485 EX= P1:EY= P2
1490 EX = EX+ DE(G,1)*C + DE(G + 1,1):

EY= EY+ DE(G,1) * S+ DE (G +1,1):
NB=2

1491 HB = EX:LB = EY:GOSUB1521
1492 EX= EX+ (DE(G,2) * C+ DE(G +1,2) * S):

EY= EY— (DE(G,2)*S— DE(G +1,2)*C):
NB = 3:GOSUB1521

1494 EX= EX+ (DE(G,3)*C+ DE(G+1,3)*S):
EY= EY— (DE(G,3)*S — DE(G + 1,3) * C):
NB = 4:GOSUB1521

1496 EX= EX+ (DE(G,4) * 0 + DE(G +1,4) * S):
EY= EY— (DE(G,4)*S— DE(G +1,4)*C):
NB =5:GOSUB1521

1498 EX= EX+ (DE(G,5) * 0 + DE(G +1,5)*S):
EY= EY— (DE(G,5)*S— DE(G + 1,5)*C):
NB =6:GOSUB1521

1500 EX= EX+ (DE(G,6)*C+ DE(G+1,6)*S):
EY= EY— (DE(G,6)*S— DE(G +1,6)*C):
NB = 7:GOSUB1521

1502 EX= EX+ (DE(G,7)*C+ DE(G+1,7) * S):
EY = EY — (DE(G,7)*S— DE(G +1,7) * C):
NB =8:GOSUB1521

1504 EX= EX+ (DE(G,8)*C+ DE(G +1,8)*S):
EY= EY— (DE(G,8)*S— DE(G +1,8)*C):
NB = 9:GOSUB1521

1506 EX= EX+ (DE(G,9)*C+ DE(G+1,9) * S):
EY = EY— (DE(G,9)*S— DE(G +1,9)*C)

1510 IF RF= 0 AND CE< >0THEN TEXT
HB+1,LB+1,H$(GG),1,1,8:RETURN

1515 IF RF= 0 AND CE=0THEN TEXT
HB+1,LB+1,H$(GG),0,1,8

1520 RETURN
1521 IF EX<0 OR EX>319 OR EY<0 OR

EY> 199 THEN RETURN
1522 FX= EX+ (DE(G,NB)*C+

DE(G + 1,NB) * S):FY = EY —
(DE(G,NB)*S—DE(G+1,NB)*C)

1523 IF FX<0 OR FX>319 OR FY<0 OR
FY > 199 THEN RETURN

1524 LINE EX,EY,FX,FY,PT
1525 IF EX<HB AND EY< LB THEN

HB = EX:LB = EY
1526 RETURN
1530 RF=1:GG = I:CE =1
1555 J = I*2 1:AX = TA(1):

AY = TA(2)
1570 C=SC * COS(PH):

S=SC*SIN(PH)
1590 PT = 2:P1 =AX:P2=AY:P3=J:P$= H$

((J +1)/2):GOSUB 1470
1600 CP= PEEK(197):IF CP=64

THEN 1600
1601 PZ = AX:P2 = AY:PT = 2:P3 = J:

GOSUB 1470
1605 IF CP=12 AND AX-2>0 THEN

AX= AX —2
1610 IF CP=23 AND AX+2<319 THEN

AX= AX +2

1620 IF CP=50 AND AY-2>0 THEN
AY = AY — 2

1630 IF CP=55 AND AY+2<199 THEN
AY= AY +2

1640 IF CP=37 THEN PH = PH +.0873
1650 IF CP=42 THEN PH = PH —.0873
1660 IF CP=14 THEN CE= 0:GOTO 1686
1670 C=SC*COS(PH):S=SC * SIN(PH)
1675 PT = 2:P1 =AX:P2=AY:P3=J:IF

CP=62 THEN 1686
1680 GOSUB 1470
1681 IF CP=41 THEN 1686
1685 GOTO 1600
1686 RF =0:PT = CE:P1 =AX:P2=AY:P3=J:

IF CP=41 OR CP=14 THEN
GOSUB 1470

1710 C = SC*COS(PH):S = SC * SIN(PH):IF
CE= 0 THEN CE=1:RF=1:GOTO 1590

1720 POKE 198,0:RETURN

101
10 MODE4
20 PROCinitialise
25 REPEAT
30 PROCmenu
35 UNTIL N=55
40 MODE 6
50 END
60 DEF PROCinitialise
65 CR$ = CH R$(13) + CH R$(10)
70 DIM A$(2):A$(1) ".Enter instruction: B — a

blank or gap" + CR$ + "W —a window or
door or it will be a wall then enter the
direction and distance in METRES; eg
WU3R2 or D7L3 or R5." + CR$+"F to
finish or C to clear the plan"

75 A$(2) = "Enter the directions and distance
in" + CR$ + "CENTIMETRES : eg U50R30;

D60L20 or U70.111111F to finish or C to
clear the plan1111111111110111WARNING
The first line is NOT drawn"

80 DIM h$(10)
90 DIM take(2) ,put(30,4) ,def(20,9)
110 FOR P=1 TO 9 STEP 2
120 FOR T=1 TO 9
130 READ def(P,T),def(P +1,T)
140 NEXTT
150 NEXT P
160 DATA 0.3,0.25,-0.6,0,0,-0.5,0.6,0,0,

0.5,0,0,0,0,0,0,0,0
170 DATA 0.255,0.255,-0.55,0,0,-0.55,

0.55,0,0,0.55,0,0,0,0,0,0,0,0
180 DATA 0.3,0.25,-0.6,0,0,-0.5,0.6,0,0,

0.5,0,0,0,0,0,0,0,0
190 DATA 0.5,0.25,-1,0,0,-0.5,1,0,0,0.5,

0,0,0,0,0,0,0,0
200 DATA 0.25,0.255,-0.5,0,0,-0.55,0.5,

0,0,0.55,0,0,0,0,0,0,0,0
210 FOR T=1 TO 10
220 READ h$(T)
230 NEXTT
240 DATA cu,co,wa,si,fr,6,7,8,9,10
250 i = 0:j = 0:flag = 0:flagl = 0:flag2 = 0:

flag3=0:scale =158:G =0
260 ENDPROC
270 DEF PROCmenu
280 GCOL0,1
290 VDU 28,0,31,39,26
300 VDU 24,0;199;1279;1023;
310 CLS:PRINT"1. Plan room 2. Design layout"
320 PRINT"3. Design equipment 4. Save

design"
330 PRINT"5. Load design 6.Print design"
340 PRINT"7. Exit program"
350 PRINT"`PRESS THE NUMBER OF YOUR

CHOICE";
360 *FX15,0
370 N =GET
410 IF N<49 OR N>55 THEN 370
420 IF N=49 PROCdrawroom
430 IF N=50 PROCselectequipment

440 IF N=51 PROCownequipment
450 IF N=52 PROCsave
460 IF N=53 PROCload
470 IF N=54 PROCprint
490 ENDPROC
500 DEF PROCdrawroom
510 CLS:INPUT"Enter maximum length of room

in METRES"length
520 VDU5:MOVE 440,1023:PRINT

"LENGTH =";length;" METRES":VDU 4
530 scale=790/1ength
540 PROClines(1)
550 ENDPROC
560 DEF PROClines(N)
570 LOCAL D$,D
580 IF N=1 THEN MOVE230,200 ELSE

MOVE640,610
590 GCOL0,1:PLOT65,0,0:CLS:flag= 0
600 PRINTA$(N);
610 INPUTQ$
620 GCOL0,1:T$= LEFTVQ$,1):IF T$=

"W" AND N=1 THEN flag =1:Q$= MID$
(Q$,2)

630 IF N=1 AND T$="B" GCOL0,0:Q$=
MID$(Q$,2)

640 IF N=2 AND G=1 THEN GCOL0,0
650 IF T$ < >"C" THEN 690
660 GCOL0,0:MOVE0,200:MOVE1280,200:

PLOT85,0,980:PLOT85,1280,980:GCOL0,1
670 IF N=2 THEN FOR T=1 TO 9:def(Z,T)

=0:def(Z +1,T) =0:NEXT:G =1
680 GOTO 580
690 IF T$="F" THEN CLS:ENDPROC
700 newx= 0:newy =0:P =1
710 IF INSTR("UDLR",LEFT$(Q$,1))= 0 OR

VAL (MID$(Q$,2))=0 THEN PRINT
"Please re-enter":GOTO 600

720 FOR 1=1 TO 2
730 D$= MID$(Q$,1,1):D=VAL(MID$

(Q$,2))
740 P= P +1 + LENSTR$D
750 IF D$="U" newy = D
760 IF D$="D" newy= —D
770 IF D$ ="L" newx= —D
780 IF D$="R" newx= D
790 Q$= MID$(Q$,P):IF INSTR("UDLR",

LEFT$(Q$,1)) =0 OR VAL
(MID$(Q$,2)) =0 THEN 1=2

800 NEXT
810 IF N=1 THEN 850
820 IF G>9 PRINT"`Sorry only a maximum of

8 sides.""`Press any key and then C if you
want to start again":A$=GET$:GOTO 590

830 PLOT1,nscalenewx,nscalenewy:def
(Z,G) = newx/100:def(Z + 1,G) =
newy/100:G =G +1

840 GOTO 590
850 IF flag PLOT 17,scalenewx,scale*newy ❑

ELSE PLOT1,scalenewx,scalenewy
860 GOTO 590
960 DEF PROCselectequipment

970 CLS
980 phi = 0:c = scale:s = 0
990 VDU 24,0;0; 1279; 1023;
1000 GCOL0,1
1010 VDU5:FOR 1=1 TO 10
1020 MOVE 1110,100:IF h$(1)="" THEN

PRINT;I:ELSE PRINTh$(I)
1030 NEXT:VDU 4
1080 GCOL3,1
1090 take(1) = 32:take(2) =100
1100 PROCpoint(take(1),take(2))
1110 REPEAT
1120 *FX15,1
1130 PROCpoint(take(1),take(2))
1140 IF INKEY(— 26)take(1) =take(1) — 8
1150 IF INKEY(—122)take(1) = take(1) +8
1160 IF INKEY(— 58)take(2) = take(2) + 8
1170 IF INKEY(—42)take(2) = take(2) —8
1180 IF INKEY(-82)PROCselect
1190 IF INKEY(-56) AND i< >0

PROCputdown
1200 IF INKEY(—66)PROCadjustment
1210 PROCpoint(take(1),take(2))
1220 UNTIL INKEY(—17)
1260 ENDPROC
1270 DEF PROCpoint(a,b)
1280 GCOL3,1
1290 VDU 5:MOVEa-32,b:IF i=0 THEN VDU

42 ELSE PRINTh$(i)
1300 VDU 4:ENDPROC

114
10 PCLEAR8:CLEAR 2000
20 DEF FNA(XM)=1.9*SC*XM
30 DIM 0$(9),S(10)
40 0$(0)="DR100;DU50;DL100;DD50;BR8;

BU8;DR40;DU34;DL40;DD34;"
50 0$(1) ="DR50;DU60;DL50;DD60;BR10;

BU10;DR10;DU10;DL10;DD10;BR20;
DR10;DU10;DL10;DD10;BU20;DU10;
DR10;DD10;DL10;BL10;DL10;DU10;
DR10;DD10;BL20;BU15;DR50;"

60 0$(2) = "DR100;DU60;DL100;DD60;"
70 0$(3)="DR30;DU30;DL30;DD30;DU20;

DR30;"
80 0$(4)="DR60;DU60;DL60;DD60;"
90 CLS
100 PRINT@96,TAB(6)"1: PLAN ROOM"
110 PRINT TAB(6)"2: DESIGN LAYOUT"
120 PRINT TAB(6)"3: DESIGN EQUIPMENT"
130 PRINT TAB(6)"4: SAVE DESIGN"
140 PRINT TAB(6)"5: LOAD DESIGN"
150 PRINT TAB(6)"6: PRINT DESIGN"
160 PRINT TAB(6)"7: EXIT PROGRAM"
170 PRINT@422,"ENTER YOUR CHOICE";:

INPUT N
180 IF N<1 OR N>7 THEN 90
190 IF N=2 AND F1=0 THEN CLS:

PRINT"YOU MUST SELECT OPTION 1
FIRST":SOUND 1,20:GOTO 90

200 IF N=1 THEN F1 =1

210 ON N GOTO 350,1120,830,1700,1750,
1790,230

220 GOTO 90
230 CLS:PCLS:END
240 RF=0:COLOR0
250 LINE(200,0)- (255,191),PSET,B
260 DRAW "BM206,10;S4;A0;NR4D6R4BR2U

6D3R4D3U6BR2D6R4U6NL4BR2D6R4U6N
L4BR2NR4D3R4D3NL4BR2NR4U3NR2U3R
4BR4BD2DBD2D"

270 IF RF =1 THEN RETURN
280 DRAW "BM203,30;D6R2NU3R2U6BR6R4

D6L4U6BR10D6R4U3L4R3U3L3BR10NR4D
3R4D3NL4BR2U6R4D3L4BR6U3NR4D6R4"

290 DRAW "BM218,43;D6U3NR2U3R4BR6NR
4D6R4"

300 RETURN
310 RF=1:COLOR0,1:LINE(201,1)-

(254,190),PRESET,BF:GOSUB 250
320 DRAW "BM208,30;ND6R4D3L4BR10BU3

D6R3E1U4H1L3BR10;ND6R4D3L4R1F3BR
6U6R4L4D3R2"

330 RETURN
340 DRAW "BM213,70;D4F1R2E1U4H1L2G1B

U1 BR8BD3R3BR5U3R4D3NL4D3BR8UBU2
U2R2U2L4D2":RETURN

350 CLS
360 PRINT "MAX LENGTH OF ROOM

(METRES)"
370 INPUT LE
380 IF LE >100 OR LE <3 THEN 350
390 SC=100/LE
400 PMODE 4,1:COLOR0,1:PCLS:SCREEN1,0
410 XM =0:YM = LE
420 GOSUB 240
430 XX= FNA(XM):YY= FNA(YM):IF PPOINT

(XX,YY) =1 THEN PSET(XX,YY,0) ELSE
PSET(XX,YY,1)

440 I$=INKEY$:IF 1$="" THEN 430
450 OX=XM:OY=YM
460 IF 1$=" ❑ " THEN COLOR 0:GOTO 530
470 IF 1$="B" THEN COLOR 1:GOTO 530
480 IF I$="C" THEN 400
490 IF I$="F" THEN FORK =1704:

