
A MARSHALL CAVENDISH 45 COMPUTER COURSE IN WEEKLY PARTS

LEARN '' I : A LNIMErramorTrarmMPT- Ti gum a insawdmaille1321

Vol. 4 	 No 45

BASIC PROGRAMMING 88

MODELS OF IRREGULARITY 	 1397

Get to grips with the fascinating field
of fractals and mimic irregularities

MACHINE CODE 47

CLIFFHANGER: TAKE A RUNNING JUMP 1402 4111
Get our hero fully mobile with the
last part of this moving section

LANGUAGES 6

LISP—THE LANGUAGE OF LISTS 	1410

The next section of Languages takes a look
at LISP and its list handling

APPLICATIONS 31

FINISHING THE SYMPHONY 	
14A

Key in the last bits of program and
take a rest—your micro knows the score

GAMES PROGRAMMING 49

ESCAPE: A NEW ADVENTURE GAME 	1424

Start entering the adventure game that
will have you guessing—or thinkirug

INDEX
The last part of INPUT, Part 52, will contain a complete, cross-referenced index.
For easy access to your growing collection, a cumulative index to the contents

of each issue is contained on the inside bock cover.

PICTURE CREDITS
Front cover, Graeme Harris. Page 1347, Image Bank/Berry Fallon Design. Pages
1402, 1404, 1406, 1409, Peter Reilly. Pages 1410, 1412, Graeme Harris. Pages
1417, 1418, 1420, 1423, Kevin O'Keefe. Pages 1425, 1426, 1427, 1428, Artist
Partners/Stuart Robertson.

© Marshall Cavendish Limited 1984/5/6
All worldwide rights reserved.

The contents of this publication including software, codes, listings,
graphics, illustrations and text are the exclusive property and copyright of
Marshall Cavendish Limited and may not be copied, reproduced,
transmitted, hired, lent, distributed, stored or modified in any form
whatsoever without the prior approval of the Copyright holder.

Published by Marshall Cavendish Partworks Ltd, 58 Old Compton Street, London W1V SPA,
England. Typeset by MS Filmsetting Limited, Frome, Somerset. Printed by Cooper Clegg
Web Offset Ltd, Gloucester and Howard Hunt Litho, London.

HOW TO ORDER
YOUR BINDERS
UK and Republic of Ireland:
Send £4.95 (inc p & p) (IRL5.95) for
each binder to the address below:

Marshall Cavendish Services Ltd,
Department 980, Newtown Road,
Hove, Sussex BN3 7DN

Australia: See inserts for details, or
write to INPUT. Times Consultants,
PO Box 213, Alexandria, NSW 2015

New Zealand: See inserts for details, or
write to INPUT, Gordon and Gotch
(NZ) Ltd, PO Box 1595, Wellington
Malta: Binders are available from local
newsagents.

There are four binders each holding 13 issues.

BACK NUMBERS
Back numbers are supplied at the regular cover price (subject to availability).

UK and Republic of Ireland:
INPUT, Dept AN, Marshall Cavendish Services,
Newtown Road, Hove BN3 7DN

Australia, New Zealand and Malta:
Back numbers are available through your local newsagent.

COPIES BY POST
Our Subscription Department can supply copies to any UK address regularly at £1.00 each.
For example the cost of 26 issues is £26.00; for any other quantity simply multiply the number
of issues required by £1.00. Send your order, with payment to:

Subscription Department, Marshall Cavendish Services Ltd,
Newtown Road, Hove, Sussex BN3 7DN

Please state the title of the publication and the part from which you wish to start.

HOW TO PAY: Readers in UK and Republic of Ireland: All cheques orpostal orders
for binders, back numbers and copies by post should be made payable to:

Marshall Cavendish Partworks Ltd.

QUERIES: When writing in, please give the make and model of your computer, as
well as the Part No., page and line where the program is rejected or where it does
not work. We can only answer specific queries — and please do not telephone. Send
your queries to INPUT Queries, Marshall Cavendish Partworks Ltd, 58 Old
Compton Street, London W1V SPA.

INPUT IS SPECIALLY DESIGNED FOR:
The SINCLAIR ZX SPECTRUM (16K, 48K,128 and +),
COMMODORE 64 and 128, ACORN ELECTRON, BBC B
and B+,and the DRAGON 32 and 64.

In addition, many of the programs and explanations are also
suitable for the SINCLAIR ZX81, COMMODORE VIC 20, and
TANDY COLOUR COMPUTER in 32K with extended BASIC.
Programs and text which are specifically for particular machines
are indicated by the following symbols:

SPECTRUM 16K, :Cf-■
48K,128, and + 	COMMODORE 64 and 128

Fl ACORN ELECTRON,
BBC B and B+ U: DRAGON 32 and 64

D(81 	VIC 20 	1COLOIYUR COMPUTER

GEOMETRIC FIGURES
SIZING AN OBJECT

SELF-SIMILARITY
FRACTALS AND GRAPHS

DRAWING DRAGONS

Use your micro to explore the
fascinating forms of fractal
geometry—the mathematical tool
that helps explain the irregularity
that shapes the real world

How long is a piece of string? The answer is
easy to find out if the string is straight,
because all you have to do is to measure it.
The same applies even if the string is tangled,
except that now you have the rather harder
task of measuring an irregular object.

Of course, anyone with any sense would
pull the string out straight first, then measure
it. But what if you have to measure something
which is a complex shape and can't be
unravelled?

Think of a stretch of rocky coastline, five

kilometres long. What picture does this con-
jure up? Does five kilometres mean the
distance as the crow flies, or does it mean the
distance you would walk if you actually
followed each contour of the shoreline? There
is a considerable difference, and it should be
obvious that the route which follows every
irregularity will be a good deal longer than the
straight-line path.

But how much longer? Let's suppose you
have a very long, very flexible, tape measure
and you decide to measure around every
detail. First of all, you have to include all the
major irregularities in the coast, like the inlets
formed by rivers. But there are smaller irre-
gularities, too, like individual outcrops of
rock. As you carry on taking your tape
measure around, you can include even smaller
details, right down to individual stones, or

even grains of sand. And if you were able to
look in finer detail still, you would see that the
grains of sand themselves have surface irre-
gularities around which to measure.

This might seem an absurd exercise—after
all, no-one needs to know distances in such
fine detail. But it makes an important point,
which is that when you are dealing with
something whose outline or surface is not
perfectly smooth, its actual measurement de-
pends on the size of your ruler.

Traditional science uses models for curves
and surfaces which are assumed to be smooth.
And the more they are magnified, the more all
of these shapes start to look flat—in the same
way that to a rough approximation, the shape
of the Earth is a sphere—but so large that to
those who live on it, the surface appears flat.

But as the example of the coastline shows,

some objects do not look flat, even when they
are under high magnification. And there are
many examples in nature of things which
possess detailed structure on many different
scales. But only recently have scientists and
mathematicians identified them as something
worthy of study and derived a model for their
structure in a new series of geometric figures
called fractals.

The word fractal comes from the Latin
word for irregular. It was coined by a US
mathematician, Dr Benoit Mandelbrot, who
recognized fractals as a new breed of math-
ematical object, well suited to modelling
irregular, natural objects.

The difference between a fractal and a
smooth curve is dramatic in appearance, but it
is equally dramatic in theory. The idea of the
three dimensions of space is familiar to most
people—a surface has only two dimensions,
and a line has only one. And to explain some
of the physical theories of his day, Albert
Einstein suggested a fourth dimension—time.
Fractals extend the idea of dimensions in a
remarkable way—by requiring fractional, in-
stead of whole number, dimensions.

This is not to say that a fractal requires
one-and-a-half or two-and-a-half independ-
ent directions—half a direction is meaning-
less, even to a mathematician. Instead, a new
kind of dimension is envisaged, depending on
how the fractal behaves under magnification.
This new kind of dimension gives the ex-
pected answers 3, 2, or 1 for space, a surface,
or a curve, but it also makes sense for a fractal.

SIZING AN OBJECT
If you take two pieces of string the same
length and place them end to end, you can
imagine you have formed a copy of the
original piece of string, but twice its size.
Starting with a square of paper, however, you
would require three copies with the original—
four pieces in all—to produce a square of
paper twice the size. For a cube of cheese, you
would require eight copies. And if four-
dimensional cheese existed, you would need
16 identical portions to double the size of one
of the pieces.

The numbers 2, 4, 8 and 16 are part of a
sequence formed by multiplying 2 by itself
several times-2, 2 x 2, 2 x 2 x 2, and
2 x 2 x 2 x 2. This sequence can also be
written 2', 22, 2', 24, and so on. And the
powers to which 2 is raised-1, 2, 3, 4, and
so on—are the dimensions of the object.

A one-dimensional object (the string) has
to be multiplied by 2, a two-dimensional
object (the paper) by 4, and so on. Now
suppose an object could be found that re-
quires three identical pieces to double the size

of a single piece. This number lies between
two (corresponding to dimension 1) and four
(dimension 2), so you could say that the
dimension of the object lies between 1 and 2.

At first sight, this might appear to be an
improbable idea, although the logic is obvi-
ous. But it turns out that this theory manages
to explain the magnification effect that you
discover when trying to measure a fractal.

It is even possible to draw a diagram of
something which behaves in this way. The
German mathematician von Koch was one of
the first to do so when he invented the so-
called snowflake curve—which looks like an
infinitely crinkled snowflake. Each side of this
is made out of four copies of itself, each one
third of the size, and the dimension is just
over 1.26. And in the natural world, a typical
coastline can be viewed as having very similar
dimensions.

The fractal curve is defined very precisely,
whereas in the natural world there is far more
variation, so as in the case of most mathemat-
ical models, the artificial situation gives only
an approximation to nature. Nevertheless, it
provides science's best explanation for many
natural structures, ranging from the veins and
arteries of the body, the shapes of mountains,
the bends of a river, to the bark of a tree.

SELF-SIMILARITY
As you will see if you look back to the
examples of the string, the paper and the
cheese given above, the object was assembled
from smaller copies of itself. A large block of
cheese is made of several smaller blocks of
cheese the same shape, for example. The
object is said to be self-similar, in that if you
look at any part of it, the object appears to be a
smaller version of itself.

Mathematical fractals apply this principle
very rigidly, which is what makes them so
regular. Natural fractals are not precisely self-
similar, so if you magnify a section of a
coastline, or a piece of bark, it does not exactly
match the structure it was taken from. How-
ever, it does look roughly the same, as if it
could be a piece of coastline from elsewhere,
or bark from another part of the tree. This is
called statistical self-similarity and is very
common in nature.

FRACTALS AND GRAPHICS
So what does all this have to do with comput-
ing? The answer is that as with so many types
of mathematical model, fractals can be used to
program your computer so that it generates a
model of reality, sharing some properties with
the real world. Specifically, fractals are find-
ing major applications in computer graphics,
where they provide the most practical answer

to the problems of generating realistic irre-
gular shapes for things like mountains, seas,
and a host of imaginary landscapes.

Not only do fractals provide the best
mathematical model yet devised, but they are
also ideally suited to programming. The
principle of self-similarity means that the
shape can be built up by generating the same
element again and again—a process which
lends itself to simple, recursive programs of
the type covered in the earlier article on pages
1289 to 1295.

All you need to do to generate a mathemat-
ical fractal is to take a simple shape, then
repeat this again and again at different scales,
gradually adding more and more detail to the
drawing. The simplest example of this is just
to take a straight line, and apply a rule which
says that every straight line must be replaced
by a pair of lines at right angles to each other.

If you try drawing this out yourself, you
will see that each step adds a new level of
detail, as each line in the drawing is itself
broken up into two new lines. And gradually,
a pattern starts to emerge. The first program
gets the computer to demonstrate it for you.
Like all fractal processes, the drawing could
go on infinitely, adding more and more detail,
but this soon would get too fine to display on
a television screen. So the program is desig-
ned to stop once it has reached a certain level
of recursion.

10 BORDER 0:BRIGHT 1:PAPER 0:INK 7:CLS
20 LET mn =2
30 LET c= PI/180
40 LET 1=120:LET x =70:LET y = 50:LET

an = PI/2
45 PLOT INVERSE 1;OVER 1;x,y
50 GOSUB 1000
80 STOP
1000 LET 1=1/1.414
1010 IF 1<mn THEN LET 1=11.414:LET

x=x+ (rsiN (an)):LET y=y— (1TOS
(an)):DRAW x — PEEK 23677,y— PEEK
23678: RETURN

1020 LET an = an + P1/4:GOSUB 1000
1030 LET an = an — PI/2:GOSUB 1000
1040 LET an = an + PI/4:LET

1=11.414:RETURN

10 PRINT "D"
20 MN=2
30 C= n/180
40 L =160:X=80:Y = 40:AN = /t/2:XX = X:

YY = Y
50 HIRES 0,14:GOSUB 1000
60 GOTO 60
1000 L= L/1.414

1010 IF L> =MN THEN 1020
1012 L=L*1.414:X=X+(L*SIN(AN)):

Y=Y—(L*C0S(AN))
1015 LINE X,Y,XX,YY,1:XX=X:YY=Y:

RETURN
1020 AN =AN + ir/4:G0SUB 1000
1030 AN =AN —7r/2:G0SUB 1000
1040 AN =AN +7r/4:L=L*1.414:RETURN

Iy-

The program is as for the Commodore 64,
except for the following lines:

40 L =400:X =300:Y =300:AN = /2:
P0INT 0,X,Y

50 GRAPHIC 2:G0SUB 1000
1000 L=L/1.414:REGI0N RND(1)*6+2
1015 DRAW 1 T0 X,Y:RETURN

10 M0DE1:VDU 23;8202;0;0;0;
20 M%=15
30 VDU19,0,4;0;
40 M0VE 350,260
50 PR0CDRAW (600,0)
60 REPEAT UNTIL FALSE
1000 DEF PR0CDRAW(L%,A)
1010 IF L%< M% THEN PL0T 1,L%*C0S

A,L%*SIN A:ENDPR0C

1015 L%= L%/1.4142
1020 PROCDRAW(L%,A + PI/4)
1030 PROCDRAW(L%,A— PI/4)
1040 ENDPROC

rtCI "HI
10 PMODE4,1:PCLS:SCREEN1,1
20 MN =2
30 C=ATN(1)/45:P1=4"ATN(1)
40 L = 120:X = 70:Y = 140:AN = PI/2
45 LIN E — (X,Y),PR ESET
50 GOSU B1000
60 GOT060
1000 L= L/1.414
1010 IF L<MN THEN L=1:1.414:

X = X + (L*SIN(AN)):Y = Y + (L"COS(AN)):
LINE— (X,Y),PSET:R ETU RN

1020 AN =AN + P1/4:GOSUB1000
1030 AN =AN — PI/2:GOSUB1000
1040 AN = AN + PI/4:L = L*1.414:RETURN

RUN the program and you will see a C-shaped
pattern gradually build up on the screen. The
program starts by drawing a line, then re-
places it with the first pair of lines at right
angles. The subroutine between Lines 1000
and 1040, which uses SIN and COS to work
out the angles required, is called at Line 50,
and it calls itself repeatedly in a recursive
process to substitute all straight lines for a
right-angled pair.

The variable at Line 20 is set to the length
of the shortest line, so the program recurses
until this value is reached. Try changing the
value at Line 20 to see the effect. Smaller
values increase the number of recursive levels,
so the time for execution increases. But if you
enter large numbers, the program speeds up,
yet you can see the details of how the curve
develops.

If you watch this growth process carefully,
you can see how the process of self-similarity
means that any section of the curve looks like
a smaller version of the main curve itself.
Even so, it is not easy to predict the final
shape of the curve.

DRAWING DRAGONS
As often happens with fractals, and especially
those drawn by recursion, remarkably few
lines of programming are required to produce
even complicated shapes. Enter and RUN the
next program to see a dragon curve, which is
another example of the C-curve technique.