PCOPYKETOK+ 4:NEXT: GOTO 90
500 IF 1$="W" THEN 710

510 IF 1$= "0" THEN 800
520 GOTO 430
530 CLS
540 FOR A=1 TO 2
550 PRINT "DIRECTION";A;

U/D/L/R ❑ ";:INPUTD$(A)
560 IF D$(A)=`"' THEN 600
570 PRINT "DISTANCE";A;:INPUT D(A)
580 IF INSTR(1,"UDLR",D$(A)) = 0 THEN 550
590 NEXT
600 SCREEN1,0:FOR A=1 TO 2
610 IF D$(A)="" THEN 670
620 IF D$(A)="L" THEN XM=XM-D(A)
630 IF D$(A)="R" THEN XM=XM+D(A)
640 IF D$(A)="U" THEN YM =YM -D(A)
650 IF D$(A)="D" THEN YM=YM+ D(A)
660 NEXTA
670 IF XM <0 OR XM > LE OR YM <0 OR

YM > LE THEN SOUND 1,2:XM=OX:
YM = OY:GOTO 430

680 X1 = FNA(OX):Y1 = FNA(0Y):X2= FNA
(XM):Y2= FNA(YM)

690 LINE(X1,Y1) - (X2,Y2),PSET
700 GOTO 430
710 CLS:INPUT "DIRECTION U/D/L/R ";D$
720 INPUT "DISTANCE";D
730 X1 = FNA(OX):Y1 = FNA(OY)
740 POKE 178,2
750 IF D$="L" THEN XM=XM-D:X2=

FNA(XM):LINE(X1,Y1) - (X2,Y1 +3),PSET,
BF

760 IF D$="R" THEN XM XM + D:X2=FNA
(XM):LINE(X1,Y1) - (X2,Y1 + 3),PSET, BF

770 IF D$="U" THEN YM=YM - D:Y2=
FNA(YM):LINE(X1,Y1) - (X1 +3,Y2),PSET,
BF

780 IF D$="D" THEN YM=YM+D:Y2=
FNA(YM):LINE(X1,Y1)- (X1 +3,Y2),PSET,
BF

790 SCREEN1,0:GOTO 430
800 CLS:INPUT "DIRECTION U/D/L/R ";D$(1)
810 INPUT "DISTANCE";D(1)
820 D$(2)="":COLOR1:GOTO 600
830 CLS
840 INPUT "ENTER NUMBER OF ITEM YOU

WISH TODEFINE (0-9)";N
850 IF N<0 OR N>9 THEN 830
860 0$(N)=""
870 PRINT"USE <SPACE> FOR

LINE":PRINT"USE 'B' FOR BLANK
LINE":FORD =1 TO 1000:NEXT

880 PMODE4,1:COLOR0,1:PCLS:SCREEN1,0
890 X =75:Y =145
900 DRAW "BM75,150;R100NG3NH3;BM70,

145;U100NF3NG3"
910 IF PPOINT(X,Y)= 0 THEN PSET(X,Y,1)

ELSEPSET(X,Y,0)
920 I$=INKEY$:IF 1$="" THEN 910
930 OX = X: OY=Y
940 IF I$="C" THEN 830
950 IF I$="F" THEN 90

960 IF 1$=" ❑ " THEN COLOR 0
970 IF I$< >" ❑ " THEN COLOR 1
980 IF$=" ❑ " THEN 0$(N)=0$(N)+"D"

ELSE 0$(N)=0$(N) +"B"
990 CLS:INPUT "DIRECTION U/D/L/R ";D$
1000 IF INSTR(1,"UDLR",D$) = 0 THEN 990
1010 INPUT "DISTANCE (CMS)";D
1020 IF D< =0 OR D>200 THEN 1010
1030 SCREEN1,0
1040 IF D$="L" THEN X= X- D/2
1050 IF D$="R" THEN X = X+ D/2
1060 IF D$="U" THEN Y=Y- D/2
1070 IF D$="D" THEN Y=Y+ D/2
1080 IF X<75 OR X>175 OR Y<45 OR

Y>145 THEN SOUND 1,3:X=OX:Y=OY:
GOTO 910

1090 LINE(OX,OY) - (X,Y),PSET
1100 0$(N)=0$(N)+ D$+STR$(D)+";"
1110 GOTO 910
1120 FOR K=1 TO 4: PCOPYK+4TOK:

N EXT:CLS
1130 PMODE4,1:SCREEN1,0
1140 GOSUB 310
1150 X =128:Y = 96:RT= 0
1160 IF X<3 THEN X=3
1170 IF Y<3 THEN Y=3
1180 GET(X- 3,Y- 3) - (X+ 3,Y + 3),S,G
1190 DRAW "C0;BM" + STR$(X) + ",

"+STR$(Y)+"NU3ND3NL3NR3"
1200 I$=INKEY$:IF 1$ ="" THEN 1200

More and more troubles are being
heaped on Willie* In the first part of
this two-part article boulders are
being prepared to roll down the
slope at him

As if Willie's problems were not enough—
what with the tide coming in, the goats eating
his picnic, cliff-climbing to do and potholes
and snakes to contend with—you are now
going to start rolling rocks at him.

The process of putting a boulder at the top
of the slope, moving it down the slope,
animating it so that it looks like it is rolling,
checking to see that it remains on the slope,
blanking it out once it has moved, checking to
see whether it has hit Willie, and losing it
altogether once it has hit the sea is a complex
one. So it is going to be handled in two parts.

a
The first part of the boulder-moving routine
given here deals with moving the boulder
down the slope. Unfortunately, it will not
work without the other part of the routine,
which deals with hitting Willie and starting
the boulder off at the top of the slope. This
will be given in the second part of this article.
So, for now, key in and assemble this routine,
but do not run it. Without part two it will
crash.

The first thing the rock-rolling routine has to
do is to check whether the game is at a level
where rock-rolling is needed. If you remem-
ber, Willie has to dodge flying boulders in
level one and level four of Cliffhanger. The
variable that corresponds to the game level is
stored in memory location 57,344, 0 for level
one, 3 for level four.

So the contents of memory location 57,344
are loaded into the accumulator and com-
pared first with 0, then with 3. If either of
these two values are found the jr z,blm
instruction jumps the process on into the

main boulder-moving routine. But if neither
are found, the processor reaches the ret and
simply returns to the main routine.

IN THE MODE?
To animate the boulder there is data for two
different boulder pictures stored in memory.
When these are printed up on the screen
alternately it gives the impression that the
boulder is rolling.

To know which boulder picture to print on
the screen the processor must know which
picture was printed up last. The variable in

org 58993
bar Id a,(57344)

cp 0
jr z,blm
cp 3
jr z,blm
ret

blm Id a,(57358)
cp 1
jr z,bma
Id h1,(57356)
Id bc,57120
Id a,42
call 58217
inc hl
Id a,45
Id bc,15616
call 58217
Id hl,(57356)
Id de,480
sbc hl,de
jr z,bri
Id hl,(57356)
Id de,22560
add hl,de

Id a,(111)
cp 15
jr z,bri
cp 45
jr nz,bok
Id h1,(57356)
Id bc,15616
Id a,45
call 58217
Id de,32
add hl,de
Id (57356),hI
Id bc,57120
Id a,42
call 58217

bok Id hl,(57356)
dec hl
Id (57356),hI
Id a,1
Id (57358),a
ret
org 59137

bri
org 59097

bma

CHECKING THE LEVEL
TWO-FRAME ANIMATION

CHECKING FOR LAND
UNDERNEATH

DROPPING DOWN THE SLOPE

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

57,358 tells it* Its contents are either 0 or 1*
So the contents are loaded into the ac-
cumulator and compared to 1. If they are 1,
the processor jumps to the bma routine which
is given in the second part of this article. But if
the contents of 57,358 are 0, it continues with
the routine given here.

You will notice that during the course of
the two routines the variable in 57,358 is
flipped back—if it was 1 it is flipped to 0, if it
was 0 it is flipped to 1—so next time the

processor performs the boulder-moving rout-
ine it takes the other branch here and prints
up the other boulder picture*

Naturally the contents of 57,358 are set to
an initial value by the initialization routine
which sets the game up*

ROCK ON
The position of the boulder is stored in
memory location 57,356. So this is loaded up
into HL* BC is loaded with 57,120 which is
the start of the data for the boulder in its first
position* And 42—which corresponds to red
on cyan—is loaded into A.

The print routine, which is at 58,208, is
then called. This—as always—prints up the
data pointed to by the contents of BC in the
colour specified by the contents of A in the
position given by the contents of HL.

HL is then incremented to give the former
position of the boulder* (For the moment you
are only dealing with a rock rolling along a flat
part of the slope. You'll see how the one-space
drop is done to simulate it rolling over one of
the diagonal parts of the slope subsequently.)

A is then loaded with 45—this corresponds
to the colour cyan on cyan. And BC is loaded
with 15,616. This location is in ROM and is
the data for an empty space* Then print is
called again. This blanks out the last rock so
that you do not get a whole trail of them
printed, nose to tail, down the screen*

ROCK OFF
Next you must check to see whether the rock
has reached the extreme left-hand side of the
screen. The far left of the roll is screen
position 400* So the HL register is reloaded
with the boulder's screen position from
57,356. It was incremented, remember.

DE is then loaded with 480 and the
contents of the two registers are subtracted.

If the result is zero—that is the screen
position of the boulder is 480, or the final
position of its roll—the instruction jr z,bri
sends the processor to the bri routine. This
prints over the boulder with a blank again and
sets it back at the top of the slope again*

This routine is given in part two of this
article and, unfortunately, this part will not
work without it*

IN THE WATER?
But as the tide comes up the rock hits the
water before it reaches the left-hand edge of
the screen, you need to check for a splash.
If it does hit the water, the boulder must then
be switched off again. You wouldn't want it
rolling along underwater* That wouldn't look
at all realistic.

The simplest way to check whether the
rock has hit the water is to check the attribute
of the screen position directly underneath it.
if its white on blue, the colour of the sea, then
the boulder must be painted out. So HL is
loaded with the boulder position from 57,356
yet again. And DE is loaded with 22,580.
There are, in fact, only 22,528 memory
locations separating corresponding screen
locations in the display file and the attribute
file. But an extra 32 is added here so that the
address of the attribute of the screen location
one line down—or 32 character squares
along—the screen is located.

The contents of HL and DE are then
added. The HL and DE register pairs are
always used for two-byte additions and sub-
tractions and the result is always left in HL*
So the contents of the memory location
pointed to by HL—which is now the appro-
priate place in the attribute file—are loaded
into the accumulator by the indirect instruc-
tion Id a,(hI)*

They are then compared with 15, which is
white on blue—in other words, the sea colour*
And if the sea is below the rock, the instruc-
tion jr z,bri sends the processor off to the
routine in part two which paints out the
boulder and starts it off from the top of the
slope again.

THAT SINKING FEELING
Now that you have got the attribute of the
character square below the boulder in mem-
ory it would be a shame to waste it* So the
contents of the accumulator are compared to
45.

This, you remember, corresponds to cyan
on cyan, the sky colour* Here you are chec-
king to see if there is sky underneath the
boulder.

If there is not, and the boulder is still

firmly on the ground, the jr nz,bok jumps the
processor onto the bok which leaves the
boulder where it is and simply tidies up the
variables before returning* But if there is sky
underneath the boulder, you had better do
something about it and the processor con-
tinues then with the next part of the routine
here.

If you remember, so far the boulder has
only been moved to the left. its vertical
position has not been altered to take into
account the fact that the slope falls away* So if
there is sky beneath the boulder, that means
that boulder has run over the edge of an
inclined section by a character square. Thus,
it needs to be blanked out and printed one
character square lower. In machine code, all
this is going to happen so fast that your eye—
or the TV screen for that matter—will have no
time to react* So you will not see the boulder

in its intermediate position flying gracefully
through the air.

Once again the HL register is loaded with
the current screen position of the boulder
from 57,356. BC is loaded with the ROM data
for a space from 15,616 as before. And A is
loaded with 45—cyan on cyan. The print
routine is called to blank out the boulder as
before*

DE is then loaded with 32 which is added
to HL. This moves the pointer in HL one
character square down the screen* And the
boulder position is updated by copying the
pointer in HL back into memory location
57,356. It is important to remember that the
Id instruction only copies the contents of one
memory location or register into another
memory location or register* The contents of
its place of departure remain unchanged. So
the new screen position is still in HL when
BC is loaded with the start address of the first
boulder picture data* A is loaded with 42—
red on cyan—and the print routine is called.
Then a red rock is printed in the new screen

position, one character square down tne
screen from where the boulder appeared last
time.

ROLLING STONES
Whether the rock has had to be reprinted one
character square down the screen or not, the
variables have to be reset to make the rock
appear to roll down the screen.

So yet again HL is loaded with the current
screen position in 57,356, though it might
have been updated since the last time it was
loaded up if the rock has rolled down an
incline. The contents of HL are then de-
cremented and the result is loaded back into
57,356. Next time the rock-rolling routine is

called, this pointer will point one cnaracter
square to the left.

When the processor decided to come down
this branch of the routine and print up the
first boulder picture, it was because the
contents of the boulder mode location-
57,358—was 0* Next time you want it to print
the other boulder picture. So 1 is loaded into
the accumulator and then loaded back into
57,358*

ECK
Before you get into moving the boulder
proper, this little routine takes a look at the
character immediately under the boulder* It
does this to check whether the slope is still

nate into the multiplication routine in part
nine of Cliffhanger (see page 1146).

The next four instructions take the double
density Y coordinates through the same pro-
cess. Again the carry flag is cleared before the
rotation—it would have been set by the
previous rotation if a bit had been shifted out
of the least significant bit—and the least
significant bit is ignored.

Note that the double density Y coordinate
in $C009 is already pointing to the character
square below the boulder, so it does not have
to be adjusted now.

The multiplication routine at $5000 is
then called. This, as you have seen, converts
X and Y coordinates into a screen position
which is stored in memory locations $FB and
$FC*

The character displayed on the appropriate
screen location is then loaded into the ac-
cumulator by LDA ($FB),Y. The Y is set to
zero by the multiplication routine, but index-
ed indirect addressing is the only form of
indirect addressing available* And this in-
struction takes as its base address the contents
of memory locations $FB and $FC*

The processor then returns to the main
boulder-moving routine, where it was called,
with the character in the space below the
boulder in the accumulator.

The first part of the boulder -moving routine
given here contains a routine that looks at
specific areas of the screen to check for
collisions and one that prints the boulder up
on the screen. Remember to set the computer
up as normal before you key it in.

there—if it is not, the boulder will have to be
moved down until it is on the slope—or it has
reached the sea.

ORG 20736
LDA $C008
CLC
ROR A
STA $0352
LDA $C009
CLC
ROR A
STA $0353
JSR $5000
LDA ($FB),Y
RTS

The double density coordinates that you
worked out before are stored in memory
locations $C008 and $C009. The double
density X coordinate in $C008 is loaded into
the accumulator.

To convert this back into a regular coordi-
nate it has to be divided by two* This is done
simply by rotating the contents of the ac-
cumulator one place to the left. Note that the
carry flag is cleared first. A rotate moves
whatever is in the carry flag into the empty bit
of the register. So if, for any reason, the carry
flag was set you'd get a spurious result here.
Clearing the carry flag here precludes this.
The result is stored in $0352 which is the
memory location used to pass the X coordi-

30 FORPASS=
0TO3STEP3

40 P%= &1DBD
50 [OPTPASS
60 *Look
70 PHA
80 LDA#17
90 JSR&FFEE
100 PLA
110 CLC
120 ADC#128
130 JSR&FFEE
140 STX&70
150 STY&71
160 LDA#31
170 JSR&FFEE
180 TXA
190 LSRA
200 JSR&FFEE
210 LDA#64
220 SEC
230 SBC&71

240 LSRA
250 JSR&FFEE
260 LDA # &87
270 JSR&FFF4
280 TXA
290 AND # 31
300 LDX&70
310 LDY&71
320 RTS
330 .PtBarrel
340 LDX&78
350 LDY&79
360 JSR&1964
370 LDA# 5
380 JSR&FFEE
390 LDA #18
400 JSR&FFEE
410 LDA#3
420 JSR&FFEE
430 LDA # 3
440 JSR&FFEE
450 LDX # 242

460 LDA&75
470 AND # 1
480 BEQLb1
490 LDX # 243
500 .Lb1
510 TXA

LOOK AND LEARN
When you look at a character on the screen, its
background colour must be the same as the
one the machine is currently using—
otherwise your computer would not be able to
recognize what the bit pattern is* It would not
know which is foreground and which is
background.

So when you enter this routine you have to
specify the background colour of the charac-
ter square you're looking at* This has to be
put in A, and the X and Y coordinates of the
screen position you want to look at in the X
and Y registers*

The background colour in A is pushed
onto the stack immediately the processor
enters the routine* The accumulator has to be
used for something else for a moment. It has
to be loaded with 17 which is then output to
the screen routine at FFEE* This gives a VDU
17 which changes the background colour*

The colour specified is then pulled back off
the stack and 128 is added—it's the back-
ground colour you're changing, remember.
The result of the addition is in A so it can be
output directly by jumping to FFEE*

POSITIONING
The X and Y coordinates of the position you
want to tab to are stored temporarily in zero
page memory locations &70 and &71. They
can then be manipulated easily without their
values being lost* And that is important as you
are going to have to work out the machine's
own coordinates in this particular mode from
the coordinates the program has been using*

A is loaded with 31 and output to the
routine at FFEE. This allows you to
text cursor to any gOgracter 	• 	*

The contents of the X register are then
transferred into A and logically shifted to the
right* This divides them by two, giving the
correct coordinate for this mode*

To work out the appropriate Y coordinate
the number in &71 has to be subtracted from
64 and the result divided by two, again by a
logical shift right* This is output by the
instruction in Line 250.

READING THE SCREEN
An operating system call is used to read the
character on the screen. If you look in your
manual you will see that OSBYTE &87 reads
the character at the text cursor position.

The text cursor has already been posit-
ioned by the tab routine above. And to get
OSBYTE &87 you load the accumulator with
&87 and jump to the subroutine at FFF4*

This returns the value of the screen
character in the X register, so it has to be
transferred into A before it can be
manipulated*

The characters you are looking for with
this routine are UDGs* The way these have
been encoded means that you are only interes-
ted in bits zero to four. So the character value
is ANDed with 31*

When the processor comes out of the
routine it carries the character value of the
five least significant bits in A. And the values
in X and Y are restricted by loading them up
from &70 and &71.

GETTING BOULDER
The current coordinates of the boulder are
stored in &78 and &79. These are loaded into
the X and Y registers. The processor then
jumps to the subroutine at &1964. This
routine was given in an earlier part of Cliff-
hanger and moves the graphics cursor to the
coordinates given by the X and Y registers.

A is then loaded with 5 and the routine at
FFEE is jumped to again* This gives a VDU 5
which allows you to write text to the graphics
cursor. One of the advantages of this is that it
allows you to superimpose what you write on
w already on the soreen.

is then 	• with 18 and FFEE is
called .. * * his gives a VDU 18 or GCOL.
T • 	xt four instructions—in Lines 410 to

4 output two 3s to FFEE* These are the
COL's two parameters* So this instruction

gives a GCOL 3,3, which sets the colour of the
boulder. The first 3, you note, means that the
logical colour in the second parameter is
Exclusively ORed with what is on the screen
already. This means that this routine can be
used to rub out a boulder was well, if it is
called again in the same place*

Then the UDG number of one of the two

boulder characters-242—is loaded into X.
Memory location &75 carries the direction

variables for the boulder* Bit one carries a flag
which tells the processor which boulder pic-
ture to print on the screen* There are two of
them which are printed alternately to give the
impression that the boulder is rolling*

This flag is loaded up into the accumulator
and AN Ded with 1* This effectively flips the
flag—if it was 1 it flips it to 0 and if it was 0 it
flips it to one*

If the result of this operation was zero, the
BEQ instruction branches the processor over
the next generation* This leaves the UDG
number in X as it was and goes ahead, ready
to output it. If not, X is loaded with the UDG
number of the other boulder picture-243-
instead* The flipping of the flag each time this
routine is executed ensures that the two
boulders are printed up in rotation.

Whichever UDG number is in X, it is then
transferred into A and output to the screen by
jumping to the subroutine at FFEE. This
actually prints the boulder on the screen!

A is then loaded with 4 and output by
jumping to FFEE* This gives a VDU 4—which
is the opposite of a VDU 5—this separates the
text and graphics cursors again and returns
them to their normal function. Then the
processor exits the routine.

TESTING
This routine is called by the routine coming
in part two of this article* So it doesn't do
anything much on the screen* But it can be
tested by keying in the following instructions:

MODE 5: PRINT"A"
A% = 0:X% = 0:Y% = 64
PRINT USR(&1 DBD)AND&FF

This should print a 1 on the screen. And if
you repeat the instructions with a B instead of
an A, it should print a 2*

The first part of the boulder-moving routine
given here deals with moving the boulder and
checking for collisions* Unfortunately, it will
not work without the other part of the
routine, which deals with actually printing
the boulder on the screen. This will be given
in the second part of this article* So, for now,
key in and assemble this routine, but do not
run it* Without part two it will crash.

ORG 19781
BAR LDA 18238

BEQ BLM
CM PA #3
BEQ BLM
RTS

520 JSR&FFEE
530 LDA # 4
540 JSR&FFEE
550 RTS
560]
570 NEXT

BLM 	LDX 18253
LDU #1536
PSHS X
JSR CHARPR
PULS X
LEAX —1,X
CMPX #5344
BEQ BRI
STX 18253
LDA ,X
CMPA #$AA
BEQ BRI
CMPA #$55
BEQ BNH
CMPA # $50
BEQ BNH
LDA #2

STA 18252
BNH 	LEAX 289,X

LDA ,X
CM PA # $AA
BEQ BRI
CM PA #$55
BNE BOK
LEAX —33,X
STX 18253

CHARPR EQU 19402
BOK 	EQU 19861
BRI 	EQU 19894

The first thing the rock-rolling routine has to
do is to check whether the game is at a level
where rock-rolling is needed. If you remem-
ber, Willie has to dodge flying boulders in
level one and level four of Cliffhanger. The
variable that corresponds to the game level is
stored in memory location 18,238. If 0, you
are on level one, if 3, you are on level four.

So the contents of memory location 18,238
are loaded into the accumulator. If they are 0,
the BEQ instruction will make the processor
branch directly into the main rock-rolling
routine. If not, they are compared with 0. If
that is found, again, the processor will branch.
But if neither are found, the processor reaches
the RTS and returns to the main routine.

BLANKING THE BOULDER
Memory location 18,253 is a variable which
contains the current screen position of the
boulder. That position is loaded into the X
register. And U is loaded with the number
1536. U is the user stack pointer, so the area of
memory from 1536 upwards becomes to all
intents and purposes the user stack. Memory
location 1536 is part of the screen memory—
in fact, part of the sky. The processor then
jumps to the CHAR PR subroutine.

This subroutine prints a character on the
screen, remember. It takes the data from the
user stack and prints it up a byte at a time in
the character square pointed to by X* So a
piece of sky data is printed over the boulder,
making it look like any other piece of sky*

You'll notice that before the CHAR PR rout-
ine was jumped too, the contents of the X
register were pushed onto the hardware stack.

oThis does not mean that they were removed
from X. There simplycopied onto the

es tack ack and preserved there* CHAR PR
 interfere with the X register as it prints

out the eight bytes of data which make up one
character. So if you are calling a subroutine
and need to preserve data in a register, always
push it onto the stack. The rule is: if in doubt,
push it. It saves a lot of crashes*

GETTING EDGY
To get the screen position back again, it
simply has to be pulled back off the hardware
stack. LEAX —1,X then decrements the cont-
ents of X which points it one screen position
further left* This is then compared with 5344,
which is the location of the edge of the screen
where the boulder hits it when coming down.

If X is 5344 and the boulder has reached
the edge of the screen, the BEQ BRI instruction
branches the processor to the BRI routine
which moves the boulder back up to the top of
the slope*

But if X is not 5344 and the boulder has not
reached the edge of the screen yet, the STX
18253 stores the next screen position in X—
which is one character square to the left of the
old one—back into the boulder position vari-
able at 18253* This is the position the new
boulder is going to be printed in*

WILLIE OR WON'T HE?
The next thing that is checked for is to see
whether the boulder is about to hit Willie. So
before the new boulder is printed up the
contents of the screen position pointed to by
the contents of the X register are loaded into
the accumulator by the LDA ,X instruction.

This is then compared to $55, the code for
yellow, the sky colour, and $5D, the snake's

tongue. If the character square does contain
$55, or $5D, sky, the processor skips the next
two instructions* But if it doesn't, it must have
hit Willie—he is the only thing that might
stand in the way of a rolling boulder—the
branch is not made. The accumulator is loaded
with 2 and this is stored into memory location
18,253, the so-called die variable which is
checked later to see whether Willie is dead.

A BIGGER SPLASH
The next thing that is checked for is to see if
the rock has reached the surface of the water.
If it has, you don't want to print a rock there,
another one has to be started off from the top
of the slope.

So X is incremented by 289, to move it
onto the beginning of the next character
square below-289 is 32 x 8 + 32 + 1. To
count down the screen one character square
you need to count along the screen memory
eight lines of 32 bytes. The boulder actually
floats one pixel line above the earth—and the
sea—to give it clearer definition, so you need
to count an extra 32 bytes along the screen
memory. Then remember, you subtracted 1
to move the screen pointer one place to the left
above, so that extra + 1 compensates.

The contents of that character square are
loaded up into the accumulator again by LDA
,X and compared to $AA, which is the code
for blue, the sea colour. If the sea is in that
character square, BEQ BRI branches the pro-
cessor off to the routine which starts the
boulder back at the top of the slope again.

GROUNDED
While you are examining the contents of the
character square beneath the boulder pos-
ition, you might as well check to see whether
they are sky or not. So they are compared to
$55, the sky colour again.

If no sky is found underneath the boulder
position—in other words, it's earth—the BNE
BOK instruction branches to the BOK routine
which actually prints up the boulder*

But if there is sky under the boulder, it has
to be dropped down one character square—as
well as moving it one character square to the
left. Remember now that the screen pointer is
pointing to one line of pixels below the
bottom of the last boulder position. So to
move it back up one line of pixels you must
subtract 32. And to move it one place to the
left from there another 1 has to be subtracted.
This is done by the instruction LEAX — 33,X.

The processor then proceeds directly into
the BOK routine to print the boulder in the
appropriate place. This routine, along with
the BRI routine, is given in the next part of
Cliffhanger.

Plan the map for Cavendish Field.
Dot the battlefield with hills, forests
and villages. And make the two
warring factions draw up at their
starting positions

In part one of this series of articles about
writing computer wargames you set up the
symbols for each of the military units needed
for Cavendish Field* These symbols will be
displayed (and moved) on a map, to show you
the progress of the game, and allow you to
plan your strategy.

PROGRAMMING THE MAP
Cavendish Field has an array to represent the
map. The map will be displayed continuously
in the game, taking the largest part of the
screen display.

As the map is displayed all the time, strictly
speaking, the array is unnecessary—there will
always be an area of memory holding the
screen which contains all the map's inform-
ation. But it is worthwhile setting up the
array, too, despite the memory sacrifice,
because it can be read and written to with
ease, rather than trying to POKE the inform-
ation directly into areas of the screen memory.

The array has as many elements as there are
screen positions within the map area* The
Spectrum map is 30 by 16; the Commodore's
map is 38 by 17; the Acorn's is 38 by 20; and
the Dragon/Tandy's is 30 by 16*

The Acorn program runs in MODE 1,
which alone consumes around 20K of mem-
ory* This leaves little memory left over for the
program and the large map array—a normal
array needs about five bytes per element, and
an integer array needs about four bytes per
element.

There simply isn't enough room to use an
array of DIMensions 30 by 16, as dictated by
the program design, so you need to use a new
type of array—a byte array* This is simply a
block of bytes determined by a DIMension
statement.

The byte array used in Cavendish Field is a
single-dimensional array and will need 760
elements, saving roughly 2K of memory over
an integer array. Unfortunately, you'll need
some more program lines to read from and
write to a byte array.

THE TROOPS
To keep track of where the units are on the
map—so that they can be moved, and to check
if there are any obstacles in the way—you

need another array, the troop array* But this
array will be used for much more than just
holding the position of the troops. In fact, it
can hold every piece of information about
them.