In the previous program, each line is
replaced by a right-angled pair in the same
orientation—always on the same side of the
line. In this program, however, the right-
angled pair is placed first on one side of the
first line, then on the opposite side of the next
line, and so on till the shape is completed:

10 BORDER 0:PAPER 0:INK 7:CLS :CLEAR
30000:LET S = 32767:DEF FN
A(X) = (X/8 — INT (X/8))13

20 LET MN =1:LET A= 0
30 LET C=ATN (1)/45:DIM S(10):DIM C(10)
40 FOR I=1 TO 8:LET S(I) = SIN A
50 LET C(I) = COS A:LET A =A+ P1/4:NEXT I
60 LET L =128:LET X =52:LET Y =80:LET

T= —1:POKE S,T+1:LET S=S-1
65 DRAW INVERSE 1;OVER 1;X—PEEK

23677,Y — PEEK 23678
70 GOSUB 1000
80 STOP
1000 LET L=L/1.414
1010 IF L<MN THEN LET L=I21.414:LET

X= X+ (L"C(I)):LET
Y=Y— (L*S(I)):DRAW X— PEEK
23677,Y— PEEK 23678:R ETURN

1020 LET I = FN A(I +T):POKE S,T+1:LET
S= S —1:LET T=1:GOSUB 1000:LET
S=S+ 1:LET T= (PEEK S) —1

1030 LET I = FN A(I —27):POKE S,T+1:LET
S=S —1:LET T= —1:GOSUB 1000

1040 LET S = S +1:LET T= (PEEK S) —1:LET
I = FN A(I +T):LET L = L*1.414:RETURN

10 HIRES 0,1:MULTI 2,8,9:COLOUR 7,7:
S=16384

20 MN =1
30 C = ATN (1)/45
40 FOR I = 0 TO 7:S(I) = SIN(A)
50 C(I) = COS(A):A= A + n/4:NEXT 1
60 L =80:X =30:Y =100:T= —1:POKE S,

T+1:S=S-1
65 XX = X:YY =Y
70 GOSUB 1000
80 GOTO 80
1000 L = L/1.414
1010 IF L> =MN THEN 1020
1012 L= 	.414:X = X + (L*C(I)):

Y=Y— (L*S(I)):LINE XX,YY,X,Y,
RND(1)"3 +1:XX = X:YY = Y

1012 L= L*1.414:X=X+ (L * C(I)):
Y=Y— (L"S(I)):DRAW 1 TO X,Y

1014 RETURN
1020 I = (I +T)AND7:POKE S,T+1:S=S-1:

T=1:GOSUB 1000:S = S + 1:T = PEEK
(S) —1

1030 I = (I —21-)AND7:POKE S,T+1:
S=S-1:T= —1:GOSUB 1000

1040 S = S + 1:T= PEEK(S) —1:1= (I +T)
AND71 =1..*1.414:RETURN

10 MODE1: VDU 23; 8202; 0; 0; 0; :M =9
20 DIM S(7) ,C(7)
30 FOR T= 0TO 7: S(T) = SIN (T*13 1/4):

C(T) = COS (T*PI/4): NEXT
40 MOVE 180, 600
50 PROCDRAW (792, 0, —1)
60 END
1000 DEF PROCDRAW (L, I, T)
1010 IF L < M EITHEN PLOT1,L*C(I),

(I): ENDPROC
1020 L= L/1.414
1030 PROCDRAW (L, (I + T) AND 7,1)
1040 PROCDRAW (L, (I— T) AND7, —1)
1050 ENDPROC

fg
10 PMODE4:PCLS:SCREEN1,1:CLEAR200,

30000:S = 32767
20 MN =1
30 C = ATN (1)/45:PI =4*ATN(1)
40 FORI = 0T07:S(I) = SIN(A)
50 C(I) = COS(A):A= A + PI/4:NEXT
60 L =128:X = 52:Y =80:T= —1:POKES,

T+1:S=S-1
65 LINE — (X,Y),PRESET

70 GOSUB1000
80 GOT080
1000 L= L/1.414
1010 IF L < MN THEN L=L*1.414:

X= X + (L*C(I)):Y=Y— (L * S(I)):
LINE— (X,Y), PSET: R ETU R N

1020 I = (I +T)AND7:POKES,T +1:S =S —1:
T=1:GOSUB1000:S =S +1:T= PEEK
(S) —1

1030 I = (I —27)AND7:POKES,T +1:
S= S —1:T= —1:GOSUB1000

1040 S= S + 1:T= PEEK(S) — 1:1= (I+T)
AND7:L= L*1.414:RETURN

Apart from the different fractal element that it
uses, the main differences between this and
the previous program are to do with the speed
of execution and the way the element is
drawn. Instead of working out the angles each
time the element is drawn, this new program
calculates the sine and cosine of the angles
once, Lines 40 and 50, then stores them in
two arrays. Fetching values from arrays is
much quicker than having to calculate them
each time a line is replaced, with the result
that the program executes rapidly.

You might argue that the C-curve and
dragon curve are little more than mathemat-
ical curiosities. As such, they are attractive to
look at and fascinating to study—and once
you begin to alter the values to which vari-
ables in these listings are set, you should be
able to produce a range of interesting vari-
ations on the basic shapes. The second article
on fractals will show you how to introduce
uncertainty into drawing mathematical
shapes to create more lifelike natural models.

1014 RETURN
1020 I = (I + T)AND7:POKE S,T+1:S=S-1:

T=1:GOSUB 1000:S = S +1:T= PEEK
(S) —1

1030 I = (I —2*T)AND7:POKE S,T+1:
S= S —1:T= —1:GOSUB 1000

1040 S=S + 1:T= PEEK(S) —1:1= (I +T)
AND7:L=121.414:RETURN

13:K
10 GRAPHIC 2:COLOR 6,6,3,3:S=4096
20MN =1
30 C = ATN(1)/45
40 FOR I = 0 TO 7:S(I) =SIN(A)*18
50 C(I) = COS(A) * 1 8:A = A + n/4:NEXT I
60 L =35:X -- 150:Y =500:T= —1:POKE S,

T +1:S =S —1
65 POINT 0,X,Y
70 GOSUB 1000
80 GOTO 80
1000 L=L/1.414:REGION (X AND 5)
1010 IF L> =MN THEN 1020

Experimental models
In the second article on fractals, which
follows on pages 1434 to 1439, you will see
how the principles covered here can be
used to extend your graphics repertoire.

The most important difference between
the mathematically generated fractals
covered here and the shapes that occur in
nature is that natural forms possess ele-
ments of disorder and irregularity.

The next series of programs shows how
you can add random factors to your fractal
generation that will mimic these natural
variations. And so that you can explore the
effects of using different basic shapes and
variables, there is also a multi-purpose
fracta! generator that allows you to pick
your own seed values. You'll get a differ-
ent shape each time you try it, and just one
of the many possible is shown in the
picture on the right.

Willie is now fighting fit* He's
moving about and jumping up and
down* And this episode will see him
leaping up the cliff like a vigorous
young mountain goat

This is the final part of the series of routines
that make Willie move. Now he will be able to
dodge out of the way of boulders, jump up the
inclines, walk along the flat bits and jump
over the potholes and snakes.

Id (57332),hI
Id bc,57072
Id de,515
Id a,40
call 58970
ret

mfb cp 132
jr z,mfd
inc a
Id (57335),a
Id a,(57334)
cp 1
jr z,mfc
Id h1,(57332)
Id bc,16384
Id a,45
Id de,515
call 58970
inc hl
Id (57332),hI
Id bc,57000
Id a,40
Id de,258
call 58970
Id a,1
Id (57334),a
ret

mfc Id h1,(57332)
Id bc,57016
Id a,40
Id de,514

The first time the processor reaches this
routine the accumulator will have the number

129 in it. This is the number stored in
memory location 57,335 by the first part of
the man-moving routine when both the M
and the N keys were pressed.

UP, UP AND AWAY
The first thing this routine does is check that
129 is in the accumulator. The only alterna-
tives are 130, 131 or 132 and if these are found
cp 129 and jr nz,mfb jumps the processor on
to the label mfb. But the first time, the
accumulator contains 129.

The first thing that it does is to increment
the accumulator and load it back into 57,335.

The Id h1,(57332) loads Willie's position
out of 57,332 into HL. DE is loaded with
22,561 and added to HL to get the address of
the attribute of the position in front of
Willie's foot. The instruction Id a,(hI) then
loads the attribute into the accumulator.

This is then compared to 43, the attribute
of the snake. If this is found, Willie will have
jumped onto the snake's tongue, been bitten
and died. So the jp z,mdy instruction takes
the processor to the mdy death routine.

If Willie's not dead, the processor com-
pares the attribute in front of his foot to 44,
the attribute for the ground. If ground is not
found, the jr nz,mfa jumps the processor onto
the mfa routine. If ground is found, Willie's
position is decremented.

At mfa Willie's position is loaded up into
HL. DE is loaded with 32 which is then
subtracted from HL to move the pointer one

call 58970
inc hl
Id (57332),hI
Id de,22592
add hl,de
Id a,(hi)
cp 44
jr nz,mcf
Id a,0
Id (57335),a
Id a,3
Id b,5
call scr

mcf Id a,0
Id (57334),a
ret

mfd Id a,0
Id (57335),a
Id hl,(57332)
dec hl
Id bc,16384
Id a,45
Id de,514
call 58970
Id de,33
add hl,de
Id (57332),hI
jp 59153
org 59900

scn ret
org 59330

mdy

FORWARD JUMPS
CHECKING FOR SAFE

LANDING PLACES
INCREMENTING SCORE
RESETTING VARIABLES

The 'CLIFFHANGER' listings published in this
magazine and subsequent parts bear absolutely no
resemblance to, and are in no way associated with,
the computer game called 'CLIFF HANGER' re-
leased for the Commodore 64 and published by
New Generation Software Limited.

character square up the screen. This value is
loaded back into 57,332.

BC is loaded with 57,072, the start address
of the data for one of the pictures of Willie
jumping forward. DE is loaded with 515 to
specify that a 2 by 3 block is printed
2 x 256 + 3 = 515. The attribute for Willie's
colour-40 for blue on cyan—is loaded into A
and the block print routine is called.

Next time this routine is called the ac-
cumulator will have 130 in it. So it will skip
the first part and jump on to the label mfb.

This little routine begins with a different
sort of test. The contents of the accumulator
are compared to 132 and a forward jump to
mfd is made if 132 is found. So if the
accumulator contains 190 or 131, the mfb
routine is performed.

The first thing this routine does is incre-
ment A and load the result back into 57,335.

Next the man-mode flag is loaded into the
accumulator from memory location 57,334.
This tells the processor which of the two
pictures of Willie is required.

The contents of the accumulator are then
compared to 1. If 1 is found the processor
jumps onto the label mfc and prints up the
picture of Willie with his legs apart.

But before either picture of Willie is print-

ed up, any remnants of the last picture have to
be obscured. So Willie's position is loaded
up into HL from 57,332. BC is loaded with
16,384, the beginning of the screen. A is
loaded with 45 to set the colour to cyan on
cyan. And DE is loaded with 515 to give a
block two by three-2 x 256 + 3 = 515. Then
the block print routine at 58,970 is called to
overprint Willie with sky.

HL is then incremented to move the screen
pointer onto the next character square. It is
loaded back into 57,332 to update the pointer
there too. BC is loaded with 57,000 which is
the start address of the data for the picture of
Willie with his legs together. A is set to 40—
blue on cyan. DE is set to 258—one by two.

After Willie's picture has been printed, A is
loaded with 1 which is then stored back in
57,334 so that, next time, the other picture of
Willie will be printed.

WILLIE II
Next time the routine is called, the man-mode
flag at 57,332 will have 1 in it

so the processor will jump directly to the label
mfc. Here HL will be loaded up with
Willie's screen position again. BC
will be loaded with 57,016, the
start address of the data for the
picture of Willie with his legs
apart. A is set to 40 again,
and DE is 515—Willie with his
legs apart takes up a 2 x 2
block. The block print
routine is then called
to print him up on
the screen again.

You'll notice that HL has not been in-
cremented in this part of the routine. This is
because Willie is now straddling two charac-
ter squares. So he has moved forward roughly
half a square.

But once Willie has been printed up, the
screen pointer in HL and 57,332 is incremen-
ted, ready to print Willie further forward.

HIGHER GROUND
Next you need to check whether Willie has
managed to clear a slope. So DE is loaded
with 22,592 which is added to the screen
position in HL. This then points to the
attribute of the position under Willie's front
foot. The Id a,(hl) loads this attribute into the
accumulator where it is compared to 44.

If what's in A is not the colour of the
ground, Willie has not managed to jump up a
section of the slope—he's in mid-air
somewhere—and the jr nz,mcf instruction
sends the processor forward to mcf.

But if it is the colour of ground, Willie has
hopped up a level, which earns him extra
points. Firstly, though, you have to switch the
jump off.

The jump is switched off simply by loading
0 into A and storing it back in the jump
counter in location 57,335. The number 3 is
then loaded into A and 5 is loaded into B.
These parameters are going to be fed into
another routine called sci—or score incre-
ment. In fact, 50 is going to be added to the
score. The tens column is three columns from
the left and five is going to be added to it.
Although sci is called here, it hasn't been
written yet so a ret is being added at its start
address.

Once the score has been incremented, A is
loaded with 0 and stored back in 57,334. This
happens whether Willie has landed on higher
ground or not. It ensures that the next picture
of Willie to be printed up will be the one
which has his legs together.

HAPPY LANDINGS
Once both pictures of Willie flying have been
printed up on the screen—in whichever
order—the man-jump variable in 57,335 will
have been incremented up to 132. So next
time the man-moving routine is called, the
processor jumps all the way to the last short
routine which starts at the label mfc.

This starts off by setting the man-jump
variable back to zero. 0 is loaded into A and
stored in 57,335. Then Willie's position is
decremented.

BC is loaded with 16,384, the start of the
screen. A is set to 45, cyan on cyan. And DE
gets 514 for a 2 x 2 block. Calling the block
print routine then prints over Willie.

DE is then loaded with 33 which is added
to HL. This moves the screen pointer down
one line and across one character square to the
place where you want Willie to be when he
lands. The result is loaded back into 57,332.

(MU 2b088
LDA #230
STA $07F8
LDA $C005
BEQ AA
LDA #231
STA $07F8
JSR $5300
DEC $C005
RTS

AA 	LDA $C006
BEQ BB
LDA #230
STA $07F8
JSR $5450
DEC $C006
RTS

BB 	JSR $5350
CMP #32
BNE CC
JSR $5400
RTS

CC 	JSR $5200
LDA $0384
CMP #3
BEQ DD
CMP #2
BNE EE
JSR $5450
LDA #4
STA $C006
JMP FF

EE 	CMP #1
BNE RET
JSR $5350
LDA $FB

The number 230 is loaded up into the
accumulator and stored in the pointer for the
zero sprite data. Remember that this number
is effectively multiplied by 64. Sprite zero will
take its data from memory location 230 x 64
(=14,720) onwards. This is where the data
for the picture of Willie standing is located.

WILLIE JUMPERS
A is then loaded with the contents of $C005.
This is a flag which tells routine whether a
jump to the right is required and it is set later
in this routine.

If $C005 contains 0—and a jump to the
right is not required—the BEQ instruction
following it takes the processor on to label
AA. But if it is set—that is, it's not 0—the
processor continues. It loads 231—the data

for Willie jumping—into $07F8, the zero
sprite pointer. Then the processor jumps to
the subroutine at $5300 which moves Willie's
sprite—sprite zero—up and to the right.

That done, Willie has launched himself
into flight and the flag in $C005 can be
decremented again.

If the flag in $C005 was not set, the
processor branches direct to AA where the
flag in $C006 is checked. This is the flag
which is set if Willie is going to jump up and
down on the spot. If it is not set, the processor
moves onto the label BB.