The troop array in Cavendish Field also
holds information needed for combat, morale,
movement and so on—exactly what is held in
the troop array in any other game based on
this structure will depend on the nature of the
game you are writing, and each of these areas
will be covered fully as you progress through
the program*

SETTING UP THE ARRAYS
The following routine DIMensions the map
and troop arrays:

350 DIM m(16,30)
355 DIM T(16,9)

ItC
350 DIM M(38,16)
355 DIM T(15,8)

25 DEF FNmread(x,y)=?(map%+ (x*20)+y)
350 DIM map% ❑ 760
355 DIM T%(15,8)
430 DEF PROCmput(x,y,val)
440 ?(map%+ x*20+ y) = val
450 ENDPROC

MEI
350 DIM M(16,30)
355 DIM T(16,9)

All the programs simply DIMension the map
array and the troop array* The map array is
just the size of the screen display (except on
the Acorns which work differently, as de-
scribed above)* The troop array is
DI Mensioned to hold 9 elements of inform-
ation about each of 16 troop units* Where
the numbers used are 15 and 8, the zero
element of the array is being used, too.

In addition, the Acorn program DEFines a
PROCedure to put values in the troop array,
and a FuNction to read information from the
troop array.

FILLING THE MAP
The next step is to determine the terrain, and
the starting position of each unit and to
display them on the screen* You could choose
to set up a fixed map—if you wanted to try to
duplicate a famous battle, you might decide to
take this course. However, in most cases you
will want to have a variety of maps open to
you. The simplest way is to use your
machine's random number generator*

Determining the terrain could involve
making a simple random plot of a number of
the terrain symbols—forest, hills and village.
The problem with a simple random choice is
that hills and woods are generally not dotted
all over the place, but tend to concentrate
in clumps. The program needs to take
account of this*

Another consideration when starting to set
up a map for a wargame is the kind of terrain
in which you would expect your kind of
battle to take place. For example, as Caven-
dish Field is a medieval wargame you would
expect it to take place in fairly open terrain. In
this case, you wouldn't aim to place too many
hills and forests on the map*

CHOOSING TERRAIN
The routine which chooses terrain is essenti-
ally random, but there is a degree of control
over the selection* This ensures that the
terrain is drawn realistically, with hills and
woods clumped together.

20 DEF FN r(x) = INT (RND*x) +1
800 REM Choose Terrain
810 LET R= FN r(50)
820 IF R>5 THEN LET R=0
830 IF R>4 THEN LET R=3: RETURN
840 IF R>1 THEN LET R=2
850 RETURN

800 REM CH00SE TERRAIN
810 R =FNR(50)
820 IF R>5 THEN R=0
830 IF R>4 THEN R =3:RETURN
840 IF R>1 THEN R=2
850 RETURN

THE MAP
DIMENSIONING MAP AND

TROOP ARRAYS
CHOOSING REALISTIC TERRAIN

DEPLOYING THE TROOPS

USING STRINGS TO DISPLAY
TROOP SYMBOLS

DRAWING A BORDER
FACTORS AFFECTING TROOP

MOVEMENT

43 GAMIMMMNN 431

800 DEF PROCchter
810 R=RND(50)
820 IF R>5 THEN R=0
830 IF R>4 THEN R =3:ENDPROC
840 IF R>1 THEN R=2
850 ENDPROC

ItC1
800 REM CHOOSE TERRAIN
810 R=RND(50)
820 IF R>5 THEN R=0
830 IF R>4 THEN R =3:RETURN
840 IF R>1 THEN R=2
850 RETURN

Integer random numbers are used throughout
Cavendish Field. The Acorn, Dragon and
Tandy machines can generate numbers in this
form, but the Spectrum and Commodore
cannot. Line 20 of the Spectrum program,
and Line 195 of the Commodore program
DEFines a FuNction to generate integer ran-
dom numbers.

In each case, a random number, R, between
1 and 50 is generated. The Choose Terrain
routine may change the value of R according
to the value generated. If the generated value
is greater than five, R is set to zero, the code
for plains. If the generated value is five, R is
set to three, the value representing hills; and if
the value is two, three or four, R is set to two,
the value representing forest. The remainder
of cases are when R equals one—representing
villages.

UNDER CONTROL
The Choose Terrain routine is called for each
element along one dimension of the array,
giving a random choice for the first terrain
elements on the map. However, as was ment-
ioned earlier, total randomness is not at all
desirable. The next routine makes sure there
is some pattern to the terrain upon which
battle is to be fought.

370 LET i$="NWSE"
470 REM Create
480 FOR i=1 TO 16: GOSUB 800: LET

m(i,1)=R: NEXT i
490 FOR i =1 TO 16
500 FOR j= 2 TO 30
510 LET s= FN r(10)
520 IF s < 8 THEN GOSUB 800
525 IF s> =8 THEN LET R = m(i,j —1)
530 LET m(i,j)=R
540 IF R =3 AND j <30 THEN LET

m(i,j + 1) = 4
550 IF m(i,j) < > 0 AND m(i,j)

< >3 THEN PRINT AT i,j;CHR$
(m(i,j) + 143)

555 IF m(i,j) =3 AND j<>30
THEN PRINT AT i,j;CHR$ 146;AT i,j+
1;CHR$ 147

560 NEXT j
570 NEXT i
580 GOSUB 720
590 FOR i =1 TO 8
600 FOR j =1 TO 2: LET T(i,j) = 2: LET

T(i +8,j) =2: NEXT j
610 FOR j = 3 TO 4: READ T(i,j): LET

T(i + 8,j) =T(i,j): NEXT j
620 READ mr
630 FOR j=0 TO 8 STEP 8
640 LET T(i +j,5) = mr + FN r(2)
650 LET T(i +j,6) = (FN r(100)*10) +10
660 LET T(i+j,7)=T(i+j,6)
670 NEXT j
680 LET T(i,8) =15
690 LET T(i +8,8)=1
700 NEXT i
710 RETURN

370 1$ = "NWSE"
470 REM CREATE
480 FOR 1=0 TO 16:GOSUB800:M(0,I)=

R:NEXT I
490 FOR 1=0 TO 16
500 FOR J=1 TO 37
510 S=FNR(10)
520 IFS <8 THEN GOSUB 800
525 IF S> =8 THEN R= M(J —1,1)
530 M(J,I) = R
540 IF R=3 AND J <37 THEN

M(J +1,1)=4
550 IF M(J,I)< >0 THENP=J:Q= I:

GH = (M(J,I) + 63):CL = 0:
GOSUB2600

555 IF M(J,I)=3 THENP=J +1:Q= I:GH =
(M(J,I) + 64):CL = 0:
GOSUB2600

560 NEXT J
570 NEXT I
580 GOSUB 720
590 FOR 1=0 TO 7
600 FOR J=0 TO 1:T(I,J) =1:T(I+ 8,J) =

1:NEXT J
610 FOR J=2 TO 3:READ T(I,J):T(1+ 8,J) =

T(I,J):NEXTJ
620 READ MR
630 FOR J=0 TO 8 STEP 8
640 T(I +J,4) = MR + FNR(2) —1
650 T(I +J,5) (FNR(100)*1 0) +10
660 T(I+J,6)=T(I+J,5)
670 NEXT J
680 T(I,8) =16
690 T(I + 8,8) = 0
700 NEXT I
710 RETURN

Fl
370 dir$="NWSE"
470 DEF PROCcr
480 FORi = 0T019:PROCchter:

PROCmput(0,i,R):NEXT
490 FORi = 0T019
500 FORj=1T037
510 s= RND(10)
520 IF s<8 THEN PROCchter ELSE

R = FNmread(j -1,i)
530 PROCmput(j,i,R)
540 IFR=3 AND j<37 THEN

PROCmput(j+1,i,4)
550 IF FNmread(j,i) < > 0 AND FNmread

(j,i)< >3 THEN PRINT TAB(j+1,i+1);
CHR$(FNmread(j,i) +223) ELSE IF
FNmread(j,i) < >0 PRINT TAB(j +1,i + 1);
CHR$(227);CHR$(226)

560 NEXT:NEXT
580 PROCborder
590 FORi = 0TO7
600 FORj = 0T01:T%(i,j) =1:T%(i + 8,j) =1:

NEXT
610 FORj=2T03:READ T%(i,j):T%

(i +8,j) =T%(i,j):NEXT
620 READ mo
630 FORj =0TO8STEP8
640 T%(i +j,4)=mo+ RND(2) -1:T%

(i + j,5) = (RND(100)*1 0) + 10:T%
(i+j,6)=T%(i+j,5)

670 NEXT
680 T%(i,8) = 20:T%(i + 8,8) = 0
700 NEXT
710 ENDPROC

370 1$ ="NWSE"
470 REM CREATE
480 FOR 1=1 TO 16:GOSUB 800:

M(I,1) = R:NEXT I
490 FOR 1=1 TO 16
500 FOR J=2 TO 30
510 S=RND(10)
520 IF S <8 THEN GOSUB 800
525 IF S> =8 THEN R = M(14 -1)
530 M(I,J) =R
540 IF R=3 AND J<30 THEN M(14 +1)=4
550 IF M(I,J)< >0 AND M(I,J)< >3

THEN LINE (J*8, 1*8)- (J*8+7, I*8+7),
PRESET, BF: DRAW "BM" + STR$
(J13)+ ","+ STR$ (1*8) + UC$ (MOM)

555 IF M(I,J)=3 AND J< >30 THEN
DRAW "BM" + STR$ (J*8)+ "," +
STR$ (1*8) + UC$(3)+ "BM" + STR$
((J + 1)*8) + "," + STR$ (I*8) + UC$(4)

560 NEXT J,I
580 GOSUB 720
590 FOR 1=1 TO 8
600 FOR J=1 TO 2:T(I,J) =2:T(1 +8,J) =2:
NEXT J

610 FOR J=3 TO 4:READ T(I,J):T(I +8,J) =T
(I,J):NEXT J

620 READ MR
630 FOR J=0 TO 8 STEP 8
640 T(I +J,5)= MR + RND(2)
650 T(I +J,6) = (RND(100)*10) +10
660 T(I +J,7) =T(I +J,6)
670 NEXT J
680 T(I,8) =15
690 T(I + 8,8) =1
700 NEXT I
710 RETURN

The routine generates a new random number,
S, for each subsequent element of the array.
The value of S may range from one to ten-
chosen in Line 510. Line 520 ensures that, for
seven tenths of the time, the new element in
the array will have randomly generated
terrain-if S <8, then the program jumps to
the Choose Terrain routine. For the other
three tenths of the time, the element will have
exactly the same terrain as that immediately to
its left. This has the effect of creating blocks
on the map. Lines 550 to 570 display the
chosen terrain on the map.

DEPLOYING THE TROOPS
Troop positions are held in the troop array as
a pair of coordinates-horizontal and vertical.

The starting positions of the opposing
sides' units in Cavendish Field are at different
ends of the map-the player's starting at the
southern end (the very bottom of the screen
display), and the computer's starting at the
northern (the top of the display). The vertical
coordinate, then, doesn't need to be chosen.

The horizontal coordinate, needs to be
selected much like choosing the terrain. It
needs to have an element of randomness, but
some constraints have to be imposed. You
must ensure that two or more units do not
appear on the same square, for example.

The following routine chooses the starting
positions of each side. First it picks the troop
units at random. Then it divides the map
vertically into eight columns. Each of these
represents the limits within which one of the
units on each side will be placed. The actual
print position is selected randomly within the
limits of the column width.

860 REM Dispose Troops
870 INK 2
880 FOR m=1 TO 2
890 LET s =1: LET r
900 FOR k =1 TO 8
910 REM Dummy for Repeat loop
920 LET s=FN r(8*m)
930 IF T(s,9) < > 0 THEN GOTO 910

940 LET r=FN r(4)+r
950 LET r= r- INT (r/30)
960 LET T(s,9)=r
970 INK m
980 PRINT AT T(s,8),T(s,9);u$(s)
990 NEXT k
1000 NEXT m
1010 RETURN

13Y
860 REM DISPOSE TROOPS
870 CL =1
880 FOR M=1 TO 2
890 S= 0:R =0
900 FOR K=0 TO 7
910 REM DUMMY FOR REPEAT LOOP
920 S= FNR(814) -1
930 IF T(S,7) < > 0 THEN 910
940 R= FNR(6)+ R
950 R=R -INT(R/37)
960 T(S,7) = R
970 IFM =2 THEN CL = 9
980 P=T(S,7):Q=T(S,8):GH =VAL

(MID$(U$,S +1,1)) +67:GOSUB2600
990 NEXT K
1000 NEXT M
1010 RETURN

860 DEF PROCds
870 COLOUR 2
880 FOR m=1T02
890 s= 0:r = 0
900 FORk = 0T07
910 REPEAT
920 s= RND(8"m) -1
930 UNTIL T%(s,7)= 0
940 r=RND(6)+r
950 r=r ❑ MOD 37
960 T%(s,7)=r
970 COLOUR m
980 PRINT TAB(T%(s,7)+1,T%(s,8) +1);

MID$(unst$,(s ❑ MOD 8)+1,1)
990 NEXT:NEXT
1010 ENDPROC

fgikji
860 REM DISPOSE TROOPS
870 COLOR 2
880 FOR M=1 TO 2
890 S=1:R=1
900 FOR K=1 TO 8
910 REM
920 S=RND(8*M)
930 IF T(S,9) < >0 THEN 910
940 R =RND(4)+ R
950 R =R -INT(R/30)
960 T(S,9)=R
970 COLOR M:IF M=1 THEN COLOR 3
980 DRAW"BM"+STR$(T(S,9)*8)+","+

STR$(T(S,8)*8):UU=VAL(MID$(U$,S,1)):

Cavendish Field shown on the Spectrum The battle zone on the Acorn machines

A$= UC$(UU):GOSUB 3000
990 NEXT K
1000 NEXT M
1010 RETURN

Because each of the eight units is chosen at
random, this helps each game to appear
different, as a given unit doesn't always start
in the same eighth of the map. As both armies
are stored in the same array, the same routine
can be used to choose positions for both
armies—all you need is the FOR ... NEXT loop
between Lines 880 and 1000. The loop also
ensures that the two armies appear in differ-
ent colour.

ON TO THE BATTLEFIELD
Once the starting positions of the two armies
have been determined, the units can be made
ready for display on screen.

410 LET U$=CHR$148+ CHR$149 + CHR$
150 +CHR$150+CHR$151 + CHR$ 151
+CHR$152 + CHR$152:LETU$= U$+ U$

410 U$ = "12334455":U$ = U$ + U$
2600 REM DRAW
2610 POKE (1064 + P + (10"40)),GH
2620 POKE (55336 + P + (Q*40)),CL
2630 RETURN

Fl
410 unst$ = CH R$(228) + CHR$(230) +

CHR$(231) + CHR$(231) + CHR$(232) +
CH R$ (232) + CH R$ (229) + CH R$ (229)

410 U$ = "65778899":U$ = U$ + U$

In Line 410 a string, U$ (or unst$, in the case
of the Acorn) is set up. This holds the code for
the symbol representing each unit.

The Commodore needs to POKE directly on
to the screen, rather than use the PRINT AT or
PRINT TAB that are available on the Spectrum
or Acorn machines. You need two POKEs, in
fact, one to the screen position and one to
colour memory. Both POKEs require the same
parameters, but of course, have different
addresses.

Lines 2600 to 2630 of the Commodore
program P0KE the information to the correct
addresses.

BORDERING ON HOSTILITY
The screen display can be made more attrac-
tive, and less misleading if a border is drawn
round the map:

720 REM Decorative Border
730 FOR i=0 TO 16
740 PRINT AT 1,0;CH R$ 150;AT i,31;CHR$

150
750 NEXT i
760 FOR 1=0 TO 31
770 PRINT AT 0,i;CHR$ 150;AT 16,i;CHR$

150
780 NEXT i
790 RETURN

Cr
720 REM DEC0RATIVE BORDER
730 F0R I =0 TO 39
740 P0KE (1024 +I),70:P0KE

(1024 + I + (401 8)),70
750 NEXT I
790 RETURN

1E1
720 DEF PROCborder
730 F0Ri = 0T039
740 PRINT TAB(1,0);CHR$(231);TAB(1,22);

CH R$ (231)
750 NEXT
760 F0RT = 0T022: PR I NT TAB (0,i);CH R$

(231);TAB(39,i);CHR$(231):NEXT
790 ENDPROC

MIKA
720 REM BORDER
730 LINE(0,128) — (255,135),PRESET,BF
740 LI N E (248,0) — (255,191), PR ESET,B F: LI N E

(4,4) — (252,132), PSET, B
790 RETURN

The routines simply draw a series of symbols
(the same as used for one of the troop units)
round the map.

MOBILIZING YOUR FORCES
Now that the map is set up, both sides will
want to be able to move their units. Units are
moved in response to orders—more about
that later—but there are several things that
must be checked before a unit can be moved
around the battlefield:
• The program has to know what the max-
imum movement (number of squares) is for
each unit. In Cavendish Field any troop unit's
mobility depends solely on the weight of their
armour, but in your games it could also
depend on discipline, morale, exhaustion, and
so on.
• Are there any advantages or bonuses to be
had? (In this game, only the cavalry have
bonuses, but you might give bonuses for
charging, for travelling downhill, or having

an enthusiastic leader.)
• Are there any terrain hazards blocking the
way? (It's up to you what effect terrain has,
but here all terrain except plains reduces the
distance a unit moves by one square.) Is
another unit in the way?
• Has the edge of the map been reached?

Add this routine and the program will be
able to test for these factors before moving
any unit:

1160 REM Move unit
1170 LET ox=T(b,8): LET oy=T(b,9)
1175 LET z$ = "E"
1180 IF m(T(b,8),T(b,9)) < >0 THEN LET

z$= CHR$ (143 + m(T(b,8),T(b,9)))
1190 LET D = 5 - T(b,4)
1200 IF b<3 OR b=9 OR b=10 THEN LET

D = D +2
1210 LET v=T(b,2) -1
1215 LET up= 0: LET al = v-2
1220 IF v/2- (INT (v/2)) =0 THEN LET

up= v-1: LET a1=0
1230 REM Dummy for Repeat
1240 LET n1 =T(b,9) + al: LET

np=T(b,8) + up
1250 IF np<1 THEN LET np=1
1260 IF np>15 THEN LET np=15
1270 IF n1 <1 THEN LET n1 =1
1280 IF n1>30 THEN LET n1=30
1290 IF m(np,n1) >0 THEN LET D = D -1
1300 FOR k =1 TO 8
1310 IF (T(k,9) = n1 AND T(k,8)=np AND

k< >b) THEN LET D=0
1315 IF (T(k + 8,9) =n1 AND T(k +8,8) -- np

AND k + 8 < >b) THEN LET D=0
1320 NEXT k
1330 IF D>0 THEN LET T(b,9)=n1: LET

T(b,8)=np: LET D = D -1
1340 IF D< >0 THEN GOTO 1230
1350 INK 0: PRINT AT ox,oy;z$
1360 INK cl: PRINT AT T(b,8),T(b,9);u$(i)
1370 RETURN

1160 REM MOVE UNIT
1170 OX=T(B,7):OY=T(B,8)
1175 GH=32
1180 IF M(T(B,7),T(B,8))< >0 THEN

GH = M(T(B,7),T(B,8)) + 63
1190 D = 4 - T(B,3)
1200 IF B<2 OR B=8 OR B=9

THEND=D+2
1210 V = T(B,1) -1
1215 UP= 0:AL =V-2
1220 IF V/2 - INT(V/2) =0 THEN

UP = V - 1:AL = 0
1230 REM DUMMY FOR REPEAT LOOP
1240 NL=T(B,7) + AL:NP =T(13,8) + UP
1250 IF NP<0 THEN NP=0

1260 IF NP>16 THEN NP=16
1270 IF NL<0 THEN NL=0
1280 IF NL>37 THEN NL=37
1290 IF M(NL,NP)>0 THEN D= D -1
1300 FOR K=0 TO 7
1310 IF(T(K,7) = NL AND T(K,8)=NP AND

K< > B)THEN D=0
1315 IF(T(K +8,7) = NL AND T(K + 8,8) = NP

AND K+8< >B)THEN D=0
1320 NEXT K
1330 IF ID > 0 THEN T(B,7)= NL:

T(B,8)=NP:D=D-1
13401F D< >0 THEN 1230
1350 CL= 0:P = OX:Q= OY:

GOSUB2600
1360 CL= CO:P =T(B,7):Q=T(B,8):

GH = VAL(MID$(U$,B + 1,1)) + 67:
GOSUB2600

1370 RETURN

1160 DEF PROCmove(B%)
1170 ox =T%(B%,7)+1:oy =T%(8%,8) +1
1180 IF FNmread(T%(B%,7),T%(B%,8))< > 0

THEN oldter$= CHR$(223+ FNmread(T%
(B%,7),T%(B%,8))) ELSE oldter$=" ❑ "

1190 D%= 4 - T%(B%,3)
1200 IF B%<2 THEN D%= D%+2
1210 dir=T%(B%,1) -1
1220 IF dir ❑ DIV 2 =dir/2 THEN

up = dir - 1:al = 0 ELSE up =0:al = dir - 2
1230 REPEAT
1240 nal =T%(13%,7)+ al:nup = T%

(B%,8) + up
1250 IF nup <0 THEN nup= 0
1260 IF nup > 20 THEN nup = 20
1270 IF nal <0 THEN nal= 0
1280 IF nal >37 THEN nal =37
1290 IF FNmread(nal,nup) >0 THEN

D%= D%- 1
1300 FOR k =0 TO 7
1310 IF (T%(k,7) = nal ❑ AND T%(k,8) =

nup ❑ AND k< > B%) OR (T%(k + 8,7) =
nal El AND T%(k +8,8) = nup ❑ AND
k+8< >B%) THEN D% = 0

1320 NEXT
1330 IF D%>0 THEN T%(B%,7) = nal:

T%(B%,8) =nup:D%=D%-1
1340 UNTIL D%=0
1350 COLOUR0:PRINT TAB(ox,oy);oldter$
1360 COLOURcI:PRINT TAB(T%

(B%,7) +1,T%(B%,8) +1);
MI Munst$,(i ❑

MOD 8)+1,1)
1370 ENDPROC

NZ
1160 REM MOVE UNIT
1170 OX=T(B,8):OY=T(B,9)
1175 ZZ=0
1180 IF M(T(B,8),T(B,9)) < >0 THEN

ZZ= M(T(B,8),T(B,9))
1190 D = 5 -T(B,4)
1200 IF B<3 OR B=9 OR B=10 THEN

D = D + 2
1210 V = T(B,2) -1
1215 UP = 0:AL = V - 2
1220 IF (V/2) - INT(V/2) = 0 THEN

UP=V-1:AL=0
1230 REM
1240 NL=T(B,9) + AL:NP=T(B,8)+ UP
1250 IF NP<1 THEN NP=1
1260 IF NP>15 THEN NP=15
1270 IF NL<1 THEN NL=1
1280 IF NL>30 THEN NL=30
1290 IF M(NP,NL)>0 THEN D = D-1
1300 FOR K=1 TO 8
1310 IF (T(K,9)=NL AND T(K,8)=NP AND

K< >B) THEN D=0
1315 IF (T(K+8,9)=NL AND T(K+8,8)=NP

AND K+8< >B) THEN D=0
1320 NEXT K
1330 IF D > 0 THEN T(B,9) = NL:

T(B,8)=NP:D=D-1
1340 IF D< >0 THEN 1230
1350 X9 = Or8:Y9 = OX*8:IF ZZ< >0 THEN

COLOR 4:LINE(X9,Y9) - (X9 +7,Y9 +7),
PRESET,BF:DRAW"BM"+STR$(X9)+
"," + STR$(Y9) + UC$(ZZ) ELSE LINE
(X9,Y9) - (X9 + 7,Y9 + 7),PRESET,BF

1360 COLOR CL:DRAW"BM"+STR$
(T(B,9)*8)+","+STR$(T(B,8) * 8):UU=
VAL(MID$(U$,I,1)):A$=UC$(UU):
GOSUB 3000

1370 RETURN

The tests will increase, reduce, or completely
prevent movement. The routine first 're-
members' the old position, and the terrain of
that position. It then calculates the direction
and the maximum movement.

Lines 1230 to 1340 are a loop which tests
each square along the unit's path to see if it is
occupied by troops or terrain which would
impede the unit's progress. According to
what the loop finds, the distance the unit
moves is adjusted.

The loop repeats until the distance variable
is zero-the computer is back to the start
square. A REPEAT ... UNTIL loop is the most
appropriate way to check the path, but it's
only available on the Acorn, so on the other
machines a dummy REPEAT ... UNTIL loop has
been set up. Several of these loops appear in
the completed program, and are marked by a
REM statement at the beginning of the loop.

Having decided on the range, the routine
replaces the unit symbol with the original
terrain. The unit is then displayed at its new
position.

The next part of this article looks at how
orders are issued to the units.

AN AIR OF MYSTERY
INTELLIGENT MACHINE

RECURSIVE PROCEDURES
PASSING PARAMETERS

CHASING THE BUGS

If any of your programs have
subroutines that are called
repeatedly, then you might have a
case for using recursive
programming—find out how

Programming a computer is, essentially, an
exercise in problem solving* As your pro-
gramming skills develop, you should realize
that most difficult problems can be solved if
they are broken down into smaller, simpler
problems. Eventually, however, you arrive at
a programmer's nightmare in which an at-
tempt to solve a problem leads only to a new
problem, the solution of which leads to yet
another problem, and so on.

You might consider this a sensible point to
call a halt and go off in search of a different
problem, but remember that your micro is not
affected by the sort of mental barrier that
would cause a human brain to seek the earliest
opportunity to exit the nightmare. In fact,
there is an advanced programming technique
for solving certain types of problem that can
be reduced to problems within problems*
This technique is called recursion.

AN AIR OF MYSTERY
Generally, inexperienced programmers
regard recursion as a highly compli-
cated and mysterious topic* This is
because the programming tech-
niques involved can be extremely
difficult to follow from the
listing; sometimes even a
flow chart does

not show clearly what is actually going
on. Nevertheless, the principle is
not difficult to grasp*

In mathematical terms, 'recursion' is
the repetition of a particular operation.
This definition, however, is not strictly
applicable in programming, where it
has a more precise meaning* In essence,
recursion is primarily a call to a
sub-routine or procedure with
an initial set of parameters.
The subroutine or pro-
cedure then repeatedly
calls itself, updating
the parameters each
time, until a particular
task has been performed.

CLEVER MACHINE
To help you to understand
the basic concept of re-
cursion, think about how
a driver might

make a journey from place A to place B across
a large unfamiliar city. The driver has street
maps of the city, but finds that travelling
directly from A to B is too difficult. So he
decides to break down the problem into a
number of similar (but much simpler) pro-
blems, each of which can be solved in turn.
The easiest way to do this is to select a
location (C) lying between A and B and decide
how to travel from A to C. He then drives to
C.

Once at C, the driver looks to see whether
he can travel directly from C to B. If this is
possible, he does so; otherwise he repeats the
above process by choosing a new location (D),
between C and B. This process is repeated
until he reaches the destination B.

This simple example aptly demonstrates
the principles of recursion as they are applied
to computer programming. The solution to a
difficult problem is described

in terms of easier (or smaller) problems.
As each sub-task (or level) of recursion is

reached, it is often necessary to store inform-
ation concerning the previous position
reached in the preceding level, to return
successfully to it later. As each level is
entered, a different set of parameters is issued
and a test is made to determine when the
entire task is completed. Without such a test,
the process would never end. To see the
method in use, enter and RUN the first
program, which prints the positive integers
from an input value (N) to one.