But if it is, the zero sprite pointer is loaded
with the effective address of the data for
Willie standing again. Then the processor
jumps to the subroutine at $5450 which
prints Willie up in the air. When it returns the
flag in $C006 is decremented.

TERRA FIRMA
If neither of these flags are set, the processor
ends up at BB and looks to see whether there
is ground beneath Willie's feet. As the two
little routines above turn off their flags, it
could be that Willie is in mid flight. If so it is
time that he's landed.

First, the processor jumps to the subrout-
ine at $5350 which checks to see what is
underneath Willie's feet. The appropriate
byte is returned in the accumulator and
compared with 32, ASCII for a space. If what
is below Willie's feet is not a space, the BNE
branches forward to the label CC.

If there is a space below Willie's feet, the
branch is not made and the processor jumps
to $5400 which moves him down one space.

RUNNING UP THE FLAGS
You may have wondered where the jump flags
in the routines above were set. The answer is
in the next bit of programming.

If Willie is happily standing on a bit of
terra firma—and not an empty space—the
processor branches forward to the label CC.
There it is sent off to the subroutine at $5200
which checks the joystick and keyboard.

That routine returns the action required in
memory location $0384. The number 3 in
that location means that both the Z and the
shift key have been pressed, so a jump up and
to the right is required. A 2 means that just
the shift key has been pressed and Willie is
only going to jump up and down. And a 1 in
that $0384 means that just the Z key has been
pressed and Willie is walking.

The contents of location $0384 are
examined by loading them up into the ac-
:umulator. First of all they are compared with
3. If a 3 is found, the BEQ branches to DD.

The contents of $0384 are then compared

SEC
SBC # 39
STA $FB
LDA $FC
SBC # 0
STA $FC
LDY # 0
LDA ($FB),)
CMP #32
BNE RET
JSR MOVER
RTS

DD 	JSR $5450
LDA #4
STA $C005

FF 	LDA #2
STA $0384
JSR $6850
JSR $6800

RET 	RTS
MOVERT LDA $D000

CLC
ADC #4
STA $D000
LDA # 0
ROL A
STA $0384
LDA $D010
FOR $0384
STA $0010
INC $C012
LDA #1
STA $0384
JSR $6850
JSR $6800
RTS

with 2. If 2 is not found, the BNE instruction
takes the processor forward to the label EE.

JACK -IN -TH E- BOX
Willie is made to jump up and down like a
jack-in-the-box by jumping straight to the
subroutine at $5450 which moves the man up
four pixels. A is then loaded with 4 and stored
in the `jump-up' flag at $C006. This means
that the routine will be called four times.

The processor then jumps to the label FF.

WILLIE WALKING
If the shift key has not been pressed at all and
Willie is not being launched into the air—
either forwards or just up and down—the
processor reaches the label EE. There the
contents of memory location $0384, which
are still in the accumulator, are compared to 1.

If the contents are not 1, the BNE instruc-
tion makes the processor branch forward to
the label RET, which marks an RTS. He's
standing still and the processor returns.

If he's walking, the first thing to do is
check that Willie isn't going to tread on
anything nasty. So the processor jumps to the
subroutine at $5350 which checks below.

The screen pointer that points to Willie's
position is stored in $FB and $FC. The
contents of $FB are loaded into the ac-
cumulator. The carry flag is set and 39 is
subtracted from the accumulator. The result
is stored back in $FB. Any 'borrow' is
accounted for by loading the contents of $FC
into the accumulator, subtracting 0 from it
and loading the result back into $FC.

This moves the pointer to the character
square in front of Willie.

The contents of this character square are
loaded into the accumulator by the indirect
addressed instruction LDA ($FB),Y. But first,
Y has to be set to 0. The contents of the
accumulator are then compared to 32, the
ASCII for a space. If a space is not found,
Willie has come up against an incline, so he
can't go forward without jumping. In

that case, the BNE RET sends the processor off
to a return, leaving Willie in the same place.

But if there is a space in front of him, the
processor continues and jumps to MANRT.

WILLIE THE BOUNDER
If both the Z key and the shift key have been
pressed and Willie is supposed to bound
along, the processor arrives at the label DD.
There, the processor jumps off to the sub-
routine at $5450 which moves Willie up the
screen by half a character square.

When the processor returns from that, 4 is
loaded into the accumulator and stored in the
`jump right' flag in memory location 49,157.
This means that the routine which moves
Willie up and right will be called four times.

The accumulator is then loaded with 2 and
stored in memory location $0384. This loc-
ation is used to pass parameters through to the
sound effects routine at $6950. This routine
hasn't been added yet. But when it has been, a
2 in memory location $0384 will give Willie's
bounding sound effect.

Willie also scores a point for moving. So
after his sound effect, the processor is sent to
the routine at $6800 which to increment the
score.

WILLIE, BY THE RIGHT!
The X coordinate of the zero sprite—the
sprite that carries the picture of Willie—is
loaded into the accumulator. The carry flag is
cleared and 4 is added. This moves the sprite
four pixels to the right.

But, of course, you then have to check
whether Willie has gone over the 256 barrier
and the most significant bit has to be set in
$D010. To do this the accumulator is loaded
with 0 and any overflow from the addition to
the X coordinate in the carry flag is rotated
into the zero bit by the ROL instruction. The
result is stored temporarily in $0384.

The MSB byte in $D010 is then loaded into
the accumulator and Exclusively OR ed with
the contents of $0384. If the X coordinate has
been incremented over the 256 barrier, the
EOR puts a 1 in the zero bit. If not, it doesn't.
Either way the EOR makes sure that the other
bits, which carry the most significant bits of
the X coordinates of the other sprites, are left
unchanged. The result is stored in $D010.

A is then loaded with 1 which is stored in
$0384. The sound effects routine at $6850
and the score routine at $6800 are then
called. These make Willie's walking
sound and increment his score for
moving.

290 AND # &40
300 BNELb3
310 LDY # 25
320 LDA # 8
330 STA&15D9
340 LDA # 4
350 STA&15DA
360 .Lb3
370 LDX# 228
380 .Lb4
390 STX&72
400 STY&73
410 JSR&17D4
420 LDX&72
430 LDY&73
440 INX
450 INY
460 CPX# 237
470 BNELb4
480 LDX# 244
490 LDY# 20
500 JSR&17D4
510 RTS
520 .Man

530 JSR&1E99
540 LDA&7C
550 AND # &4
560 BEQLb5
570 DEC&7B
580 JSR&1E99
590 RTS
600 .Lb5
610 JSR&1 EEE
620 LDA&7C
630 AND # &4
640 BEQLb14
650 JSR&1515
660 .Lb14
670 LDA&7C
680 AND # &50
690 CMP# &50
700 BNELb20
710 LDX&7A
720 DEX
730 DEX
740 LDY&7B
750 DEY
760 DEY
770 LDA# 0

780 JSR&1 DBD
790 CMP #17
800 BNE Lb20
810 LDA&7C
820 AND # &EF
830 STA&7C
840 .Lb20
850 LDA&7C
860 AND # &30
870 CMP #&30
880 BNELb21
890 LDX&7A
900 INX
910 INX
920 LDY&7B
930 DEY
940 DEY
950 LDA# 0
960 JSR&1DBD
970 CMP#16
980 BNELb21
990 LDA&7C
1000 AND#&EF

1580 ROR&70
1590 LSRA
1600 ROR&70
1610 STA&71
1620 LDA&7B
1630 AND # &FE
1640 SEC
1650 SBC# 1
1660 LSRA
1670 ROR&72
1680 LSRA
1690 ROR&72
1700 LSRA
1710 ROR&72
1720 LSRA
1730 ROR&72
1740 STA&73
1750 LDY # &0
1760 LDX # &70
1770 LDA# 9
1780 JSR&FFF1
1790 LDA&7D
1.820.41€1011111"

1840 AND # &F8
1850 BEQLb10
1860 LDA&7C
1870 FOR #1
1880 STA&7C
1890 .Lb10
1900 JSRDefman
1910 JSR&1E99
1920 RTS
1930 .Lb11
1940 LDA&7C
1950 AND # &9F
1960 STA&7C
1970 JMPLb8
1980]NEXT
1990 ?&1582 =12
2000 ?&1583= 0
2010 ?&1585= &41
2020 DATA 255,35,1,

2, 4, 4, 12, 0
2030 FORA%= &15

'STA&7C
1020 .Lb21
1030 LDA &7C

r1040 AND # &80
1050 BEQLb6
1060 INC&7B
1070 .Lb6
1080 LDA&7C
1090 AND#&1C
1100 BEQLb9
1110 DEC&7B
1120 .Lb9
1130 LDA&7C
1140 AND # &40
1150 BEQLb7
1160 LDX&7A
1170 BNELb13
1180 JMPLb11
1190 .Lb13
1200 DEX
1210 LDY&7B
1220 INY
1230 LDA #0

1240 JSR811 DBD
1250 CMP#17

1260 BEQLb11
1270 .Lb12
1280 DEC&7A
1290 JSR&1BC8
1300 .Lb7
1310 LDA&7C
1320 AND # &20
1330 BEQLb8
1340 LDX&7A
1350 CPX# 38
1360 BEQLb11
1370 INX
1380 INX
1390 LDY&7B
1400 INY
1410 LDA# 0
1420 JSRMDBD
1430 CMP#16
1440 BEQLb11
1450 INC&7A
1460 JSR&1BC8
1470 .Lb8
1480 LDA# 0
1490 STA&70
1500 STA&72
1510 LDA&7A
1520 AND # &FE
1530 CLC
1540 ADC #1
1550 LSRA
1560 ROR&70
1570 LSRA

30 FORI =0TO3STEP3
40 P%= &1F82
50 [OPTI
60 .Defman
70 LDA&7C
80 AND # &60
90 BNELb2
100 RTS
110 .Lb2
120 STA&70
130 LDA&7D
140 AND # &60
150 CMP&70
160 BNELb1
170 RTS
180 .Lb1
190 LDA&7D
200 AND # &9F
210 ORA&70
220 STA&7D
230 LDY #4
240 LDA# 4
250 STA&15D9
260 LDA # 12
270 STA&15DA
280 LDA&70 D4T0&15D8:READ?

A%:NEXT
2040 ?&1DD9 = 65

The routine starts by loading up the contents
of zero-page memory location &7C, which
contains Willie's movement status. This is
ANDed with &60 to clear all but bits five and
six. These are the two bits that indicate
whether Willie is moving right or left.

If he is moving, the BNE instruction takes
the processor on into the main routine.

Immediately the processor gets into the
main routine, it stores the contents of the
accumulator in &70. The contents of &7D
are then loaded up into the accumulator.

This location carries the details of how
Willie was going to be moved last time in bits
five and six. Bits zero to three are used to store
details of the background colour.

So the contents of &7D are ANDed with
&60 to clear all but bits five and six and these
are compared with Willie's direction in &70.

If he is not still moving in the same
direction as he was last time this routine was
performed, the compare gives a non-zero
result and the BNE instruction branches the
processor on into the main routine.

MOVING ON
The contents of &7D are loaded up into the
accumulator and ANDed with &9F. This
clears bits five and six.

The result is then 0 Red with the contents

1810 ORA&74
1820 STA&7D
1830 LDA&7C

of &70, this updates them to the direction
Willie is moving in now. And the result is
then stored back in &7D so that it can be
referred to next time this routine is called.

The next thing to do is redefine the
characters that make up Willie so that he is
facing the direction he is walking in. First of
all, you assume he is going left and new data is
POKEd into &15D9 and &15DA which are
used to define UDG character 244*

The contents of &70 are then loaded up
into the accumulator again and ANDed with
&40* This isolates bit six, which is the one
that tells Willie to go left* If Willie is going
left, this bit will be set and the BNE will
branch over the next little routine*

If it is not set, Willie is moving right, the
branch is not made and the processor cont-
inues with the next little routine which POKEs
different data into &15D9 and &15DA. This
data makes Willie face right*

Next the UDG characters from 228 to 236

jumped to & IEEE to check for key presses.
The next routine—in Lines 680 to 1020—

checks whether Willie has landed on the edge
of a slope in a half character position*

If he is not dead, the BNE instruction
branches the processor forward again. The
contents of &7C are then ANDed with &80,
which isolates bit seven. This is the bit that
tells Willie whether to jump. If he is jumping,
the instruction in Line 1060 increments
Willie's Y coordinate in &7B*

Next the contents of &7C are ANDed with
&1C, to check whether Willie is falling* If he
is, the instruction in Line 750 decrements
Willie's Y coordinate in &7B.

WILLIE'S GAUCHE
Then the contents of &7C are ANDed with
&40, to check whether Willie is moving to the
left. If he is not moving to the left, the BEQ
branches the processor forward* If he is, it

Willie's X coordinate is loaded from &7A
into the X register and it is compared to 38. If

are redefined by the loop in Lines 380 to 470.
The X register carries the UDG number and
the Y value depends on whether Willie is
moving left or moving right*

The routine at &17D4, given on page
1037, is used to redefine the characters* X and
Y are incremented each time the processor
goes round the loop, but they have to be
stored in &72 and &73 when &17D4 is called.
That routine uses the X and Y registers for its
own purposes. And the CPX and BNE instruc-
tion in Lines 460 and 470 let the processor
drop out when 236 has been redefined*

Next UDG 244 itself has to be redefined. X
is loaded with the UDG number, 244, and Y
is loaded with 20* The processor then jumps
to the subroutine at &17D4*

UPS AND DOWNS
The next part of the routine concerns moving
Willie, now that he is facing in the right
direction. The first thing it does is to jump to
&1E99 which erases the last Willie.

Then the contents of &7C are loaded up
and ANDed with &4* This clears all the bits
except bit two* If this is not set, Willie is alive
and BEQ branches over the next routine*

If it is set, Willie is dead and the branch is
not made. In that case, Willie's Y coordinate
in &7B is decremented, which moves him one
line down the screen, and the subroutine at
&1E99, printing Willie in his new position*

If Willie was still alive the processor was
branched forward to Line 600* It then

loads Willie's X coordinate into X*
If Willie's X coordinate is zero, he has

already reached the edge of the screen and you
don't want him to go any further. So the BNE
instruction branches over the next instruction
if the X coordinate is not zero* If it is zero the
processor proceeds to the JMP instruction in
Line 1180 and jumps forward almost to the
end of the routine at Line 1930*

If Willie was not at the edge of the screen,
the . X pointer is decremented by the DEX
instruction in Line 1200. Y is loaded with the
contents of &7B and incremented. A is loaded
with 0* And the processor jumps to the
subroutine at &1DBD* This looks at the
character square in front of Willie's feet and
returns the value of it in A*

Comparing the result with 17, in Line 1250,
asks whether the square in front of Willie is a
slope* If it is, Willie can move no further
without jumping* So the BEQ instruction
sends the processor to the end of the routine.

If the square in front is not land, Willie's X
coordinate in &7A is decremented, moving
him to the left. Then the processor jumps to
&1BC8 which makes a walking sound.

WILLIES RIGHTS
The contents of &7C are loaded up yet again
in Line 1310 and ANDed with &20* This
isolates bit five. If it is not set, Willie is not
moving to the right and the processor jumps
forward over the next routine* But if it is set,
Willie is moving right and it proceeds*

it has reached 38, Willie has reached the edge
of the screen, so the BEO takes the processor to
the end of the routine*

Otherwise, the X pointer is incremented
twice* Y is loaded with Willie's Y coordinate
from &7B and incremented* A is loaded with
0* And the processor jumps to the subroutine
at &1DBD. This is the one that looks at the
character square in front of Willie's foot and
returns its value in the accumulator*

Comparing this with 16 checks whether it
is the other slope graphic* If it is, Willie can
proceed no further without jumping and the
BEQ sends the processor to the end*

Otherwise, the X coordinate in &7A is
incremented to move Willie one character
square to the right* Then the processor jumps
to &1BC8 again.