20 PRINT INVERSE 1;TAB 1;" ❑ POSITIVE
INTEGERS FROM N TO 1D"

30 INPUT "ENTER THE INTEGER YOU WISH
TOLL❑ ❑ ❑ COUNT DOWN FROM (0 TO
END)O";N:LETN = INT N:IF N <1 THEN

ST0P
40 G0SUB 80

50 GOTO 30
80 IF N=0 THEN RETURN
90 PRINT ;N;"0 0";
100 LET N = N —1:GOSUB 80
110 RETURN

20 PRINT "Ogg >NZ/POSITIVE
INTEGERS FROM N T0 1"

30 PRINT "ggENTER THE INTEGER VALUE
YOU WISH TO":PRINT "COUNT DOWN
FROM (1-22)"

35 INPUT N:N=INT(N):IF N<1 OR N>22
THEN END

40 GOSUB 80
50 GOTO 30
80 IF N=0 THEN RETURN
90 PRINT N",";
100 N=N-1:GOSUB 80
110 RETURN

10 M0DE6:VDU19,0,4,0,0,0
20 PRINTTAB(5,2)"POSITIVE INTEGERS

FROM N TO 1"TAB(5,3) STRING$(29,"0")
30 INPUTTAB(0,10)"ENTER THE INTEGER

VALUE YOU WISH TOD OD ❑ ❑ COUNT
DOWN FROM (0 OR LESS TO END) E"
,N:N = INTN:IF N<1 THEN END

32 IF N>780 THEN RUN
35 PRINT TAB(0,10)SPC(100)TAB(0,5)
40 PROCREC(N)
50 PRINT TAB(10,23)"ANY KEY T0 RE-

RUN":G =GET:RUN
0 DEF PROCREC(N)

80 IF N=0 THEN VDU127,127:PRINT"'":
ENDPROC

90 PRINT;N", ❑ ";
100 PROCREC(N —1)
110 ENDPROC

MI !HI
10 CLS
20 PRINT"POSITIVE INTEGERS FROM N TO

1 "
30 PRINT:PRINT:INPUT"ENTER THE INTEGER

VALUE YOU WISHTO COUNT DOWN FROM
(0 OR LESS TO END)111";N:N=INT(N):IF
N<1 THENEND

40 GOSUB 80
50 GOTO 30
80 IF N=0 THEN RETURN
90 PRINTN;",";
100 N=N —1:GOSUB80
110 RETURN

The program lets you input the value of the
largest integer from which you wish to count
down. Entering a value less than one stops the
program. On the Commodores, values greater
than 22 also stop the program, because these
micros can remember only 23 jumps to a
subroutine. Line 40 calls the recursive sub-
routine, the first line of which tests__
for the completion of the
entire task.

This test is crucial for
ending the recursive calls.
The first level of recur-
sion is entered with N
as specified by you.
This value is printed at
Line 90. The second 	- — — --
level is entered at Line 100, which reduces
the value of N by one and calls the sub-
routine again with the new value of N. The
program continues to loop between Lines 80
and 100, printing each integer in turn.

When N is reduced to 0 (at Line 100), the
program branches as usual to Line 80, where
this time it must obey the RETURN. This
causes a return from the subroutine called at
Line 100. The next instruction is at Line 110,
which causes a return from the subroutine
called at Line 40. The next instruction (Line
50) effectivley runs the program again.

Notice that the program ends with a value
of N = 0, set at Line 100, but Line 90 never
prints this value. To reset N to the last value
printed, you could enter N = N + 1 (LET
N = N +1 for the Spectrum) at Line 105.
Then N will be set to the last value printed.

RECURSIVE PROCEDURES
On the Acorns, the use of PROCedures makes
it easy to pass parameters to subroutines. So at
Line 100, for example, a single statement
decrements N by one and calls the recursive
subroutine. Using the other micros' versions
of BASIC, two statements are required. How-
ever, on these machines, the structured form

of BBC BASIC is shared by languages
based on ALGOL as well as specialize
languages, such as LISP. Most of these
allow procedures to be defined and
called.

Another useful device of structural
languages is the use of LOCAL vari-
ables within procedures. Often,
parameters can be passed from one
procedure to another, and similarly
named variables are given one set of
values within each procedure. So the
Acorns are particularly suited
to recursive programming.

The types of BASIC
implemented on the
other micros do
not allow vari-
ables to
have

more than one value but, fortunately, they do
allow GOSUBs to call themselves—such as
PROCedures do. Programming recursive
calls on these machines, therefore, is only
slightly more complicated than in BBC
BASIC. Enter the second program to
see a simple demonstration of how
the problem of variables is solved.

10 DIM N(34):DIM A(34)
20 CLS
30 PRINT TAB 3;INVERSE 1;"CALCULATION

OF FACTORIALS"
40 INPUT "ENTER THE FACTORIAL NUMBER

YOU ❑ El REQUIRE (1-33, OR 0 TO
END)";NU

50 IF NU >33 OR NU < >INT (NU) OR
NU <0 THEN RUN

60 IF NU = 0 THEN STOP
70 LET LE =1:LET N(LE)= NU:LET AN = NU
80 GOSUB 150
90 PRINT AN;"! ❑ ❑ ";A(1):PRINT:GOTO 40
150 IF N(LE) = 0 THEN LET A(LE)=1:GOTO

180
160 LET LE= LE +1: LET

N(LE)= N(LE —1) —1: GOSUB 150
170 LET LE= LE-1: LET

A(LE)=A(LE+1)*N(LE)
180 RETURN

10 DIM N(34),A(34)
30 PRINT "pm > pi EVALCULATION

OF":PRINT"IIN ❑ ❑ FACTORIALS
El ❑ gy

40 PRINT "ENTER THE FACTORIAL NUMBER
YOU REQUIRE"

45 PRINT "(1-33, OR 0 TO END)":INPUT NU
50 IF NU > 33 OR NU< >INT(NU) OR

NU <0 THEN RUN
60 IF NU=0 THEN PRINT "LT:END

70 LE =1:N(LE) = NU:AN = NU
80 GOSUB 150
90 PRINT AN"!M =111";A(1)"gr:GOTO

40
150 IF N(LE)= 0 THEN A(LE)=1:GOTO 180
160 LE= LE+1:N(LE)= N(LE-1)-1:

GOSUB 150
170 LE = LE — 1:A(LE) = A(LE + 1) * N(LE)
180 RETURN

20 MODE1:VDU19,0,4,0,0,0
30 PRINT TAB(7,2)"CALCULATION OF

FACTORIALS:"TAB(7,3)STRING$(26," ❑ ")
40 INPUT" TAB(0,13)"ENTER THE

FACTORIAL NUMBER (1 -33, OR 0 TO
END) ❑ ",NU

50 IF NU>33 OR NU< >INT(NU) OR
NU <0 THEN 20

60 IF NU = 0 THEN END
70 AN =1
80 PROCREC(1)
90 PRINT TAB (13,20);N U;"! ❑ EQUALS ❑ ";

AN:PRINT TAB(10,25)"ANY KEY TO

RE-RUN":G = GET:RUN
140 DEF PROCREC(T)
150 IF T< >NU THEN AN=AN * (T+1):

PROCREC(T + 1)
180 ENDPROC

NC 'HI
10 DIM N(34),A(34)
20 CLS
30 PRINT@3,"calculation of factorials"
40 INPUT"ENTER THE FACTORIAL NUMBER

YOUE1111REQUIRE (1-33, OR 0 TO
END)";NU

50 IF NU>33 OR NU< >INT(NU) OR
NU <0 THEN20

60 IF NU =0 THEN END
70 LE =1:N(LE) = NU:AN = NU
80 GOSUB150
90 PRINTAN"!C1 = ❑ ";A(1):PRINT:

GOT040
150 IF N(LE)=0 THEN A(LE)=1:GOTO 180
160 LE=LE+1:N(LE)=N(LE-1)—

1:GOSUB150
170 LE= LE — 1:A(LE) = A(LE +1)*N(LE)
180 RETURN

RUN the program and enter a value in re-
sponse to the prompt. The program calculates
and prints the factorial of the number you
entered—the product of every integer from
one up to and including the number itself.

For example, factorial 5 (written 5!) is 1 x 2
x 3 x 4 x 5 or 120. Factorial calculations
are frequently required for certain statistical
applications, so a simple method of generat-
ing them is useful. But the best method
depends on the language you are using.

For micros other than the Acorns, the
program DIMensions variables (Line 10) in
sufficient numbers to complete the task.
These array variables (see page 152) reserve
memory space for their use only, and use the
recursion level (LE) as the subscript of the
variable currently in use—N (LE).

The program essentially begins at Line 70,
where the level is set to one. Here also the
number you input—five, say—is set to N(1)
and to AN (the variable that accumulates the
answer). Line 80 then calls the first level of
recursion. The first line of the recursion
routine (Line 150) tests for the end of the
problem—when N (LE) = 0. But at the mo-
ment N(LE) is five, so control passes to Line
160. This increments the level (to two), sets
the current number to 4, then calls the
recursive routine again, and so on. When Line
160 increments the level to six and decre-
ments the current number to zero, Line 150
detects that N(6) is zero, so element six of the
A array is set to one, and Line 180 issues a
RETURN to the end of Line 160. Control now
passes to Line 170, where the level is

decremented to five and A(5) is set to A(6)
times N(5). This makes A(5) equal 1 x 1 or 1.
Line 180 now returns control to the end of
Line 150 again, where this time A(4) is set to
A(5) times N(4). So A(4) equals one (cal-
culated above) times 2. This loop is continued
for as many times as the GOSUB at Line 160
was called. When the loop is completed, LE
equals one, and the last RETURN is to Line 80.
The next instruction (Line 90) prints the
result-120.

PASSING PARAMETERS
By passing parameters within procedures, the
Acorn program avoids the need to DI Mension
arrays, and there is no confusion with vari-
ables either. Line 150 merely checks whether
the number of recursive levels equals the
number you have entered. If it doesn't, each
calculated value is accumulated in AN, then
the procedure is called for successive levels.
When the last level is reached, Line 180
returns control to Line 90, which prints the
answer.

There are in practice two limitations
to the application of recursion on com-
puters—even those, like the Acorns, that
have structured BASIC. The first is that there
are limits to the value of variables that can be
handled. This fact must be taken into account
in any sort of programming, but it is even
more important in recursive routines.

The second limitation is to do with the
number of times a subroutine or procedure
can call itself. This affects the number of
levels of recursion that you can allow. Each
call requires the system to remember where it
left off before the call was made. This is
achieved by placing pointers on the stack.
Space is needed to store the values of the
variables at each level. Eventually, the mem-
ory is used up, the stack becomes corrupted
and the program crashes. However, with this
program the limit of 33 levels is due to the fact
that factorial 34 exceeds 1.7 x 10 38, the max-
imum number which the computer can hold.

CHASING THE BUGS
To keep your program within the limits of the
micro and prevent crashing, you must know
how it behaves at the lowest level of recursion.
Usually, the only way to ensure it is working
correctly is to use test data of which you are
certain. A simple method is to consider a
recursive subroutine as a number or similar
copies of the same subroutine. Note that to
make conditional jumps out of subroutines is
usually considered bad programming pract-
ice, because the stack is left undefined.

When you are writing this kind of subrou-
tine, always start with an effective-exit test.

This test is used to decide when the problem
(as set by the input parameters) can be solved
directly, without the need for sub-division.

Before you begin programming, plan what
you want the subroutine to achieve. Then,
when you are writing the program, don't
worry too much about the exact sequence of
execution, but consider the two main
principles—the stopping condition and the
sub-division into easier problems. By follow-
ing this method, you should be able to
program some of the more practical uses of
recursion. Here is one example of how recur-
sion can greatly improve the clarity and
efficiency of a sort program.

10 BORDER 1:INK 7:PAPER 1:CLS
20 PRINT TAB 11;INVERSE

1;" ❑ QUICKSORTEI"
30 INPUT "HOW MANY NUMBERS DO YOU

WISH TO SORT (1-1000) ";A
40 IF A<1 OR A> 1000 THEN GOTO 10
50 DIM A(A):DIM R(2+ SQR(A))
60 LET A(A) =100:PRINT INVERSE

1;"`UNSORTED TABEL : — "":FOR K=1

The Dragon displays a nine-disc selection

TO A —1:LET A(K) = INT (RND*99):PRINT
A(K);" ❑ ";:NEXT K

70 LET L =1:LET LV =1:LET
R = A —1:GOSUB 1000

80 PRINT INVERSE 1; ""SORTED TABLE
:—":FOR K=1 TO A —1:PRINT
A(K);" ❑ ";:NEXT K

90 IF INKEY$ < > "El" THEN GOTO 90
100 RUN
1000 IF R > L THEN LET 1= L: LET J = R +1:

LET V = A(L): GOTO 1010
1005 RETURN

1010 LET 1=1+1:IF A(I) <V THEN GOTO
1010

1020 LET J=J —1:IF A(J) >V THEN GOTO
1020

1030 IF J> =I THEN LET T=A(I): LET
A(I) = A(J):LET A(J) =T:GOTO 1010

1040 LET T=A(L):LET A(L)=A(J):LET
A(J) =T

1050 LET R(LV)= R:LET LV= LV +1:LET
R=J-1:GOSUB 1000

1060 LET LV= LV —1:LET R = R(LV): LET
L=1:GOSUB 1000

1070 RETURN

ECK'
10 PRINT "egg > PlaQUICKSORT"
30 PRINT "ggHow MANY NUMBERS DO

YOU WISH TO SORT":INPUT
"(1-300)11";A

40 IF A<1 OR A>300 THEN RUN
50 DIM A(A),R(1 +SQR(A))
60 A(A) =100:PRINT "pj !gm UNSORTED

TABLE :—":FOR K = 0 TO
A —1:A(K) = INT(RND(1) * 99)

65 PRINT A(K);:NEXT K:PRINT
70 L= 0:R =A-1:GOSUB 1000
80 PRINT "pjggaSORTED TABLE :—":FOR

K=0 TO A-1:PRINT A(K);:NEXT K
90 GET Z$:IF Z$< > "Ill" THEN 90:
100 RUN
1000 IF R>L THEN I=L:

J=R +1:V=A(L):GOTO 1010
1005 RETURN
1010 1=1+1:IF A(I)<V THEN 1010
1020 J =J —1: IF A(J)>V THEN 1020
1030 IF J> =1 THEN T=A(I):A(I)=A(J):

A(J) =T:GOTO 1010
1040 T=A(L):A(L) =A(J):A(J)=T
1050 R(LV)=R:LV=LV+1:R=J-

1:GOSUB 1000
1060 LV=LV-1:R=R(LV):L=1:GOSUB

1000
1070 RETURN

II
10 MODE1
20 PRINT TAB(15,3)"QUICKSORT"
30 INPUT TAB(7,5)"HOW MANY NUMBERS

(1-750) ❑ ",A
40 A= INT A:IF A<1 OR A>750 THEN 10
50 DIM A(A)
60 A(A) =100:PRINT""UNSORTED

TABLE:—":FOR K = 0 TO
A —1:A(K) = RND(99):PRINT A(K);:NEXT

70 PROCSORT(0,0,A —1)
80 PRINT""SORTED TABLE:—":FOR K=0

TO A —1:PRINTA(K);:NEXT
90 PRINT""PRESS SPACE BAR TO RE-

RUN":REPEAT UNTIL GET =32:RUN
100 DEF PROCSORT(LV,L,R)
1000 IF R > L THEN I = L:J = R +1:V = A(L)

ELSE ENDPROC
1010 1=1+1:IF A(I)<V THEN 1010
1020 J=J —1:IF A(J)>V THEN 1020
1030 IF J> = I OTHEN T=A(I):A(I)=A(J):

A(J) =T:GOTO 1010
1040 T=A(L):A(L)=A(J):A(J) =T
1050 PROCSORT(LV+1,L,J —1)
1060 PROCSORT(LV,I,R)
1070 ENDPROC

LEI lig
10 CLS
20 PRINT@11,"quicksort"
30 PRINT:INPUT" ❑ HOW MANY NUMBERS

DO YOU WISH TO SORT (1-1000) III";A
40 IF A<1 OR A>1000 THEN 10
50 DIM A(A),R(1 +SQR(A))
60 A(A) = 100:PRINT" ❑ UNSORTED

TABLE El : — ": FOR K = 0TOA — 1:A(K) =
RND(99):PRINTA(K);:NEXT:PRINT

70 L = 0:R = A — 1:GOSUB1000
80 PRINT" SORTED TABLED: —":FORK =

0TOA —1: PRI NTA(K);: NEXT
90 IF INKEY$ < > "Ill" THEN 90:ELSE RUN
1000 IF R>L THEN I= L:J = R +1:V=A(L)

ELSERETURN
1010 1=1+1:IF A(I)<V THEN1010
1020 J=J —1:IF A(J)>V THEN1020
1030 IF J> =1 THEN T=A(I):A(I)=A(J):

A(J) =T:GOT01010
1040 T=A(L):A(L) =A(J):A(J) =T
1050 R(LV)=R:LV=LV+1:R=J-1:GOSUB

1000
1060 LV=LV - 1:R=R(LV):L=1:GOSUB

1000
1070 RETURN

Compare this listing of a recursive Quicksort
program with the non-recursive Quicksort
program on page 711. The recursive listing is
far less cluttered with variables and IF ...
THEN . . . GOTO . . . conditions, so it is much
simpler to follow.