FILLING IN THE BACKGROUND
When examining the contents of a screen
location—when doing a collision check, for
example—you must know the background
colour of the character square in question*
The routine in Lines 1470 to 1820 looks at a

pixel in the middle of the block, gets its colour
value and stores it in bits zero to three of &7D.

The routine in Lines 1430 to 1610 takes
the X coordinate and multiplies it by 32 and
stores the result in &70 and &71. And the
routine in Lines 1620 to 1740 takes the Y
coordinate and multiplies it by 16 and stores
in the results in &72 and &73. This changes
character-squares into pixel coordinates.

To find out what colour the pixel at that
point is, the OSWORD routine at &FFF1 is
called with a 9 in the accumulator. The
contents of X and Y have to be the low and
high bytes of the base address of the coordi-
nate table respectively. Here the data table is
on the zero page, so Y is loaded with 0. And X
is loaded with &70 which is the start of the
pixel coordinates you have just worked out.

When &FFF1 is called, the result is re-
turned in the next location after the end of the
data table—in this case, &74. So when the
OSWORD routine has been performed, the
contents of &7D are loaded up into the
accumulator and AN Ded with &FO. This
clears bits zero to three. The result is then
ORed with the contents of &74—the pixel
colour—and stored back in &7D.

LEGGING IT
The contents of &7C are loaded up once again
into the accumulator and AN Ded with &F8.
This clears bits one, two and three and checks
whether Willie is moving at all.

If he is not, the BEQ instruction branches
the processor forward over the next little
routine. But if he is moving, he must be
moving his legs. So the processor proceeds
and loads up the accumulator with the cont-
ents of &7C one more time. This is then
Exclusively ORed with 1, to flip bit zero, and
the result is stored back in &7C.

The processor then jumps to the subrout-
ine, labelled Def man, given earlier in this part
of Cliffhanger. It makes Willie face the right
way. Then it jumps to the subroutine at
&1E99 which prints Willie.

STANDING STILL
So far throughout this routine the processor
has been branched forward to the label Lb11
in Line 1930. This has occurred each time
Willie has run into the slope or the edge of the
screen and can proceed no further.

The contents of &7C are loaded up for the
last time in this part of Cliffhanger and ANDed
with &9F. This clears bits five and six which
are the ones that control Willie's left and right
movement. The result is stored back in &7C.

The processor then jumps back to the label
Lb8 in Line 1470, does the background colour
check and prints up Willie.

MFC CMPA #131
BNE MFD
INC 18261
JSR MFZ
LEAX 254,X
LDU #1536
JSR CHARPR
LDX 18249
LEAX 257,X
STX 18249
LDU #17814
JSR CHARPR
LEAX 254,X
LDU #17846
JSR CHARPR
RTS

MFD CMPA #132
BNE MFE
JSR MFZ
LDX 18249
PSHS X
LEAX 512,X
LDY ,X
PULS X
CMPY #$5555
BNE MFE
LEAX 1,X
STX 18249

MFE CLR 18261
CLR 18251
LDX 18249
LDU #17774
JSR CHARPR
LEAX 254,X
JSR CHARPR
RTS

MFZ LDX 18249
LDU #1536
JSR CHARPR
LEAX 254,X
JSR CHARPR
RTS

CHARPR EQU 19402
SCI EQU 20751
MDY EQU 20126

The first time the processor reaches this
routine the accumulator will have the number
129 in it. This is the number stored in
memory location 18,261 by the first part of
the man-moving routine when both the M
and the N keys were pressed.

WILLIE AWAY
The first thing this routine does is check that
129 is in the accumulator. At this point if it is
not, 130, 131 or 132 must be and the CMPA
#129 and BNE MFB branch the processor on
to the label MFB. But the first time the
processor hits this routine, A contains 129.

The first thing that it does is to increment
the accumulator and load it back into 18,261,
so that the processor will go onto the next part
of this routine next time it is called.

The LDX 18249 loads Willie's position out
of 18,249 into X. 290 is added to this to get a
byte from in front of Willie's feet. LDA ,X
loads this into the accumulator and CMPA
$57 compares it with $57, the colour
graphic for a snake's tongue. If this is directly
in front of Willie when he jumps, he will be
bitten and die and the LBEQ MDY will take the
processor off to the death routine.

If Willie is still alive, the processor is sent
off to perform the MFZ subroutine, which
prints sky on the two character squares under
Willie. You don't want his feet left there.

Willie's position is loaded up from 18,249
into X again. And it is decremented by 255 to
move it up and across the screen one character
square. The new position of the screen poin-
ter is then stored back in 18,249.

U is then loaded up with 17,814. This is
the start address of the data for the picture of
Willie with his legs apart. U, remember, is
used as the data pointer for the CHARPR
routine, making the data the user stack.

CHARPR is called. X is incremented by 254
to move it down the screen to the start
position of Willie's bottom half. U is loaded
with 17,846, the beginning of the data for
Willie's bottom half. And CHARPR is called
again. This prints Willie above the cliff.

I'M WILLIE, FLY ME
Next time the man-moving routine is called
the accumulator will have 130 in it and the
MFB routine will be performed. On sub-
sequent calls, when the accumulator will be
carrying a higher value, the CM PA # 130 and
BNE MFC instructions will send the processor
on to the next part of the program.

Again, the first thing the routine does is
increment the contents of 18,261. Then a
jump to MFZ blanks Willie's bottom half.

Next Willie's position is loaded up into X
again and decremented by 255 once more.
This moves the screen pointer up and across
one more character square. The U is loaded
with 17,870 and CHARPR is called three times
with X being incremented by 254 between
each call. This prints up a third picture of
Willie that spans three character squares.

Willie, in fact, has not got any taller. He has
simply spilled over into an extra character
square because he's shifted up half a square.

BEATING THE BOULDER
Willie gets extra points if he successfully
clears a boulder while he is jumping. So you
have to check if a boulder is under him.

ORG 20321
MFJ CMPA #129

BNE MFB
INC 18261
LDX 18249
LEAX 290,X
LDA ,X
CMPA #$57
LBEQ MDY
JSR MFZ
LDX 18249
LEAX —255,X
STX 18249
LDU #17814
JSR CHARPR
LEAX 254,X
LDU #17846
JSR CHARPR
RTS

MFB CMPA #130
BNE MFC
INC 18261
JSR MFZ
LDX 18249
LEAX —255,X
STX 18249
LDU #17870
JSR CHARPR
LEAX 254,X
JSR CHARPR
LEAX 254,X
JSR CHARPR
LDX 18249
LEAX 864,X
LDA ,X+
CMPA #$FF
BEQ MFF
LDA ,X
CMPA #$FF
BEQ MFF
RTS

MFF LDA #4
LDB # 5
JSR SCI
RTS

Willie's position is loaded from 18,249
into the X register* This is then incremented
by 864 to look underneath Willie* A is then
loaded with the byte of the screen pointed to
by X and X is incremented*

The screen byte in A is compared to $FF,
the colour graphic of the boulder. If it is
found, the processor branches forward to the
label MFF. If not, the next screen byte is
loaded up and compared* And if the boulder
is found there, again the processor branches
forward to MFF* If not, it returns*

The MFF routine updates the score* A is
loaded with 4. This specifies that it is the
fourth digit from the left—and tens—that is
going to be updated* B is loaded with 5. This
is the number of time that it is going to be
updated* Then the processor jumps to a
routine called SCI, a scoring subroutine which
will add 50 to the score. You have not added
this routine yet* So, to prevent the program
crashing, put an RTS in the start location.

LEVEL FLIGHT
The next time the man-moving routine is
called the accumulator will carry 131* This is
checked for* And if it is not found the Willie is
in a later stage of his jump and the processor is
branched forward to the label MFD.

Again, the first thing the routine does is
increment the man jump variable in 18,261 so
that next time the routine is called the
processor will proceed direct to the next part*

Next, the processor jumps to the MFZ
subroutine which blanks out the top and
middle part of Willie. His feet are overprinted
with sky by the next short routine* This extra
bit of screen clearing has to be done because
Willie was three square's tall last time.

The position in X which was set during the
M FZ routine is incremented by 254, moving
the pointer down to Willie's feet. The data
pointer in U is loaded with 1536, the address
of blank sky in the top left-hand corner of the
screen* CHARPR is called to do the
overprinting*

Willie's old screen position is then loaded
up into X again from 18,249 and incremented
by 257* This moves it down the screen across
one character*

The data pointer in U is then loaded with
the start address of the picture of Willie with
his legs apart at 17,814 again* The CHARPR
subroutine then prints up his top half. The
screen pointer in X is incremented to move it
down the screen one line and U is loaded with
the address of the data for Willie's bottom
half* Then CHAR PR is called to print it up*

LEVEL GROUND
A 132 in the accumulator carries the processor

forward to the routine where Willie lands on
the ground again* And if a 132 is not found in
A, the processor branches forward to the label
MFE* This should never happen. If the cont-
ents of A are any less than 132, the processor
should have stopped skipping forward at an
earlier routine* And as the man-jump variable
in 18,261—which A is loaded from before the
routine selection starts—is not incremented
again* Still, this is a good failsafe device* If
any rogue number has got into 18,261, the
processor branches direct the clear instruc-
tion that sets 18,261 back to zero*

If the number in A is 132, the processor
continues with this routine* Firstly, it jumps
off to the M FZ subroutine to clear
the last picture of Willie. Then
Willie's position is loaded
from 18,249 back into X*

The screen pointer in
X is pushed onto the
stack to save it, then
it is incremented by 512
so that it points to the char-
acter squares under Willie's feet.
The two bytes there are loaded into
the Y register and the original screen
pointer is pulled back off the stack into X*

The contents of Y are compared to $5555,
the screen graphic of a blank yellow square in
other words, a hole* If one is not found the
processor jumps forward to the label M FE*

But if there is a hole there Willie needs a bit
of help* Because of the way the Dragon and
Tandy's screens are laid out, it is more than
likely that Willie will land in a hole which
would make the game impossible to play* So
X is incremented to push Willie over the
hole and the result is loaded back into his
position pointer in 18,249*

You'll note that there is no check to
see whether Willie has landed on a I
higher level* This is because, when
he jumps up and forward, he always lands
on a higher level.

CLEARING UP
The jump is now complete. But you have
to clear the jump counter and the location
that carries Willie's picture number*
These are set back to zero
so that the processor will
go to the walk routine '
in part one of these
man-moving
articles and
start Willie 1

 off with the
right picture*

You finish
off by printing

a picture of Willie standing still. X is loaded
with his position from 18,248 and U is loaded
with 17,774 and CHAR PR is called twice*

The last routine is M FZ which is called to
blank Willie out* X is loaded with Willie's
position from 18,249 and U is loaded with
1536, which is blank sky. To see program
work, try the following:

10 PO KE30000,57: PO KE20847,57: PO KE
20751,57

20 EXEC19426
30 FORL=1T08:POKE18261,129:FORJ =1TO

5: EXEC19902
40 FORK = 1T0100: N EXTK,J,L
50 GOT050

Although slow to start, LISP has
gathered speed and 'LISP machines'
may well be the prototypes of the
home computers on sale during the
next ten to twenty years

LISP was originally developed by John
McCarthy at the Massachusetts Institute of
Technology in the early 1960s, a time when
the most sophisticated computer languages
were primitive versions of FORTRAN—a
language like BASIC used by scientists and
engineers. The name is derived from LISt
Processing—which gives a clue to the way in
which the language works. Today, twenty-
five years later, LISP programs are still based
on the same fundamental ideas while
FORTRAN has had to take on new facilities
as people have gradually come to understand
writing programs better.

Even if you have never heard of LISP
before, the programs you write will probably
have been influenced by it because many of its
concepts have been applied to other lan-
guages. Despite its influence on other lan-
guages, however, the ideas of LISP are still
radically different to those of languages like
BASIC or Pascal, and LISP is a considerably
more powerful language than both of these.

THE IMPORTANCE OF SPEED
It is well known that it is easier to write a
program in BASIC to perform a given task
than it is to write the same program in
machine code. BASIC is a higher level lan-
guage and the features in it act as a sort of
intellectual lever, allowing the programmer to
tackle more difficult problems.

In the future, much more complex tasks
are going to be done by computers than at
present, and this means that programmers are
going to have to use even more powerful
languages like LISP in order to write the
programs, but powerful languages tend to be
slower.

It is certainly true that early versions of
LISP were slow, and this held the popularity
of the language back. However, present day
versions of LISP that run on large computers
are as fast as any other high level language.
Furthermore, the next product of the revo-
lution in integrated circuit technology will be
a vast increase in the processing speed and
power that can be fitted onto a silicon chip.
This will mean that it will no longer be vital to
squeeze the last bit of speed out of a system by
using machine code.

ARTIFICIAL INTELLIGENCE
LISP is the main language used in Artificial
Intelligence. The aim here is to create com-
puter programs that exhibit some kind of
human behaviour or intelligence. An example
is the chess-playing computer. Another

is one of the most famous examples of the
use of LISP. This was a program called
ELIZA which played the role of a psycho-
analyist talking to its 'patients' by means of a
keyboard and screen display. The program
simulated the conversation that might take
place, asking and answering questions. Some
people were actually fooled into thinking that

the computer really understood
what they

THE IMPORTANCE OF SPEED
ARTIFICIAL INTELLIGENCE

OTHER APPLICATIONS
LISP AND THE COMPUTER

THE FUNDAMENTALS

LOADED WITH LISP
ATOM VALUES

NUMBERS IN LISP
TRUE OR FALSE
KEEPING TRACK

told it* In fact, the program simply looked at
its input and replied by suitably modifying it*
The analysis necessary to do this is much
easier in LISP than in other languages*

A further area of artificial intelligence is
that of Expert Systems. The idea here is to
program into a computer all the knowledge of
a human expert in some field such as motor
car maintenance. Untrained users can then
find out what is wrong with a car, by typing in
the symptoms of the faults* The computer

will reply with its diagnosis, asking any
further questions that might be necessary in
order to locate the problem precisely.

OTHER APPLICATIONS
Other, more traditional complicated
programs like compilers and word processors
are much simpler when written in LISP and
the language has also been used to write some
of the Computer Aided Design systems used
in the design of integrated circuits.

LISP has also played a distinguished part
in computer programs that do algebra* It is
obvious that computers are very good at
arithmetic. However, with LISP it is possible
to make them do algebra as well* This means
that computers can make the kind of algebraic
calculations that would occupy an army of
mathematicians and cover miles of paper.

Some of the calculations in theoretical
physics contain algebra so complicated that it
can only be done by such LISP-based sy-
stems* On a less complex level, a typical
application of LISP that you could run on
your home computer would be a small LISP
program that could do differentiation—very
useful if you have to plough through dozens
of calculus examples for 0 and A level
homework.

LISP AND THE COMPUTER
It would be wrong to suggest that LISP is the
only language suitable for solving difficult
problems or likely to be important in the
future* Several modern languages have ap-
peared which use its concepts widely, includ-
ing LOGO and PROLOG* And often the
compilers and interpreters for these languages
were originally written in LISP. To some
extent therefore, LISP is the assembly lan-
guage of the new generation of computer
languages* Nowadays, there are, in fact, spec-
ial processors whose assembly language is
based on LISP in much the same way as the
Z80, 6502 or 6809 processor in your home
computer understands the appropriate ma-
chine codes.

These LISP processors often form the
heart of special high power personal com-
puters or engineering work stations whose
main language is LISP* Such 'LISP ma-
chines' may well be the prototypes of the
home computers on sale in the high streets in
five or ten years time.