The program lets you enter a value for the
number of random numbers you wish to sort.
Line 50 DIMensions an array—A(A)—to store
these numbers, and an R array to store
variables for the recursive calls. This second
array is not necessary on the Acorns. Line 60
generates and prints the unsorted random
numbers, and Line 70 calls the recursive
subroutine to sort them into ascending order.
Line 80 prints the table of numbers.

The method uses some aspects of list
merging from two subsets and some aspects of
sub-list sorting. The main list is divided into
two subsets (Lines 1010 and 1020). Notice
the crucial exit test (Line 1000) to determine
when recursion should end. Each of the two
subsets is then sorted in one pass (Line 1030).
The subsets are further divided, but two are

merged into one of the new subsets, then each
of the new subsets is sorted in the next pass.
The subroutine then calls itself (Line 1050)
repeatedly to complete the sort.

Although this BASIC sorting method is
not as fast as machine code, it is extremely
rapid. For example, to sort 100 values on the
Spectrum takes about 40 seconds; a similar
bubblesort routine would take well over one
hour.

EXTENDED RANGE
The usefulness of recursion goes far beyond
the calcualtion of factorials and other math-
ematical applications. Recursion can be ex-
tremely useful in games programs and for
producing complicated graphical patterns.
The technique can also be applied to artificial
intelligence (AI), for example, both in robotic
control and in games programs. Similar
methods are also being used in language
processing (compilers and interpreters).

Recursion is used in chess and strategy-
game programs. Enter the next program to
see a simple illustration of this use on the
classic puzzle, the Towers of Hanoi.

10 BORDER 6:PAPER 6:INK 0:CLS
20 PRINT TAB 8;INVERSE 1;" OTOWERS OF

HAN010"
30 INPUT "ENTER NUMBER OF RINGS

(2-9) ❑ ";N:IF N<2 OR N>9 THEN
GOTO 30

35 DIM T(3)
36 LET A$="1. ❑ /":INK 2:FOR M=21

TO 21 —N STEP —1:PRINT AT M,7;A$;AT
M,15;A$;AT M,23;A$:NEXT M:INK 0

37 PRINT INK 2;AT 21,7;" 	M";AT
21,15;"Il 	U";AT 21,23;"

38 FOR M=1 TO N:PRINT INK 7;PAPER 0;AT
20 —T(1),8;N +1 — M:LET
T(1)=T(1) +1:NEXT M

39 PRINT # 1;AT 0,9;"ANY KEY TO START"
40 PAUSE 0: PRINT #1;AT 0,8;"1:1000

❑❑❑❑❑❑❑❑❑❑❑❑❑ "
45 LET TT = 2:LET TF =1:LET R=3
50 GOSUB 90
70 PRINT AT 10,8;"TOTAL MOVES

=111";2iN —1
80 STOP
90 IF N=0 THEN RETURN
100 LET N =N —1:LET W= R:LET R =TT:LET

TT = W:GOSUB 90:LET W= R:LET
R =TT:LET TT = W

110 GOSUB 200
120 LET W= R:LET R =TF:LET

TF = W:GOSUB 90:LET W= R:LET
R =TF:LET TF =W

130 LET N = N +1:RETURN

200 PRINT AT 20 — (T(TF) — 1),TF*8;" ❑ ";
INVERSE 1;AT 20 — (T(TT)),Tr8;N +1:LET
T(TF) = T(TF) —1: LET T(TT) = T(TT) +1

210 BEEP .01,TT*T(TT)*2
220 RETURN

20 PRINT "Q gg > pi a TOW E R OR
HANOI"

30 PRINT "NNUMBER OF RINGS (2-9)"
40 INPUT N:IF N <2 OR N>9 THEN RUN
50 TT= 2:TF =1:R =3:GOSUB 90
60 PRINT " gg MOVES TAKEN =";2IN —1
70 END
90 IF N=0 THEN RETURN
100 N =N —1:W = R:R = TT:TT = W:GOSUB

90:W= R:R = TT:TT =W
110 PRINT "RING";N;"FROM TOWER":PRINT

TF;"TO TOWER";TT
120 W = R:R =TF:TF =W:GOSUB 90:W= R:

R = TF:TF =W
130 N=N+1:RETURN

10 DIML(3)
20 MODE1:VDU19,0,4,0,0,0,23;8202;0;0;0;
30 PRINTTAB(13,2)"TOWERS OF HANOI"TAB

(13,3)STRING$(15," E")
40 PRINTTAB(9,5)"NUMBER OF RINGS

(2-9) ❑ ";
50 N =GET-48:IF N<2 OR N>9 THEN 50

ELSE PRINT;N
60 L(1) = N:L(2) = 0:L(3) = 0:FOR T=1 TO

N:PRINTTAB(13,25 — N + T);T:NEXT:T = 0
70 PRINTTAB(7,9)"NUMBER OF MOVES

TAKEN 0 = "
80 PROCREC(N,3,1,2)
90 END
100 DEF PROCREC(N,TT,TF,R)
110 IF N=0 THEN ENDPROC
120 PROCREC(N —1,R,TF,TT)
130 L(TF) = L(TF) —1:L(TT) = L(TT) +1
140 PRINTTAB(TT*6 +7,26— L(TT));N
150 SOUND17, —15,281(TT),1
160 T = T +1:PRINTTAB(32,9);T
170 PRINTTAB(TF*6 + 7,25 — L(TF))" 0"
180 PROCREC(N —1,TT,R,TF)
190 ENDPROC

M
10 CLS:DIMH(3)
20 PR1NT@8,"towers of hanoi":PRINT
30 PRINT"NUMBER OF RINGS (2-9)
40 A$ =1NKEY$:IF A$ < "2" OR A$:.:

"9" THEN 40
50 N = VAL(A$):H(0) = N:PRINT@64
60 FORK = 0T08:FORJ = 0T02:PRINT

@165+ K*32 +J*9,CHR$(175) +
" ❑ " + CHR$(175);:NEXTJ,K

70 FORK = 0T02:PRINT@453 + K*9,
STRING$ (3,175);:NEXT

80 FORK = 1TON:POKE1478 — 32*K,
49+ N — K:NEXT

90 TT =1:TF = 0: R = 2
100 GOSUB1000
110 PRINT@65,"NUMBER OF MOVES

TAKEN = ";INT(21N —1)
120 PRINT" ❑ PRESS A KEY TO RUN AGAIN"
130 IF INKEY$=`"' THEN 130
140 RUN
1000 IF N=0 THEN RETURN
1010 N=N-1:W= R:R = TT:TT = W:GOSUB

1000:W= R:R = TT:TT = W
1020 POKE1478 + 97F — H (TF),

96:H(TF)=H(TF)-1:H(TT)=H(TT)
+ 1: POKE1478 + 9*7T — 32*H (7),49 + N

1030 W= R:R = TF:TF =W:GOSUB
1000:W = R:R =TF:TF =W

1040 N=N+1:RETURN

The traditional puzzle consists of three pegs
mounted on a board. On the first peg are a
number of discs of varying diameter. The
object is to transfer the stack of discs from one
peg to another. The discs may be moved only
one at a time, and no disc can ever rest on
another smaller than itself. The third peg is
used as a temporary rest while the discs are
being moved. The computer version gives a
graphic representation of the puzzle. RUN the
program and enter the number of discs you
wish to demonstrate. The transfer of discs is
rapid so you won't be able to follow each
move, unless you modify the program to slow

it down, as follows.
For the Spectrum, insert a new line:

215 PAUSE 0.

For the Commodores, enter a new line:

115 POKE 198,0:WAIT 198,1

For the Acorns, enter two new lines:

65G =GET
175 G = GET

The above changes cause the programs to run
only when you press a key.

For the Dragon and Tandy, add the follow-
ing to the end on Line 1020

: SOUND 50 + H(TT)*10, 12

This causes a delay while a note is sounded.
The program to solve the puzzle is best

coded for recursion. The format is similar to
that of the previous programs. The recursive
subroutine successively prints each move
from one peg to another until the problem is
completed. The total number of moves made
is calculated and displayed after each full go.

Hence, for highly complicated problems
which require sub-division, recursion is often
the best method of programming. If, how-
ever, memory space is limited, then recursion
can be extremely wasteful in both time and
space. But if a subroutine or procedure calls
itself more than twice, recursion is most
probably the best method to use.

Stars, circles, spirals and hexagons,
magically drawn in ever increasing
sizes—these are only a few of the
shapes you can conjure up with a
few simple instructions using LOGO

In the first part of this article you were shown
how to draw with LOGO's Turtle, create a
Logo primitive by teaching the Turtle to draw
a picture, and how to use those primitives to
help define new primitives. For example, it is
possible to teach the Turtle to draw a
hexagon:

TO HEXAGON
REPEAT 6 [FORWARD 70 RIGHT 60]
END

After typing END, LOGO will indicate
HEXAGON DEFINED letting you know that
HEXAGON is now part of its vocabulary* When
you type HEXAGON, the Turtle will draw a
hexagon and finish facing in the same direc-
tion as it started*

HEXAGON can be used to define PATTERN:

TO PATTERN
REPEAT 12 [HEXAGON FORWARD 10 RIGHT
30]
END

It is unusual if your LOGO procedures do
what you expect the first time* There is
usually at least one bug lurking somewhere in
the program. For example, when drawing the
hexagon you may have assumed that because
the angle between the sides is 120 degrees,
you should tell the Turtle REPEAT 6
[FORWARD 60 RIGHT 120]. The result would
not have been a hexagon*

THE TURTLE'S EYE VIEW
Turtle geometry is unlike the coordinate
geometry with which you are probably fam-
iliar, where positions are defined in relation to
an external point* (Normal screen co-
ordinates on your computer's graphics screen
move like this*) Turtle geometry works differ-
ently as the Turtle itself is the point of
reference* When drawing a hexagon the
Turtle turns through 60 degrees, not 120
degrees, even though the two lines the Turtle
has drawn are at 120 degrees to each other. If
you have problems converting to Turtle
geometry, imagine you are walking through
the shape you want to draw* The angles you
turn through and the distances you walk will
translate into instructions for the Turtle.

Although this may seem confusing when

you are used to coordinate geometry, it is
actually far easier for children to learn, as it
relates to their own experience*

EDITING
When the bugs have wreaked their havoc they
need to be removed from the , program. To do
this you need to go into a third mode, the
Editor. The Edit mode is similar to the
procedural mode* It does not affect the
immediate state of the Turtle*

To edit a procedure type EDIT " and the
procedure's name. Some versions of LOGO
do not require the quotation marks. EDIT can
be abbreviated to ED*

Type EDIT "HEXAGON and you will enter
the EDIT mode* The definition of HEXAGON
will be displayed at the top of the screen.
There are no graphics in the Edit mode, the
screen is devoted to text* Using the cursor
keys, the cursor can be moved up and down
the program from line to line, or backwards
and forwards across an individual line. Indiv-
idual characters to the left of the cursor can be
removed with the delete key, the same way as
an individual line is edited in the procedural
mode* The character beneath the cursor can
be removed with the delete key arid the
Control key (or (CAPS SHIFT' on the Spec-
trum)* Characters are inserted by simply
typing them in, the rest of the line moves
along to accommodate them*

The procedures are the same on the ma-
chines, though the keys may differ* On the
Commodore, for example, I CTRL I A moves the
cursor to the beginning of a line, I CTR L I L
moves it to the end of a line* I CTRL I K (for Kill)
deletes all the characters to the right of the
cursor* To delete a whole line use ICTRL I A and
then CTRL K* CTRL 0 will open a space to
insert a new line*

It is possible to define a new procedure in
the Edit mode* The advantage of doing this is
that you can move from line to line to change
commands while still defining the procedure.
To define Flower in this way type

EDIT "FLOWER

TO FLOWER will appear at the top of an empty
screen. You can then write the procedure in
the normal way and enjoy the benefit of full

THE TURTLE'S EYE VIEW
EDITING

GIVING AN INPUT
KEEP IT ON FILE

PROJECTING PROCEDURES

CHECKING MEMORY
ROUND AND ROUND

DRAWING A HEXAGON
ERASING YOUR WORK

FULL STOP

editing capabilities*
When defining a procedure in Commodore

LOGO you go into the editing mode whether
you type TO or EDIT.

GIVING AN INPUT
There is an important difference between
HEXAGON and RIGHT. HEXAGON always draws
a hexagon with sides 60 units* RIGHT requires
an input which tells the Turtle how far RIGHT
it must turn, in the same way FORWARD,
BACK, and LEFT require inputs.