These articles on LISP, explain the funda-
mentals of the language and you will be able
to follow what is going on even if you don't
have LISP yet* Just like BASIC, there are
differences between the LISP language on the
different computers, but fortunately, the vari-
ations in LISP are usually quite small—
normally only consisting of different spellings

for function names. A bad point about LISP
is that there are an awful lot of brackets. If you
are a person who has difficulty getting the
brackets in BASIC expressions to balance,
LISP may not be the language for you.

THE FUNDAMENTALS
One of the things that separates LISP from
BASIC, is that LISP can manipulate symbols
as well as numbers. This is something like the
way BASIC can slice and manipulate strings,
but the symbol manipulation capabilities of
LISP are much more powerful.

The basic objects that LISP handles are
called atoms and lists. An atom is really like a
variable in BASIC—that is it starts with a
letter and may then continue with any length
(in practice there is a limit) of letters and
numbers. So all the following could be atoms:
FRED, atom, N01, NO2. Everyone is fam-
iliar with many kinds of list—for example, a
shopping list or a team list of the players in a
game. Your shopping list could be: tea, sugar,
milk. A list in LISP is very similar—
including a number of atoms and perhaps
other lists. To tell LISP that something is a
list, it is surrounded by a pair of brackets. So
your shopping list in LISP would look like:

(tea sugar milk)

A LISP list can contain both atoms and lists
so another example of a list is:

((cold tea) (hot milk) sugar).

This list contains two lists and an atom.
Brackets are used very much like the way
double quotes are used in BASIC to show
where strings start and end. The difference is
that strings cannot contain further strings.

LOADED WITH LISP
If you want to try LISP out for yourself, there
is no need to trade in your basic home
computer for a £30,000 LISP machine. In
fact, most home computers can be converted
to LISP. The only reason a computer under-
stands BASIC is that there is large program in
read only memory (ROM) which is a BASIC
interpreter. It is perfectly possible to replace
this machine code with another program that
interprets or understands LISP programs. In
practice, on some computers adding LISP
actually will consist of plugging in a chip or
cartridge which contains a ROM with the
necessary code in it. More often the cheaper
method of holding the machine code LISP
interpreter in the computer's main memory is
adopted. Here, you load LISP in off a tape or
disk like any other program, and when the
code is run your home computer becomes a
LISP system.

When this happens, what would it look
like? Instead of the usual BASIC prompt, you
would get the message Evaluate:. This means
that LISP is waiting for you to type in a valid
LISP expression which it will then evaluate in
printing its value on the screen. This is all
there is to LISP, you type in expressions and
the computer replies with their values. In
LISP an expression means a symbolic ex-
pression consisting of either a list or an atom.
Often this will be referred to as an s-
expression. There is no command like RUN
which actually sets off a program. As you will
see later, such a command is not needed.

With the Evaluate: prompt waiting, you
must decide what to type. The easiest thing, is
an atom FRED. LISP replies with
UNDEFINED. The dialogue looks like this:

Evaluate: FRED
Value is: UNDEFINED

This means that LISP has never seen the
atom before and cannot find a value for it.
Atoms, like variables in BASIC can have
values. The situation above is like PRI NTing a
variable in BASIC before giving it a value.
When LISP sees the atom, it tries to evaluate
it, or find its value. This is a very important
feature of LISP—everything is always
evaluated unless there is a specific intention
not to do so.

There is a method of stopping evaluation
in LISP—the single quote mark `. Suppose
you typed 'FRED. Now, LISP would reply
with FRED. The single quote mark stops any
further evaluation of the s-expression follow-
ing it. The value of the expression 'FRED is
just the atom following the quote. The single
quote mark can also be used with lists. Thus:

Tea sugar milk)

will evaluate to:

(tea sugar milk).

A much more interesting use than the
evaluation of atoms is the evaluation of lists.
An example of this is again provided by the
single quote—`FRED is actually an abbrevi-
ation for (QUOTE FRED). Some systems will in
fact only accept the second form of the
expression. Here QUOTE is a LISP function
and the atom FRED is its argument. Note that
QUOTE does not find the value of its
argument.

Compare this function with functions in
BASIC, where you might write:

RND(20).

BASIC finds that the value of this is a random
number. The same thing in LISP would look
like:

(RND 20)

Notice that the brackets have been moved.
Similarly, if there was a QUOTE function in
BASIC, it would be written:

QUOTE(FRED).

This movement of brackets can be confusing
but is simple when you understand it.

ATOM VALUES

Atoms, like variables, can have a value.
However, the question arises; how does an
atom get a value? For instance how do you
give FRED the value 1? This is done with the
function SET as follows:

(SET 'FRED 1).

As usual, LISP evaluates everything. The
first argument of SET evaluates to FRED and
the second to 1—the function then sets FRED
to 1. This shows two things. First, all num-
bers in LISP are atoms which evaluate to
their numeric value. Second, just like in
BASIC, functions can have more than one
argument. Now if you typed FRED, LISP
would reply with 1. The interaction with
LISP could look like:

Evaluate: (SET 'FRED 1)
Value is: 1
Evaluate: FRED
Value is: 1

Like all other functions, SET must return a
value—usually the value of its second argu-
ment, in this case 1. There is another version
of SET, SETQ which does not evaluate its first
argument. So you could type:

(SETQ FRED 1)

with no quote in front of FRED. To hammer
home the point about evaluation, suppose you
next typed:

(SETQ GEORGE FRED)

LISP would evaluate FRED and find its value
was 1 and then set GEORGE to 1. GEORGE is
not evaluated and need not be protected by
using a

The SET function is rather like the way
some versions of BASIC have a command
LET. In BASIC, variables often have to be of a
declared type. For instance, in BBC BASIC,
all integers end with a % and in most versions
string variables end with a $. If you wrote:

A%= "STRING"

then you would get an error message. In LISP
there is no need to specify variables like this—
an atom can have as its value a number,
another atom or a list. For example:

(SETQ SHOPS `(tea milk sugar))

will assign your shopping list to the atom
SHOPS.

By now, you may have noticed another
important difference between LISP and
BASIC. First consider the list:

(tea milk sugar)

—the shopping list. However, if tea was a
function (like SET) then this list would be a
LISP expression and could be evaluated.
Later, you will see that it is easy to define
atoms like tea to be functions. The point is
that in LISP, data and programs look exactly
the same. This is a powerful feature, it means
that one LISP program can manipulate ano-
ther LISP program as easily as any other data.

In LISP everything is done by functions
and finding the value of expressions. But
sometimes this is not very convenient. For
example, you are not normally interested in
the actual value returned by the SET
function—it is much more important that it
gives an atom a value. So some functions are
only used for their side effects and not for
their value.

CUTTING IT UP
Obviously, to do anything with LISP, you
need to be able to manipulate lists—similar to
string handling in BASIC, remember the
three fundamental functions which do this are
called CAR, CDR (pronounced `cooder' or
`cudder') and CONS. The natural reaction to
this piece of information is 'So what?'. But
suppose instead that you were told that these
functions were called FIRST, REST and ADD to
FRONT. These names give you much more
information about what they actually do. In
fact, CAR and CDR stand for 'contents of
address register' and 'contents of decrement
register' and come from the names of two of
the registers in the original IBM computer on
which LISP was used. CONS stands for
construct. Most people learn to use these
terms, but they could easily be changed by,
for example, (SETQ FIRST CAR).

CAR, as suggested by the alternative name
FIRST, returns the first element of a list. For
instance:

(CAR Tea milk sugar))

has the value tea. Note that CAR evaluates its
arguments so a has to be used to prevent
evaluation of the list. As another way of seeing
how this works, type:

(SETQ SHOPS Tea milk sugar))
and then:

(CAR SHOPS).

LISP would again give the value of this as tea
because it finds the value of SHOPS is the
list:

(tea milk sugar).

CDR returns the list that contains all the
elements of the list given to it as an argument
except the first one. So the value of:

(CDR Tea milk sugar))

is the list:

(milk sugar).

CONS, as its name suggests, constructs lists. It
does this in a quite specific way—it has two
arguments, an atom or a list and a list. CONS
adds its first argument to the beginning of the
list which is the second argument. For
instance:

(CONS 'biscuits `(tea milk sugar))

evaluates to:

(biscuits tea milk sugar).

For lists this works as follows:

(CONS TO right) `(hand foot))

has the value:

((left right) hand foot).

The CAR and CDR of this then are:

(left right)

and:

(hand foot).

Note that this time the CAR is a list and not an
atom.

Suppose you take the CDR of a list with
only one element, for example:

(CDR `(FRED))

This looks as if it might be an empty list (). In
fact, LISP has a special name for this—the
atom NIL. Taking the CAR or CDR of an atom
or an empty list produces an error message as
you might expect. There is a generalization of
CAR and CDR. Imagine trying to find the atom
left in the list:

((left right) hand foot).

You could find this as the value of the
expression:

(CAR (CAR '((left right) hand foot)))

LISP provides a shorter way with the func-
tion CAAR, and the answer could now be given
by:

(CAAR '((left right) hand foot)).

Similarly, CADR means take the CDR and then

the CAR. LISP systems provide all the other
permutations of CAR and CDR in pairs and
often in triples, quadruples and so on.

If you had two atoms FRED and SMITH and
wanted to make them into a list, you might be
tempted to type:

(CONS 'FRED 'SMITH).

Although this is a valid expression, it is not a
list. Its value is the dotted pair:

(FRED . SMITH),

but for the moment this is an unnecessary
complication. One way of forming the desired
list would be to type:

(CONS 'FRED (CONS 'SMITH NIL)).

The second argument of the first CONS
evaluates to the list (SMITH) to which the atom
FRED is CONSed onto the beginning. How-
ever, LISP provides the rather briefer
method:

(LIST 'FRED 'SMITH).

This is actually an example of another LISP
feature, functions which can have an arbitrary
number of arguments. You could for instance
type:

(LIST 'ONE 'TWO 'THREE)

and get the answer:

(ONE TWO THREE).

This is very different from BASIC, where
functions always have the same number of
arguments.

NUMBERS IN LISP
Although one of LISP's special features is its
ability to manipulate symbols, it can also
handle numbers. The LISP implementations
on home computers usually only use integers.
However, some of the big LISP systems can
handle floating point numbers and calculate
with them as fast as any special purpose
numerical language like FORTRAN. A fea-
ture often provided on such systems is arbit-
rary precision arithmetic where any number
of significant figures can be kept—perfect for
calculating the value of pi to a few million
decimal places.

Compared to BASIC, LISP deals with
arithmetic in a rather strange way. It is,
however, similar to LOGO, covered earlier in
the course. The equivalents of the usual
BASIC operators +, —, *, / and MOD
(which gives the remainder after an integer
division) are the functions PLUS,
DIFFERENCE, 	TIMES, 	QUOTIENT 	and
REMAINDER. The big difference is that LISP
uses prefix notation in contrast to BASIC

which uses infix notation. Prefix notation is
sometimes called Polish notation after the
Polish logician Lukasiewicz who proved that
this (and reverse-Polish or postfix notation)
are consistent ways of doing arithmetic.

In BASIC, if you want to add 2 and 2 you
write 2 + 2, while in LISP this becomes
(PLUS 2 2). In prefix notation the arithmetical
operators come first in expressions. This
allows LISP to make the arithmetical
operators into functions just like any others.
So you could change their names if you
wanted. Some of the LISP arithmetic func-
tions like PLUS can take any number of
arguments. To give an example:

(PLUS 2 2 2 (TIMES 1 2))

evaluates to:

2+2+2+1*2=8.

In LISP, the function MINUS must be used to
change the sign of a number; for example the
value of (MINUS 2) is —2. This contrasts with
BASIC where the — symbol is used both for
changing the sign and for finding the dif-
ference in two numbers.

TRUE OR FALSE
The next thing to look at, is how LISP
handles logical expressions and how to branch
depending on the value of a logical ex-
pression. In BASIC, logical values are treated
just like integer arithmetic, typically 0 stands
for false and — 1 for true (other choices are
possible). A logical expression is something
like:

A> B.

If A is greater than B, then in BASIC this has
the value true otherwise, it has the value false.
In LISP, true and false are represented by the
two special atoms T and NIL (the same NIL
described above as the empty list).

True and false values are given by special
functions often called predicates. An example
is the function ATOM which returns the value
T if its argument is an atom and NIL otherwise.
Typing:

(ATOM 'FRED)

will provoke the reply T from LISP whilst:

(ATOM `(milk biscuits))

evaluates to NIL. Other LISP predicates are
GR EATER P to test which of two atoms has the
greater numerical value and NULL which tests
a list to see if it is empty. The predicate EQ
tests for the equality of any two atoms:

(EQ 'FRED 'FEED)

is T and:

(EQ 'FRED 'HARRY)

is NIL. Actually EQ tests if its two arguments
have the same value so:

(SETQ F `(jam cakes))

then:

(SETQ G F)

followed by:

(EQ G F)

will have the value T since, the values of both
G and F are the same list. In addition to these
there are many other predicates in LISP.

As well as the arithmetic operators, LISP
has the usual complement of logical
operators. These also use prefix notation. For
instance, (OR T T) has the value T, (OR T NIL)
has the value T, (AND T NIL) has the value NIL
and so on.

In BASIC, the first thing to do once you
can evaluate logical expressions, is to branch
depending on their value using the IF state-
ment. In LISP, the equivalent of this is
provided by the COND function. COND has an
arbitrary number of arguments (called
clauses) each of which is a list containing a
number of s-expressions (lists or atoms).
When the COND function is evaluated, each
clause is looked at in turn and the first s-
expression evaluated. If this has the value T
then all the subsequent s-expressions in that
clause are evaluated. The value of the COND
function is then given as that of the last
s-expression in the clause. Otherwise, evalu-
ation proceeds to the next clause. If none of
the clauses has a first s-expression that is T
then the COND function has the value NIL.
Usually, things are arranged so that any none
NIL value for a first s-expression will give the
same behaviour as a value of T.

A typical COND looks as follows:

(COND ((EQ FRED 1)(PRINT 'ONE))
((EQ FRED 2)(PRINT 'TWO))
((EQ FRED 3)(PRINT 'THREE))

In this demonstration, another new function,
PRINT has been introduced; here this prints
out its argument after evaluating it. Although
LISP has a comprehensive set of such print-
ing functions they tend to vary from one
system to another.

Now if FRED has been SET to 2 and the
above COND is given to LISP, it will print the
word TWO on the screen. In fact, the value of
the PRINT function is usually the value of its
argument, so LISP will return the value of the
COND as TWO. It should be clear why this
happens. First LISP compares the atom FRED
with 1 and finds that they are not equal; this

means that the first s-expression of the first
clause is NIL. Therefore, LISP moves on to
the second clause of the COND. This time the
first s-expression has the value T and therefore
the second s-expression (PRINT 'TWO) is
evaluated; printing TWO on the screen and
returning the value of the s-expression (PRINT
`TWO) i.e. TWO.

All this may seem rather complex and it is
certainly necessary to keep track of the
brackets in such an expression. However,
there is a very similar statement in BASIC
which makes the operation of COND clear.
Look at the following fragment of BASIC:

IF FRED =1 THEN PRINT"ONE"
ELSE IF FRED = 2 THEN PRINT"TWO"
ELSE IF FRED =3 THEN PRINT"THREE"

Such a chain of IF THEN ELSE I F's is precisely
equivalent to the COND function. Often such
chains in BASIC end with a single ELSE. This
means that if none of the I F's are satisfied then
the last ELSE will catch all other cases. To give
this behaviour in LISP, the COND function is
terminated with the clause:

(T (LISP code for other cases)).

If COND finds that none of its other argu-
ments are satisfied, it comes to this clause and
evaluates T which has the value T. So the s-
expressions following T are always evaluated.

KEEPING TRACK
By this stage it may be hard to remember what
is going on. LISP makes this easier by
providing the object list. The list contains all
the atoms which LISP knows have a value.
The function OBLIST or something similar has
as its value the object list. Thus to see all the
objects known to LISP you type:

(OBLIST).

Note that although this function has no
parameters, it must still be surrounded by
brackets. In the object list, you will find all
the names of the familiar functions like CAR
and CDR. Also if you have done something
like:

(SETA FRED 1)

you will find the atom FRED added to this list.
The key feature that allows programs to be

written in LISP is that as in LOGO it is
possible for users to define their own func-
tions. These then take their place in the object
list and as far as LISP is concerned, such
functions are just as important as the built-in
ones. So you can extend LISP to include any
features you might want, and in the second
part of this series, the mysteries of how to use
and define LISP functions will be revealed.

Suppressed Schuberts and budding
Beethovens! Now you can pitch in,
finish the program and make music*
There are also detailed notes on how
you can use each of the facilities

This is the final part of the music composer
program. Once you've added it to the other
two parts you can start to create your own
musical masterpieces.

The programs are designed to make the
best of the sound on each of the computers,
and because the computers vary so much the
programs, too, are different. They are all
explained in detail below, and in some cases—
such as the Commodore, on which you can
tailor the sound to your precise
requirements—the instructions may seem
quite complex. The best thing to do is to sit
down with the computer and follow through
the instructions trying out each of the com-
mands in turn. You'll soon get the hang of
them.

The Spectrum's menu offers seven choices.
Try option 1 first to turn the computer into a
musical keyboard. The musical notes are
arranged in the same way as in the simple
music article on page 669. Lower C is Q,
middle C is I and top C is the B key. The
computer asks you if you want to Extend the
last tune or Start a new one, so as you haven't
programmed a tune yet, press S in this case.
You also have to choose which note length
you want for the notes by pressing
'SYMBOL SHIFT' with a number from 1 to 5, to
select semi-quaver, quaver, crotchet, minim
or semi-breve respectively—the higher the
number, the longer the note. You can select
the length of each note before you play it or
you can play the entire tune on one setting
and edit in the correct length later, using
option 4.

The computer sounds the notes as you play
them and it also stores them in memory so you
can replay the whole tune using option 3. You
can select the correct tempo for the replay by
typing in a number from 1 to 15—the larger
the number, the faster the tempo.

Option 2 gives you an alternative way of
entering the notes by typing in a simple code.
The twelve possible notes—from C through

D and so on up to the next Bare
numbered from 0 to 11, and a rest is coded as
— 4. The octave of each note is selected by a
number from 1 to 7, and the number which

gives the length of each note corresponds to
their real length. So a semi-quaver is 1, a
quaver is 2, a crotchet is 4, a minim is 8 and a
semi-breve is 16. A rest can be given a length
in this range in the same way as a note. The
code is very easy to use. For example, note
C#, octave 2, crotchet is entered as 1204, and
note B, octave 4, semi-breve is 11416. For
rests, — 404 is a crotchet-length rest. The
only point to remember is to enter the
duration as two digits, so use 02 for a quaver,
not 2.

When you've entered a few notes, press
RETURN to see the main menu then choose
option 3 to replay it.

At this stage you'll probably find that you
want to alter a few notes or perhaps add or
delete some. So this time choose option 4
from the menu. You'll be offered 5 choices.
You'll need to press D first to find out which
notes you want to change—jot down the
numbers of the notes, then press E to edit
them. To change a note, simply enter its
number followed by 'RETURN then type in the
new note using the code described above.

To insert a note, press I, then enter the
number of the note before the one you want to
insert, then enter the new note.

To delete a note, press X, then enter its
number. The program shifts all the other
notes accordingly to take account of any
changes.

When you're happy with a tune, you can
save it by choosing option 6 from the menu,
and then load it in again with option 7.

The Commodore program lets you take full
advantage of the sophisticated sound available
from the SID chip—but only if you want to.
You can use it to compose a simple tune if
that's all that you want, or you can specify
exactly the values you want for pulse width,
filter frequency, ring modulation and a whole
host of other things. It's up to you how you
use the program. There are ten choices
available from the main menu.

For the moment, it's best to ignore options
1 to 4—sensible parameters have already been
set up for you. So choose option 0, then press
P to play without storing the notes (while

you're practising) or press P and 'SHIFT I to
store the tune. Try storing a few notes, then
choose option 0 again but this time press R to
replay them.

Option 5 lets you enter the notes by typing
in a simple code. Remember that the note
number has to be entered as two characters—
as 01, not 1.

Rests can also be entered into the tune by
typing —1 followed by the voice, for example
—11. A note can be lengthened by following
it with a sustain, which is code — 2 then the
length of the note and the voice. The numbers
for the lengths are 1 for quaver, 2 for crotchet,
3 for minim and 4 for semi-breve. So adding
—231 turns the previous note into a minim.
If you don't enter a sustain the notes are taken
as semi-quavers.

When you've entered all the notes, press
RETURN to get back to the main menu and try
replaying the tune again. You can enter notes
in all three voices and these will be replayed
simultaneously.

At some stage you're sure to want to edit
your tune, so choose option 6 and you'll see
another menu. Choose D first to display the
notes, and write down the numbers of the
notes you want to change. Then press E to
edit the note. You have to enter its number
then the code for the new note or 0 if you want
to delete it entirely.

To insert a note, press I then enter the
number of the note before the one to be
inserted and type in the code for the new note.
The program automatically takes account of
any changes you make.

When you're happy with the tune you can
save it by choosing option 8 from the main
menu and load it back again with option 9.

SYNTHESIZED SOUNDS
The other options are more complicated and
allow you to change the sound of each voice to
mimic different instruments or create other
synthesized sound effects. Choose option 1 to
display the list of values you can change.

The values on the right are automatically
set for voice 1 for you. If you alter any, you
can initialize them again using option 7 from
the main menu—so don't be afraid to experi-
ment. To alter the values, use the cursor keys

INSTRUCTIONS
THE MAIN MENU

MUSICAL KEYBOARD
DISPLAY NOTES

REPLAY TUNE

ENTERING THE NOTES
EDITING

INSERTING AND DELETING
CHANGE TEMPO

SAVING AND LOADING

to move the arrow up or down and press
1RETURNI when it is next to the item you want
to change* All you do then is to type in the
new value* Line up the arrow with RETURN
and press 'RETURN to get back to the menu.

Here's what each of the options do: The
waveforms available are Triangular, Saw-
tooth, Pulsed or Noise* Altering this will give
a different quality to the sound and if you
select N for noise the notes will sound like a
percussion instrument.

The next four parameters are the AD SR
values used to define the shape or envelope of
the note. The article on pages 1138 to 1144
explains in detail what these values do and
how they alter the sound of the note*

The next five items can be used to enhance
the sound in a variety of ways* They act
directly on the SID chip and for a full
explanation of what they do you should look
in the Programmer's Reference Manual*
However, the best way to find out what they
do is to try out different values and listen to
the result*

Forgetting the frequency for the moment,
the pulse width determines the shape of notes
selected by the P waveform*,A pulse wave is a
square wave that's 'on' for a certain time and
`off' for a certain time* The time between

successive 'ions' is determined by the frequ-
ency of the note being played* But the ratio of
on time to off time for each cycle is set by the
pulse width* A low value, say 500, means it is
on for 500 units and off for 3595 units, a ratio
of about 1 to 7* A mid value of 2048 gives a
perfect square wave which is on and off an
equal amount. Try entering different values
for pulse width in steps of 500 and listen to
the effect on your tune* (Remember to select a
P waveform*)

The Synchronization and ring modulation
can be turned ON, but you'll only hear an
effect by setting the frequency in Voice 3* This
may appear to be a rather odd way of doing it

but it is the way the SID chip is designed.
(For the other voices, the synchronization and
ring modulation in voice 2 is affected by the
frequency in voice 1, and that for voice 3 is
affected by the frequency in voice 2!) It is
difficult to describe the sound produced, so
experiment by turning on the synch or ring
modulation (or both) in voice 1, then alter the
frequency in voice 3 in steps of 10000* Make
a note of the values that give the best effect*

Finally, turning the filter ON affects all
three voices and filters out the harmonics in
the notes* This is most noticeable on the P
waveform* Try it with different pulse widths
as this will make a difference too*

OVERALL SOUND CHANGES
As well as altering the sound of the individual
voices, you can also alter the general sound
parameters by choosing option 4. This gives
you another menu* Again, the best way to find
out what all the options do is to experiment
The filter frequency determines the cut-off
point for the filter band passes in the other
options.

The low pass lets through all frequencies
below the cut off, giving a rather muffled
sound. The high pass lets through only the
high frequencies above the cut off—making
the music sound as though you are listening to
it over a telephone* Try setting any of the
filters to ON, then alter the filter frequency in
steps of about 500 and listen to the result.
Also try using different waveforms* With an
N waveform, a low pass sounds like a bass
drum, a band pass sounds like a side drum
and a high pass sounds more like a snare drum
or cymbals.

The resonance also alters the quality of the
note. The best way to hear it is to choose an N
waveform, filter band pass ON, filter frequ-
ency of about 1000 and then enter different
values for resonance. Also try setting the
resonance to 15, and alter the filter frequency*

The voice 3 connection is something pro-
vided by the SID chip but has little noticeable
effect* Turning it OFF cuts off any low noise
from voice 3 that might affect voice 1 when
you're using synchronization or ring modul-
ation. It clarifies the sound slightly*

The Vic program is designed to make use of
the Super Expander cartridge. This means
the program can be very short as all the sound
commands needed are already available* The
menu displays the range of values you can
input for volume, voice, octave, tempo, notes,
rests, sharps and flats* Sensible values for the
first four have already been set, but to alter
them simply type in the letter shown followed
by a number in the allowed range. For
example, typing V1 T1 then I RETURN I sets a low
volume and slow tempo*

The program lets you play a tune by
pressing the keys A to G* You can choose
whether the notes sound as you press them,
and you can choose whether the computer
stores the notes or whether you just want to
practise* The rule is, if the notes are printed
on the screen then they are being stored, if
they're not printed they are not being stored.

The program stores the tune as strings of
notes* Each string can hold up to four lines of
notes as they appear on the screen, so there's
no need to press R ETU R N I until the lines are

full—although you can enter shorter strings if
you want to* And the program can hold a total
of 256 of these strings.

When you first start to enter a string of
notes, the notes are printed on the screen but
there's no sound* If you want to practise the
tune without storing the notes press I CTRL I
and <—* Press P (then delete the P from the
screen) to print the notes as you play them and
Q to cancel the print—so you're back to play
only again. Pressing I RETURN I enters the string
into memory and starts you off with a new
string and the print only mode.

Tempo, octave, voice and volume can be
changed at any time in the tune simply by
entering their letter and new value in the
appropriate place in the string of notes*

To replay the tune simply type PLAY, but if
you want to see the notes printed out at the
same time press ? instead. If you do choose to
see the printout you can pause the tune while
it is being replayed by pressing *. If you don't
want to replay the entire tune you can choose
the starting point by pressing +— and then
entering the start note number*

To edit the tune use the asterisk to stop the
listing at the string you want to edit then use
the Vic's normal editor to change, add or
delete notes* The only thing to watch for
when adding notes is that the string doesn't
extend beyond the maximum of four lines.

The Acorn program is in two parts. Type in
and SAVE the first part which sets up the
UDGs and ENVELO PEs, then type in and SAVE
the second part using the name COMP* When
you RUN the Acorn program the first part will
automatically CHAIN the second part* You will
be presented with three musical staves and, at
the top of the screen, pictures of all the notes
from a semi-breve to a semi-quaver, a selec-
tion of rests and a treble and bass clef* The
program is controlled from the keyboard
rather than a menu. The keys which do
something are: L-Load a tune; S-Save a tune;
P-Play tune; C-Change tempo; D-Delete
note; I-Insert note; Q-Finish inserting; T-
Tie to next note; E-Change envelope; and V-
Display section of tune*

To create a piece of music you first have to
select a clef* Do this by moving the rectangle
to the correct clef using the left and right
cursor keys, and then press I RETURN I. The clef
will appear at the left of the first stave* You
can now start selecting the notes and rests to
build up the music* The method is the same as
before—move the box to the note then press
I RETURN I* But this time, instead of the note
itself, a circle appears on the stave which you
can move to the correct position using the up

and down cursor keys. When you press
'RETURN I a second time the note you selected
sounds and appears on the stave* If you want a
sharp or flat, position this first and then the
note* Notes can be positioned above or below
the stave as any short ledger lines needed will
appear automatically. Rests are inserted in the
same way as notes. The program even allows
you to tie or slur two notes together* Position
the first note as usual, press T, then position
the second note (this must be on the same
line) and the tie will appear.

When you've entered a few notes, press P
to play the tune* You'll be asked for the start
and end note numbers, but if you want to hear
the whole tune just press 'RETURNS twice*

Now try changing the tempo by pressing
C* You'll hear a regular drum beat which you
can speed up or slow down by pressing the up
or down cursor keys* Keep your finger on the
key until the tempo is just right.

At some stage you're sure to want to edit
the tune* To delete a note or series of notes
first work out the number of the notes you
want to remove—the numbers of the first note
in each stave is displayed above it. Now press
D, and enter the first and last number of the
series or one number for a single wrong note*
Press 'RETURNS and the notes are deleted.

To insert notes, press I then enter the
number of the note before the notes to be
inserted. Then select and position the notes as
normal—they will appear in the correct po-
sition. When you've finished, press Q*

The V key is used to display any section of
the tune* Enter the number of the start note
and two staves full of notes will be displayed
from that position*

The last command, E, lets you change the
sound of tile note* Five envelopes have been

set up for you to choose from—each of the
pre-programmed sounds mimics different in-
struments. These are organ, vibrato 1, vibrato
2, harpsichord and piano, and to select them
just type in a number from 1 to 5.

tZ !HI
When you first RUN the program you'll be
presented with a main menu offering nine
options. Start with option 3 to play music
directly on the keyboard. The notes on the
keyboard are laid out in two rows in the same
way as for the music article on pages 669 to
675 with Q as bottom C, I as middle C and V
as top C. The computer remembers each note
you play, but not in real time, so it doesn't
matter if you hesitate between notes, and if
you play a wrong note it is very easy to edit
later on.

If you want to change the octave before you
play a note, use the up or down arrow keys. If
you want to change the length of the note use
the left and right arrow keys. The current
octave and length of note are printed at the
top of the screen while you're playing and the
notes are also printed as they are entered.

When you're happy with this method of
entering the notes, go on to option 4 (the
notes you've played will remain in memory).
This gives you another way of entering the
notes which is also quite straightforward.
First type in the name of the note, from A to F
for natural notes, shifted A C D F G for

sharps (flats are entered as the sharp below, so
B b = A# etc.) and P for a pause. Now enter
the octave, from 1 to 5 and then the length of
the note, using the initial letter of whole, half,
quarter, eighth or sixteenth. For a dotted note
simply add a dot at the end. For example,
Ate. means A sharp, octave 2, dotted quaver;
C3w means note C, octave 3, semi-breve.

Enter as many notes as you like. You can
hear the tune at any time by choosing option 7
from the main menu.

Other options from the menu which effect
the playback are those to change the tempo
and change the octave—simply type in the
new value. Tempo can range from 0 to 255
and the octave is raised or lowered one octave
at a time by typing U for up or D for down.

At some time you're sure to need to edit the
tune, so choose option 6 and practise on your
sample tune. First use this to list the notes and
write down the numbers of the notes you want
to change. You're then given a choice of
delete, insert, change or continue. Try each
one in turn. To delete some notes enter the
start number and the number of notes you
want to delete. To insert, enter the number of
the note before the point you want to insert
and then type in the notes in the usual format.
To change a note simply input its number
then type in the new contents.

Finally, when you're happy with the tune,
you can save the music with option 2 and load
it back in again with option 1.