It is possible to redefine HEXAGON so that
it also requires an input. To do this give the
input a name and include it in the title line of
the pfocedure. The name of the input is
always preceded by a colon. The input name
and the colon are used in the definition of the
procedure whenever the value of the input
would usually appear* This procedure is
understood more easily if you look at an
example*

If you call the input for HEXAGON, SIDE,
EDIT "HEXAGON puts you in the Edit mode*
On the title line, add the input name preceded
by a colon so it now reads:

TO HEXAGON :SIDE

Go down to the next line and delete the 70,
and type :SIDE in it's place* The definition of
HEXAGON now reads:

TO HEXAGON :SIDE
REPEAT 6 [FORWARD :SIDE RIGHT 60]
END

If you now type HEXAGON, LOGO will tell
you:

NOT ENOUGH INPUTS TO HEXAGON

HEXAGON is treated like any other LOGO
primitive requiring an input. Type HEXAGON
20 and the Turtle will draw a hexagon with
sides 20 units*

HEXAGON 100 will give a hexagon with
sides 100 units, and so on*

PATTERN would have to be rewritten as:

TO PATTERN
REPEAT 12 [HEXAGON 70 FORWARD 10
RIGHT 30]
END

You could modify PATTERN to take SIDE as an
input.

T0 PATTERN SIDE
REPEAT 12 [HEXAG0N . SIDE F0RWARD 10
RIGHT 30]
END

Use the same principle in CIRCLE to get the
Turtle to draw different sized circles*

T0 CIRCLE :SIZE
REPEAT 72 [F0RWARD SIZE RIGHT 5]
END

You are really drawing a 72 sided polygon
rather than a true circle, although the result is
an acceptably smooth curve. The turtle draws
circles rather slowly, but you can speed things
up by making the Turtle invisible, then
LOGO will not have to draw it at every step.
To do this use HIDETURTLE, which can be
shortened to HT.

When you want the Turtle visible again use
SHOWTURTLE, shortened to ST. Modify
CIRCLE to speed it up:

T0 CIRCLE :SIZE
HIDETURTLE
REPEAT 72 [F0RWARD :SIZE RIGHT 5]
SH0WTURTLE
END

KEEP IT ON FILE
When a procedure is defined it becomes part
of LOGO's vocabulary, but switch the com-
puter off and your own primitives disappear
from the memory. LOGO allows you to save
your work on disk or cassette by using SAVE
followed by ". If you forget the ", LOGO will
not save your work and all your efforts will be
erased.

When using SAVE, LOGO puts the com-
plete contents of your `workspace'—every
procedure you have defined—onto disk or
cassette. SAVE "WORK would save all the
procedures in the computer's memory on
disk, creating a file called WORK.

After loading, LOGO can retrieve the file
from disk or cassette with LOAD (sometimes
READ). LOAD "WORK will take all the proce-
dures from the file named WORK and load
them into the computer's workspace.

If there is a procedure in the computer's
memory and you load another procedure with
the same name, the procedure loaded into the
memory will replace the one already there,
which, like the crew of the Marie Celeste, will be
lost without trace.

Files on disk can be erased from the disk
with ERASEFILE " and the name of the file*
Sometimes ER F is used instead of ERASEFILE.
So ERASEFILE "WORK erases all procedures
under the filename WORK from the disk* It is
not possible to use ERASEFILE with a cassette*
To erase a file on a tape you must save another
workspace in the same place as the file you
want to erase.

Using ERASEFILE does not affect the proce-
dures currently in the computer's memory
only procedures already saved.

Because LOGO saves the procedures in the
memory on an 'all or nothing' basis, it is
sensible to sort out the contents before saving.
There are several LOGO primitives con-
cerned with workspace management*

CHECKING MEMORY
LOGO's working memory is a list of nodes*
Each node consists of five bytes* After loading
LOGO, there are up to 3000 nodes to play
with. These are used up as procedures are
defined or loaded. To find which procedures
are in your computer use POTS* This is Print
Out TitleS and prints out the title of every
procedure in your workspace* For example:

P0TS
T0 HEXAGON :SIDE
T0 PATTERN :SIDE
T0 FL0WER
TO CIRCLE :SIZE

CATALOG prints a list of the files stored on
the disk that you are using*

When procedures are erased from the
workspace the nodes are released ready to be
used again* They are not added to LOGO's
present list of free nodes. LOGO continues
working with it's original list until it is used
up. It then searches the memory for nodes
which have been freed and forms them into a
new list* This is known as garbage collection,
and sometimes causes LOGO to pause for a
second or two.

ROUND AND ROUND
And now back to the drawing board. Here's
another way to draw the hexagon.

HEXAGON 50, for example, the Turtle goes
FORWARD 50 RIGHT 60 and then must do
HEXAGON2 50 again and again and again until
you stop it.

Just as one procedure can call another
procedure as part of its defintion, it can also
call itself as part of itself* This introverted
state of affairs is known as recursion (see
pages 1289 to 1295)*

A procedure can take more than one input.
Here is a simple example:

TO RECTANGLE :SIDE1 :SIDE2
REPEAT 2 [FORWARD :SIDE1 RIGHT 90
F0RWARD :SIDE2 RIGHT 90]
END

PO stands for Print Out. PO followed by the
name of a procedure prints out the definition
of that procedure. For example:

P0 CIRCLE
T0 CIRCLE :SIZE
HIDETURTLE
REPEAT 72 [FORWARD :SIZE RIGHT 5]
SHOWTURTLE
END

P0ALL stands for Print Out ALL* It prints
out the definition of every procedure in the
workspace* After finding out which proc-
edures are in the workspace you may want to
erase some or all of them*

ERALL stands for ERase ALL, and erases all
procedures in the memory.

To erase an individual procedure or group
of procedures use ERASE* To erase a single
procedure, precede the procedure's name
with quotation marks* For example: ERASE
"FLOWER removes the procedure FLOWER
from the workspace*

To erase a group of procedures, enclose
their names in square brackets* For example:
ERASE [FLOWER CIRCLE PATTERN] erases
those procedures from the computer's
memory*

HEXAGON2 :SIDE
END

If you try and walk this one out you'll get
dizzy and collapse. It draws a hexagon of a
given size, just as HEXAGON did. The Turtle
behaves very differently, however. In
HEXAGON the Turtle stopped when it had
completed the drawing* In HEXAGON2 the
Turtle keeps going round and round until you
stop with the I BREAK or 1CTRL I key plus G key*
The reason this happens is that if you type

RECTANGLE 20 40 will draw a rectangle witn
sides 20 and 40 units.

The input can be an angle or a side.

TO WIGGLE :SIDE :ANGLE
REPEAT 60 [F0RWARD :SIDE RIGHT :ANGLE]
END

WIGGLE takes one input for its FORWARD step
and one for the amount of turn.

A common LOGO procedure similar to
WIGGLE is POLY.

TO POLY :SIZE :ANGLE
FORWARD :SIZE
RIGHT :ANGLE
POLY :SIZE :ANGLE
END

POLY is a simple recursive procedure which
can produce some attractive designs.

Like HEXAGON2, POLY will set the Turtle a
never ending task. You must stop it by
interrupting the program.

An interesting development of POLY,
which goes beyond simply repeating the same
two commands is SPIRAL.

TO SPIRAL :SIDE :ANGLE
FORWARD :SIDE
RIGHT :ANGLE
SPIRAL :SIDE + 2 :ANGLE
END

LOGO allows full use of mathematical func-
tions, so in the fourth line it adds 2 onto the
value of SIDE.

Typing SPIRAL 1 72 will make the Turtle
do the following sequence:

FORWARD 1
RIGHT 72
FORWARD 3
RIGHT 72
FORWARD 5
RIGHT 72
FORWARD 7
RIGHT 72
FORWARD 9

and so on.
This produces a pentagonal spiral. Each

side of the spiral is 2 steps longer than the
previous side.

FULL STOP
There is no way to stop the Turtle other than
by interrupting the program, but you can
impose a condition within the procedure to
stop the Turtle drawing when the side reaches
a certain size.

STOP is a LOGO primitive which can only
be used within a procedure. It cannot be used

in the immediate mode or at 'top level' where
the programmer is in control and LOGO is
waiting for an instruction. It stops the proce-
dure before it reaches the end statement and
returns control to the 'caller'. The caller can
be another LOGO procedure. If there is no
other procedure then control goes to the user
at top level. STOP only halts the procedure
that it appears in.

You can also create a condition with IF and
THEN. Some versions do not require THEN. IF
looks at something and decides if it is true or
not. If it is true THEN a certain course of action
is set into motion. If the condition is not true
then another course of action is pursued.

Inside a procedure IF tests a condition, if it
is not true then the next line of the procedure
is executed. If it is true, THEN tells LOGO
what to do next.

You can see STOP IF and THEN in action in
the following procedure.

Substitute HEXAGON for SIDE in SPIRAL,
this will make the Turtle draw a spiral of
larger and larger hexagons. The conditionals
will stop the procedure when the hexagon's
sides reach 20 units.

TO SPINHEX :SIDE :ANGLE
IF :SIDE >100 THEN STOP
HEXAGON :SIDE
RIGHT :ANGLE
SPINHEX :SIDE + 3 :ANGLE
END

LOGO recognizes > meaning 'greater than'
just as it recognized the mathematical func-
tion of + .

SPINHEX 1 10 tells the Turtle to draw a
hexagon with sides 1 unit, turn 10 degrees,
draw a hexagon with sides 4 units, turn 10
degrees and draw a hexagon sides 7 units and
so on, increasing the size of the hexagon by 3
units each time. Each time the second line
checks to see if the size of the sides are greater
than 100. If they are not, it passes down to the
next line and draws another hexagon. When
the size becomes greater than 100, THEN
comes into action. It points LOGO to STOP
and the procedure stops.

These articles have already covered enough
geometric material to last a ten year old for a
year. Recursion makes it possible to obtain a
wide variety of results from a simple program.
The screen editor makes it easy to tinker
around with the procedures and encourages
experimentation. The results of the programs
are often pleasantly surprising. The Turtle
translates commands into pictures and makes
it easy for you to see where the bugs lie.

In the third and final part of this article, we
will look at LOGO'S sprites, word and list
processing and mathematical capabilities.

DIMensioning arrays, in
Cavendish Field game 	1282 	I

DRAW
use of to create UDGs in
wargame

Dragon, Tandy 	1254-1256

IF *** THEN, in LOGO 	1300
Inputs, use of in LOGO 	1297
Interrupt request, definition

1263

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT

A
Animation

of boulders in cliffhanger
1276-1281

of sprites
Commodore 64 	1259-1263

Applications
horoscope program 1245-1253
room planner program

1269-1275
Artificial intelligence 1264, 1294

B
Banks, memory

range of
Commodore 64 	1258-1259

Basic programming
moving colour sprites

Commodore 64
	

1258-1263
recursion
	

1289-1295
Byte array

in Cavendish Field game
1282-1288

C
Cavendish Field game

part 1—design considerations
and setting up UDGs

1254-1257
part 2—map and troop arrays

1282-1288
Circles, drawing in LOGO

1298
Cliffhanger

part 12—adding weather
1240-1244

part 13—rolling boulders
1276-1281

Collision detection,
of sprites
Commodore 64

Colour
of sprites

Commodore 64

D

Drawing
in room planner program

1269-1275
with LOGO 	1296-1300

E
Edit mode, in LOGO 	1296
Enlarging sprites

Commodore 64 	 1262
Envelopes, sound

loud and quiet in cliffhanger
Acorn 	 1243-1244

F
Factorials

program to calculate
1291-1293

G
Games

Cavendish Field
1254-1257,1282-1288

cliffhanger
1240-1244,1276-1281

horoscOpe program 1245-1253
life 1237-1239

Garbage collection,
in LOGO 	 1299

Generation counter,
in life game 	1237-1239

Geometry, turtle 	1296
Graphics

in Cavendish Field game
1254-1256

sprites 	Commodore 64
moving and storing 1258-1263
using LOGO 	1296-1300

L
Languages

LOGO 1264-1268,1296-1300
Life game 1237-1239
LOADING with LOGO 1298
LOGO 1264-1268,1296-1300

M
Machine code

games programming
see cliffhanger; life game

Memory
banks, range of

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

Commodore 64 	1262
storing sprites in

Commodore 64 	1258-1260
Movement

of sprites
Commodore 64 	1262-1263

of sun in cliffhanger
Dragon, Tandy 	1244

N
Nodes, memory,

in LOGO
	

1299

P
Patterns, drawing in LOGO

1296-1300
of uni-cellular organisms

in life game 	1237-1239
Pointers, sprite

Commodore 64 	1260-1261
POKE

use of to enable sprites
Commodore 64 	1261-1263

use of to store sprites
Commodore 64 	1259

Predictions, by horoscope
1245-1253

Primitives, definition 	1267
Procedures, in LOGO 	1268

erasing, loading and saving
1298-1299

listing from memory 1299
use of to draw patterns

1296-1300

Q
Quicksort program,

recursive 	1293-1294

R
Raster interrupts

use of with sprites
Commodore 64 	1263

Recursion
in BASIC 	1289-1295
in LOGO 	1299-1300

REPEAT command, in LOGO
1268

Robotics 1266
Room planner pkogram

part 1 	 1269-1275

S
SAVEing with LOGO 	1298
Screen display

as two 'windows' 	1257
Spirals,

drawing with LOGO 	1300
Sprites 	Commodore 64

moving and storing 1258-1263
Subroutines, calling

by recursion 	1289-1295
SYNC

use of in cliffhanger
Dragon, Tandy 	1244

T
Towers of Hanoi program

1294-1295
Turtle, use of 	1266-1268

for graphics 	1296-1300

U
UDGs

use of in Cavendish Field
game 	 1254-1256

V
VIC-II chip
Commodore 64 	 1258

memory locations of 	1262

Wargames
see Cavendish Field

1263

H
1262 	Hexagons, drawing

in LOGO 	1296-1300
Horoscope program 1245-1253

The publishers accept no responsibility for unsolicited material sent for publication in INPUT* All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

../Running a program takes on a whole
new meaning as you attempt to save your
valuable carpet from the cascading paint
in DESPERATE DECORATOR

J Find just the place for your grand
piano, chaise-longue and Chippendale
with part two of ROOM DESIGNER

—1 From your vantige point above the
battlefield, issue ORDERS to your troops
in WARGAME

-J Lights, ac tion, roll 'em! WILLIE will
have to be jumpin' jack flash to avoid
these rolling stones

0--/ The OPERATING SYSTEM stops your
computer being a useless pile of silicon
junk. Get to grips with its workings

JLeave the Turtle behind and explore
more of LOGO including mathematics,
sprites and word handling

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