4452 INPUT "Enter Number of Note
— ❑ 111";NN

4454 IF (NN<1) OR NN >ct THEN GOTO
4000

4460 PRINT: PRINT "Re-entering Note ❑ ";NN
4470 PRINT : PRINT
4480 INPUT "Enter New Note — 1=11=1";N$
4490 IF N$="" THEN GOTO 4300
4500 FOR i=1 TO LEN (N$): IF (N$(i)<"0"

OR N$(i)>"9") AND (N$(i) < >"—")
THEN GOTO 4000

4510 LET N -= VAL (N$)
4520 IF INT (N/1000) >11 THEN GOTO 4000
4530 IF N <0 THEN GOTO 4590
4540 LET M = INT (N/100): LET

D=N—M*100
4550 LET 0 = M —INT (M/10)*10: IF 0<1

OR 0>7 THEN GOTO 4000
4560 LET M=INT (M/10) + (0 —1)*

12-36
4570 LET t(2*NN —1) = D: LET t(2*NN)=M
4580 GOTO 4000
4590 LET M=INT (N/100)+1: LET

D = — (N — M*100)
4600 IF M < > —4 THEN GOTO 4000
4610 GOTO 4570

4700 CLS
4705 PRINT "Enter Number of Note

BEFORE' new note to be
inserted.'" — (Enter 0 to Exit)"

4730 INPUT is
4735 IF is= 0 THEN GOTO 4000
4740 IF is >ct +1 THEN GOTO 4700
4745 CLS
4750 GOSUB 2500
4755 PRINT
4760 INPUT "Enter New Note — ❑ ❑ ";N$
4765 IF LEN (N$) =0 THEN GOTO 4700
4770 FOR i=1 TO LEN (N$): IF (N$(i) <"0"

OR N$()>"9") AND (N$(i) < >"—")
THEN GOTO 4700

4772 LET N =VAL (N$)
4774 IF INT (N/1000) >11 THEN GOTO 4700
4776 IF N <0 THEN GOTO 4792
4778 LET M = INT (N/100): LET

D=N —M * 100
4782 LET 0= M —INT (M/10) * 10: IF 0<1

OR 0>7 THEN GOTO 4700
4784 LET M=INT (M/10) + (0 —1) *

 12-36
4786 FOR i=ct TO is STEP —1: LET

t(2*(i +1)) =t(2*i): LET
t(2*(i +1) —1) = t(2*i —1): NEXT i

4788 LET t(2*is —1) = D: LET t(ris)= M
4790 LET ct = ct + 1: GOTO 4000
4792 LET M=INT (N/100)+1: LET

D=0— (N —M*100)
4794 IF M < > —4 THEN GOTO 4700
4796 GOTO 4786
4800 CLS
4805 PRINT "Enter number of note to

be'""deleted."""(Enter 0 to Exit)"
4830 INPUT de
4835 IF de= 0 THEN GOTO 4000
4840 IF de > ct THEN GOTO 4800
4845 FOR i = de TO ct: LET t(2 *1)=t(2*

(i-F1)): LET t(2*i-1)=t(2*(i+1)-1):
NEXT i

4850 LET ct = ct —1
4855 GOTO 4000
4900 DATA 3,0,-11,-9,0,-6,-4,-2,0,1
4910 DATA 12,9,8,-8,10,0,13,0,15,0
4920 DATA 0,16,14,2,4,-12,-7,6, —5, —1
4930 DATA 11,-10,7,-3,5
5000 CLS
5010 INPUT "ENTER FILENAME ?";F$: LET

T(maxnotes +1) =CT: SAVE F$ DATA TO:
RETURN

6000 INPUT "ENTER FILENAME ?";F$: LOAD
F$ DATA TO: LET CT =T(maxnotes+1):
RETURN

[CIE
5670 LP= 0
5680 GOSUB 6000:RETURN
5690 IF BP THEN 5710
5700 BP =1:GOTO 5720

5710 BP= 0
5720 GOSUB 6000:RETURN
5730 IF HP. THEN 5750
5740 HP =1:GOTO 5760
5750 HP=0
5760 GOSUB 6000:RETURN
5770 IF V3 THEN 5790
5780 V3=1:GOTO 5800
5790 V3=0
5800 GOSUB 6000:RETURN
5810 GOSUB 5900
5820 PRINT"ENTER VALUE — ❑ ❑ ";
5830 INPUT V
5840 IF V<0 OR V>20 THEN RETURN
5850 TEMPO =200-10"V
5860 RETURN
5900 PRINT "Ig"
5910 FOR 1=1 TO 15:PRINT "N";:NEXT I
5920 RETURN
6000 FOR 1=0 TO 2
6010 F2 = INT(FR(I)/256)
6020 Fl = FR(I) — (F2 * 256)
6030 POKE SID + (I*7),F1:

POKE SID + (1*7) + 1,F2
6040 F2 = INT(PW(I)/256)
6050 Fl =PW(1)— (F2*256)
6060 POKE SID+ (1 * 7) +2,F1:

POKE SID + (1*7) +3,F2
6070 Fl =AT(I)*16+DE(I)
6080 POKE SID+ (r7)+5,F1
6090 Fl =SU(1)*16 + REM
6100 POKE SID+ (1 * 7) +6,FI
6110 CR(I)=SY(1) * 2 + RM(I) * 4+

(16"21*(WF(I)))
6115 NEXT I
6120 F2=INT(FF/8)
6130 F1 = FF — (F2 * 8)
6140 POKE SI D4111,1,1,;:, 	•

POKE SID +22,F2
6150 Fl = FR*16+ F1(0) + F1(1) * 2+ F1(2) * 4
6160 POKE SID + 23,FI
6170 Fl =VOL+ LP*16 + BP*32 + HP * 64 +

V3 * 128
6180 POKE SID +24,F1
6190 RETURN
7000 GOSUB 9100
7050 PRINT NS;" ❑ NOTES ALREADY

ENTERED (1500 MAX.)"Aggg
7065 N$ =
7070 INPUT N$:IF LEN(N$) =0 THEN

RETURN
7080 N = VAL(N$)
7082 IF INT(N/100) >11 THEN 7000
7085 IF N <0 THEN 7120
7090 M=INT(N/10):V=N— M * 10:

V=V-1:IF V<0 OR V>2 THEN 7000
7100 VOICE(V,NS(V)) = M:NS = NS + 1:

NS(V) = NS(V) +1
7110 GOTO 7000
7120 N= 0 — N:M = INT(N/10)
7130 V=N—M*10:V=V-1:IFV<0 OR

V>2 THEN 7000
7140 M=0 — M:GOTO 7100
7500 PRINT "OTUNE EDITOR"
7520 PRINT"gg ggc — CLEAR ALL

NOTES"
7530 PRINT"ND — DISPLAY ALL NOTES

FOR A VOICE"
7540 PRINT"ggE — EDIT/DELETE A NOTE"
7544 PRINT"g11 — INSERT A NOTE"
7550 PRINT"giR — RETURN TO MAIN

MENU"
7600 GET E$:IF E$="" THEN 7600
7610 IF E$="R" THEN RETURN
7620 IF E$="C" THEN 7800
7630 IF E$="D" THEN 7900
7640 IF E$="E" THEN 7700
7650 IF E$= "I" THEN 7850
7660 GOTO 7600

' •
 - • .

‘‘ 'ss\o

7700 PRINT" gg 	ANT

NUMBER — E 0";
7730 INPUT V
7735 IF V<1 OR V>3 THEN 7700
7740 PRINT"gg ENTER NOTE NUMBER

— El Ill";
7745 INPUT NO
7750 IF NO<1 OR NO > NS(V —1) THEN

7500
7755 PRINT"gg gg NOTE IS CURRENTLY —

0 El ";VOICE(V — 1,NO —1)
7765 PRINT"ggENTER NEW VALUE — (0 TO

DELETE) ❑ El";
7770 INPUT VN
7772 IF VN =0 THEN 7791
7773 IF VN= —2 OR VN= —1 THEN 7780
7775 IF INT(VN/10) >11 OR VN —(INT(VN/

10) * 10) >7 THEN 7765
7780 VOICE(V-1,NO —I) =VN
7790 GOTO 7500
7791 PRINT"gg > pj a PLEASE WAIT"
7792 FOR I = NO —1 TO 499
7794 VOICE(V —1,1) = VOICE(V —1,1+ 1)
7796 NEXT I
7797 NS(V —1) = NS(V —1) —1
7798 GOTO 7500
7800 PRINT"gg gg gg PLEASE WAIT FOR

ARRAY TO BE ZEROED"
7810 GOSUB 2050:NS= 0:FOR 1=0 TO

2:NS(I) =0:NEXT I:GOTO 7500
7850 PRINT"OgggiggENTER NUMBER OF

NOTE IN THE REQUIRED" '
7855 PRINT"VOICE, BEFORE THE NOTE TO BE

INSERTED"
7860 PRINT" gg - o";
7862 INPUT NO
7864 IF NO<1 THEN 7500
7865 NO= NO-1
7866 GOSUB 9100
7868 N$=""
7870 INPUT N$:IF LEN(N$) =0 THEN 7500
7872 N=VAL(N$)
7874 IF INT(N/100) > 11 THEN 7500
7876 IF N <0 THEN 7890
7878 M = INT(N/10):V= N — M * 10:V=V —1:

IF V<0 OR V>2 THEN 7500
7880 FOR I =NS(V) TO NO STEP —1
7882 VOICE(V,I +1) =VOICE(V,I)
7884 NEXT I
7886 VOICE(V,N0)=M:NS= NS +1:NS(V) =

NS(V) +1
Ir888 GOTO 7500
7890 N=0 —N: M=INT(N/10)
W192 V=N—M*10:V=V-1:IF V<0 OR
4, v > 2 THEN 7500
71-94 M =0— M:GOTO 7880
70 PRINT"g MENTER VOICE NUMBER

El":
120 INPUT V:IF V<1 OR V>3 THEN 7500
25 PRINT "0"

'30 FOR 1=1 TO NS(V —I) +1
7940 PRINT I,

7942 PRINT INT(VOICE(V -1,1-1)/10),
7944 PRINT VOICE(V -1,1- 1) - INT(VOICE

(V-1,1-1)/10)*10
7950 IF I =15*INT(I/15) THEN 7960
7955 GOTO 7980
7960 PRINT"ggHIT ANY KEY TO CONTINUE"
7970 GET Z$:IF Z$="" THEN 7970
7980 NEXT 1
7982 PRINT"gg gi HIT ANY KEY TO

RETURN"
7985 GET Z$:IF Z$="" THEN 7985
7990 GOTO 7500
8000 DATA 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,

2
8010 DATA 3,3,3,3,3,4,4,4,4,5,5,5,6,6,7,7,7,8,

8
8020 DATA 9,9,10,11,11,12,13,14,14,15,16,

17,18
8030 DATA 19,21,22,23,25,26,28,29,31,33,35,

37
8040 DATA 39,42,44,47,50,53,56,59,63,67,71,

75
8050 DATA 79,84,89,94,100,106,112,119,126,

134
8060 DATA 142,150,159,168,179,189,200,

212,225
8070 DATA 238,253,12,28,45,62,81,102,123,

145,169
8080 DATA 195,221,250,24,56,90,125,163,

204,246
8090 DATA 35,83,134,187,244,48,112,180,

251,71,152,237,71
8100 DATA 167,12,119,233,97,225,104,247,

143,48
8110 DATA 218,143,78,24,239,210,195,195,

209,239
8120 DATA 31,96,181,30,156,49,223,165,135,

134
8130 DATA 162,223,62,193,107,60,57,99,190,

75
8140 DATA 15,12,69,191,125,131,214,121,115
8150 DATA 199,124,151,30,24,139,126,250,6,

172,243,230,143,248,46
9000 FOR 1=0 TO 24:POKE SID +1,0:NEXT

I:RETURN
9100 PRINT "RENTER NOTES AS

<NUMBER >, < OCTAVE >, <VOICE >

9120 PRINT"C- 0E-4G # -8"
9130 PRINT"C # - 1F - 5A - 9"
9140 PRINT"D-2F# -6A# -10"
9150 PRINT"D# -3G-7B-11"
9170 PRINT" gg REST - -1SUSTAIN - -2"
9180 PRINT"ggOCTAVE - 0 TO 7"
9190 PRINT"ggE.G. ❑ ❑ 1031 <RET> -

A FLAT, OCT.3 VOICE 1"
9200 PRINT"gligg0 0 000 00042

<RET> - C, OCT.4 VOICE 2":RETURN
9300 INPUT "RENTER NAME TO

SAVE";NM$:OPEN 1,1,1,NM$
9310 C$=",":FOR Z=0 TO 500

9320 FOR ZZ=0 TO 2:PRINT# 1,
VOICE(ZZ,Z)

9330 IF VOICE(0,Z) < >0 OR VOICE
(1,Z) < >0 OR VOICE(2,Z) < >0 THEN
NEXT ZZ,Z

9331 FOR Z=0 TO 2:PRINT #1,WF$(Z)C$AT
(Z)C$DE(Z)C$SU(Z)C$RE(Z)C$CR(Z)

9332 PRINT # 1,PW(Z)C$FR(Z)C$SY(Z)C$RM
(Z)C$FI(Z)C$NS(Z):NEXT Z:PRINT # 1,NS

9340 CLOSE1:RETURN
9400 INPUT "D ENTER NAME TO

LOAD";NM$:OPEN 1,1,0,NM$
9410 FOR Z=0 TO 500
9420 FOR ZZ = 0 TO 2:INPUT# 1,

VOICE(ZZ,Z)
9430 IF VOICE(0,Z) < >0 OR VOICE

(1,Z) < >0 OR VOICE(2,Z)< >0 THEN
NEXT ZZ,Z

9431 FOR Z=0 TO 2:INPUT#1,WF$(Z),AT
(Z),DE(Z),SU(Z),RE(Z),CR(Z)

9432 INPUT#1,PW(Z),FR(Z),SY(Z),RM(Z),FI
(Z),NS(Z):NEXT Z:INPUT # 1,NS

9440 CLOSE1:RETURN

10 DIM A$(255):POKE 36879,14:X=0
500 GOSUB 1000:PRINT 1§Iggg";:

A$=A$(X):INPUT A$
505 IF LEFT$(A$,1)="+-" THEN INPUT

"I§IL MINN MENTER PLAY";
X:X= X AND 255:GOTO 500

510 IF LEFT$(A$,4)="PLAY" THEN 2000
511 IF LEFT$(A$,5)="STORE" THEN 3000
512 IF LEFT$(A$,1)="i" THEN

A$(X)=`"':GOTO 500
513 IF LEFT$(A$,1)="?" THEN 2010
515 IF LEFT$(A$,3)="CLR" THEN RUN
520 IF LEFT$(A$,3) = "END" THEN POKE
36879,27:PRINT "DM":END
550 A$(X) =A$:X= X + 1:GOTO 500
1000 IF X<0 THEN X=255
1001 IF X>255 THEN X=0
1002 POKE 36867,138:PRINT "D"TAB(13)

"p PLAY"X: PRINT "PJ PJ "A$(X)
1005 PRINT"I§IgigiggiggaL

MAKING MUSIC WITH ATHE SUPER
EXPANDER M";

1010 PRINT "gVOLUME:V+ (0-9)"
1015 PRINT "EIVOICE:S+ (1 -4)"
1020 PRINT "gOCTAVE:0+ (1 -3)"
1025 PRINT "EBITEMPO:T+ (0 -9)"
1030 PRINT "g NOTES:

UCMDFIEMFFIGMAUB"
1035 PRINT "Ira REST:RII[TEMPO]"
1040 PRINT "MSHARPS: # + (NOTE)"
1045 PRINT "la FLATs:$ + (NOTE)"
1050 PRINT "AIMOVEPLAY: ❑ (.4-)"
1054 PRINT II PLAYTUNE: ❑ (PLAY),(?)"
1055 PRINT "a g (CIRO+ (4-)- PLAY

MODES ❑ ";
1056 PRINT "L(P)- PRINT IN PLAY

MODE";
1057 PRINT "(0)-CANCEL PRINT

❑❑❑❑❑ 61";
1058 PRINT"M(CLR) - CLEAR PLAY

❑ ❑❑❑❑❑ ";

1059 PRINT"(END) - QUIT PROGRAM
❑ ❑❑❑ ";

1060 PRINT "(STORE) -SAVE AND
LOAD•";

1065 POKE 8185,160:POKE 38905,6
1070 POKE 36867,46:RETURN
2000 POKE 36867,138:PRINT" :I] gg 	>

pi IL PLAYING TUNE"
2003 FOR Z=0 TO 255:IF A$(Z) < >""

THEN PRINT "gcr+A$(Z)
2005 NEXT Z:GOTO 500
2010 PRINT"0":FOR Z=0 TO 255:PRINT

ii"z" •";" 	Pa" + A$(Z)
2015 GET Z$:IF Z$=CHR$(13) THEN

Z=255:GOTO 2005
2016 IF Z$="' THEN POKE 198,0:WAIT

198,1:POKE198,0
2020 NEXT Z:INPUT "PRESS RETURN";Z$:

GOTO 500
3000 N$=`":1NPUT "0 UNAME",N$
3010 PRINT "IglaSMAVE OR DIL•OAD

TO TAPE?M"
3020 GET Z$:IF Z$< >"S" AND

Z$ < >"L" THEN 3020
3030 IF Z$="S" THEN 3050
3040 OPEN 1,1,0,N$: FOR Z=0 TO 255:

INPUT #1,A$(Z):NEXT Z:CLOSE1:
GOTO 500

3050 OPEN 1,1,1,N$:FOR Z=0 TO 255:
PRINT #1,CHR$(34)A$(Z)CHR$(34):
NEXT Z:CLOSE1:GOTO 500

1950 DEFPROCDrawbox
1960 MOVEI%*80 + 90,640: DRAWI%*80 + 90,

780:DRAWI%*80 +170,780:DRAW1%*
80 + 170,640:DRAWI% * 80+ 90,640:
ENDPROC

1970 DEFPROCPIaytune
1980 VDU4:CLS
1990 PRINTTAB(5,2)"Enter the starting

note.0";
2000 PROCRead
2010 IFD%> =NO%PROCrange(1):

GOT01980
2020 L%=D%:CLS
2030 PRINTTAB(5,2)"Enter the ending

note. 0";:PROCRead
2040 IFD$ = ""R%= NO% - 1ELSER% = D%
2050 IFR%> =NO%PROCrange(1):GOTO

2030
2060 IFR%< L%PROCrange(0):

GOT02030
2070 CLS:VDU5:C%=L%:IFC%=0THEN

2100
2080 REPEAT:C%=C%-1

2090 UNTILS(0,C%) = 2560RS(0,C%) = 257
2100 IFS(0,C%) = 256THENF2%= 0ELSE

F2%= -1
2110 X=L%-1:REPEAT:X=X+1
2120 D%=INKEY(3)
2130 IFD%< > -1S0UND17,0,0,0:X= R%:

G0T02240
2140 IFX> R%THEN2240
2150 IFS(0,X)=256F2%= 0:X = X +1:G0TO

2140
2160 IFS(0,X)=257F2%= -1:X = X +1:

G0T0 2140
2170 IFS(0,X)>257S0UND1,0,0,INT

((2 A (11 -S(1,X))*SD)+.5):G0T02240
2180 IFF2%B%=S(0,X)ELSEB%=S(0,X)+

12
2190 C%= 0
2200 IFS(0,X)-INT(S(0,X))=.5THEN

C%= -4
2210 IFS(0,X)-INT(S(0,X))=.75THEN

C%= 4
2220 S0UND1,EV%,PT%(B%) +C%,INT((D1%

(S(1,X)-1)*SD)+ .5)
2230 S0UND1,0,0,0
2240 UNTIL X> = R%
2250 PR0Cno:ENDPR0C
2260 DEFPR0CE
2270 G%-= (I%= 5)
2280 I%= 0
2290 PR0CM(0,4)
2300 PR0CDrawnote(D%(I%),SE%+ NS(NE))
2310 B%= NE- (F%= 0) * 12
2320 IFNOTG%S(0,N0%)= NE + .5:S0UND1,

EV%,PT%(B%) -4,8
2330 IFG%S(0,N0%) = NE + .75:S0UND1,

EV%,PT%(B%) + 4,8
2340 S(1,N0%) = D%(I%):ENDPR0C
2350 DEFPR0CM(L%,R%)
2355 *FXI5,0
2360 GC0L4,1:PR0CDrawbox: REPEAT
2370 REPEAT:A%= GET
2380 UNTILA%-1360RA%= 1370RA%= 13

0RA%= 670RA%= 680RA%= 690R
A%=730RA%=760RA%=790RA%=
800RA% = 810RA% = 830RA% = 840R
A%= 86

2390 IFA%<136G0T02460
2400 PR0CDrawbox
2410 IFA%=1361%= I%-1
2420 IFA%-1371%= I%+ 1
2430 IFI%<L%1%= R%
2440 IF 1%>R%1%= L%
2450 PR0CDrawbox
2460 UNTIL A%<136
2470 PR0CDrawbox:GC0L0,1:ENDPR0C
2480 DEFPR0CEnter
2490 GC0L4,1
2500 PR0CDrawnote(D%(0),SE%+ NS(NE)):

X%=X%-S%
2510 REPEAT:REPEAT:A%= GET
2520 UNTIL(A%=138ANDNE< > 0)OR

(A%=139ANDNE<17)0RA%=130R
A%= 670RA%= 680RA%= 690RA%= 73
0RA%=760RA%=790RA%=800R
A%= 830RA%= 840RA%= 86

2530 IFA%>13ANDA%<138G0T02580
2540 PROCDrawnote(D%(0),SE%+ NS(NE)):

X%=X%-S%
2550 IFA%=138NE=NE - 1
2560 IFA%=139NE=NE+1
2570 PR0CDrawnote(D%(0),SE%+ NS(NE)):

X%=X%-S%
2580 UNTILA%<138
2590 PR0CDrawnote(D%(0),SE%+ NS(NE)):

X%=X%-S%
2600 IFA%>13ENDPR0C
2610 GC0L0,1:D%=SE%+NS(NE)
2620 IFI%< 5PR0CDrawnote(D%(I%),D%)
2630 IFI%= 5PR0CACC(S$,D%):PR0CE:

ENDPR0C
2640 IF1%=6PR0CACC(F$,D%+2):PR0CE:

ENDPR0C
2650 B%= NE -12*(F%= 0)
2660 S(0,N0%) = NE:S(1,N0%) = D%(I%)
2670 SOUND1,EV%,PT%(B%),8:ENDPR0C
2680 DEFPR0CDisplay(L%,R%)
2690 VDU5,12:PR0Cno:VDU5
2700 GC0L0,1:IFL%<1THENL%- 1
2710 E%(0)= L%:NE= 9
2720 PR0CDisplaysymbols
2730 PR0CDrawthreestaves
2740 X%=20:M0VE65,ST%(0) + 140:PRINT;

L%
2750 SE%= ST%(0):H%= 0:C%= L%:

REPEAT
2760 IFX%< >20 G0T0 2810
2770 D%=C%+1:REPEAT:D%= D%-1
2780 UNTILS(0,D%) = 2560RS(0,D%) = 257
2790 I FS(0,D%) = 256PR0CDrawtrebleclef

(SE%) ELSEPR0CDrawbassclef(SE%)
2800 IFN0%=1THEN2910
2810 IFS(0,C%)=256THENPR0CDrawtreble

clef(SE%)
2820 IFS(0,C%) = 257PR0CDrawbassclef

(SE%)
2830 IFS(0,C%) > 257PR0CDrawrest(S(0,

C%) - 258,SE%+ 64)
2840 IFS(0,C%) - INT(S(0,C%))=.5PR0C

ACC(F$,SE%+ NS(S(0,C%)))
2850 IFS(0,C%) - INT(S(0,C%))=.75PR0C

ACC(S$,SE%+ NS(S(0,C%)))
2860 IFS(0,C%) <200NE= INT(S(0,C%)):

PR0CDrawnote(S(1,C%),SE%+ NS(S(0,
C%)))

2870 IFX%< =1100GOT02910
2880 H%= H%+ 1:X%= 20:SE%= ST%(H%):

E%(H%)=C%+1
2890 M0VE65,SE%+ 140
2900 IFH%= 2PRINT;N0%ELSEPRINT;C%+ 1
2910 C%=C%+1:UNTILH%=20RN0%=1

0RC%= R%
2920 IFX%=20ANDF%PR0CDrawbassclef

(SE%)
2930 IFX%=20ANDN0TF%PR0CDrawtreble

clef(SE%)
2940 NE= INT(NE):"FX15,1
2950 ENDPR0C
2960 DEFPR0CInit
2970 TLT% = 600:LT% = TLT%:EV% =1:

SD =2:N0%=1
2980 C%=1:1%=12:S%=60:H%= 0:

F%= 0:F3%= 0
2990 DIMT$(3),B$(1),R$(5,1),ST%(2),

NS(17),S(1,LT%),PT%(29),E%(2),D%(4),
D1%(16),X%(20),Y%(20)

3000 ST%(0) = 500:ST%(1) = 300:ST%(2) =
100

3010 SE%=ST%(0): NE=9
3020 E%(0)=1:E%(1)= 0:E%(2) = 0
3030 T$(0) = CHR$(255) + CHR$(254)
3040 T$(1) = CHR$(253) + CHR$(252)
3050 T$(2) = CHR$(251) + CHR$(250)
3060 T$(3) = CHR$(249)
3070 B$(0)=CHR$(248)+CHR$(247)
3080 B$(1)=CHR$(246)+CHR$(245)
3090 N1$=CHR$(243):N2$=CHR$(242)
3100 S$=CHR$(231):F$="b"
3110 F0RD% = 241T0232STEP - 2
3120 R$(((241-D%)/2),0)=CHR$(D%)
3130 R$(((241-D%)/2),1)=CHR$(D%-1)
3140 NEXT
3150 VDU19,0,7;0;19,1,0;0;28,0,7,39,0:

* FX4,1
3160 F0RX = 0T04:READD%(X):NEXT
3170 F0RX = 0T015:READD1%(X):NEXT
3180 F0RX = 0T017:READNS(X):NEXT
3190 F0RX=0T029:READPT%(X):NEXT
3200 F0RX =0T020
3210 X%(X)= INT((C0S(X/20 * P1)* - 30) +

.5):Y%(X) = INT((SIN(X/20*PI)* -13) + .5)
3220 NEXT:VDU5
3230 PR0CDisplaysymbols
3240 PR0CDrawthreestaves
3250 X%=20:REPEAT:PR0CM(12,13)
3260 UNTILA% = 130RA% = 76
3270 IFA%=76PR0CLoad:G0T03310
3280 IFI%=12PR0CDrawtrebleclef(SE%):S(0,

0) =256:F%=0
3290 IFI%=13PROCDrawbassclef(SE%):

S(0,0) = 257:F%= -1
3300 PR0Cno:M0VE100,640:VDU5,49
3310 I%= 0:ENDPR0C
3320 DEFPR0Cno
3330 VDU4,12:IFN0% = LT% + 1 PRINTTAB

(7,2)"There is no more room left":
ENDPR0C

3340 PRINTTAB(15,6)"No:";N0%:ENDPR0C
3350 DEFPR0Crange(X)
3360 VDU7,12,31,9,2:IFX =1THENPRINT

"Number too large."ELSEPRINT"Number
too small."

3370 TIME = 0:REPEATUNTILTIME> 150:
ENDPR0C

1440 FOR I =ST TO NN
1450 PRINT # C,USING "# # # ❑ ❑ ";I;
1460 A$ = N$(I):B$ = LEFT$(A$,1)
1470 IF B$> ="a" AND B$< ="g" THEN

C$= CHR$(ASC(B$) — 32) +" ❑ " ELSE
C$=B$+"#"

1480 IF B$="p" THEN C$="— ❑ "
1490 PRINT#C,C$;
1500 IF B$< >"p" THEN PRINT#C,"0 ❑

OCTAVE #";MID$(A$,2,1); ELSE PRINT
#C,STRING$(11,32);

1510 PRINT # C,"0 ❑ ";LE$(1NSTR(R1 $,
MID$(A$,3,1)));

1520 IF MID$(A$,4,1)="." THEN
PRINT#C,"." ELSE PRINT#C

1530 LP=LP+1:IF LP=13 AND C=0 THEN
LP= 0:GOSUB940:CLS

1540 NEXT:GOSUB940
1550 PRINT@448,STRING$(63,32);:PRINT

@480,"PRESS ANY KEY FOR MENU";:
EXEC 41194:RETURN

1560 CLS
1570 PRINT@8,"PLAY NOTES MODE"
1580 IF NN = 0 THEN RETURN
1590 PRINT:INPUT "START AT NOTE? El

(ENTER =1)";ST
1600 IF ST< =0 THEN ST=1 ELSE IF

ST> NN THEN ST= NN
1610 PRINT"TEMPO =";TE
1620 PLAY "V31;T"+STR$(TE)
1630 EXEC 36055:FOR I =ST TO NN
1640 PRINT@256,"PLAYING NOTE

NUMBER";I
1650 A$=N$(1)
1660 B$=LEFT$(A$,1):IF B$="p" THEN

1690 ELSEIF B$> = "a" AND
B$ < ="g" THEN
P$= CHR$(ASC(B$) —32) + ";" ELSE
P$=B$+"#"

1670 PLAY "0" + MID$(A$,2,1)+ "L"+ L2$
(INSTR(R1$,MID$(A$,3,1))) + MID$(A$,
4,1)+P$

1680 GOTO 1700
1690 PLAY "P"+L2$(1NSTR(R1$,MID$(A$,

3,1)))
1700 NEXTI
1710 RETURN
1720 CLS
1730 IF NN=0 THEN RETURN
1740 PRINT@5,"GLOBAL OCTAVE CHANGE"
1750 PRINT@64,"OCTAVE SHIFT UP OR

DOWN (U/D)"
1760 POKE 329,255:INPUT A$
1770 IF A$="" THEN RETURN
1780 IF A$< >"U" AND A$< >"D" THEN

1750
1790 PRINT"START AT (ENTER =ALL)";:

INPUT ST
1800 IF ST< =0 THEN ST=1:EN=NN:

GOTO 1840
1810 INPUT "END AT (ENTER=

END)";EN
1820 IF EN= 0 OR EN> NN THEN EN = NN
1830 IF ST> EN THEN ST= EN
1840 FOR 1=1 TO NN
1850 B$=MID$(N$(1),2,1)
1860 IF A$="D" THEN C$=CHR$(ASC

(B$)-1):IF C$="0" THEN C$="5"
1870 IF A$="U" THEN C$=CHR$(ASC

(B$)+1):IF C$="6" THEN C$="1"
1880 MID$(N$(I),2,1)=C$
1890 NEXT:RETURN
1900 CLS
1910 PRINT@6,"LOAD MUSIC FROM TAPE"
1920 PRINT:PRINT"THIS OPTION WILL ERASE

ANY MUSICIN MEMORY — DO YOU
WANT TO GO 0 ❑ 0 AHEAD (YIN)";

1930 POKE 329,255:INPUT A$
1940 IF A$< >"Y" THEN RETURN
1950 PRINT:LINE INPUT "FILENAME:";A$
1960 OPEN "I", # —1,A$
1970 INPUT # —1,N$,T$
1980 NN=VAL(N$):TE=VAL(T$)
1990 FOR 1=1 TO NN
2000 INPUT # —1,N$,(1)

2010 NEXT:CLOSE# —1:RETURN
2020 CLS
2030 IF NN=0 THEN RETURN
2040 PRINT @7,"SAVE MUSIC TO TAPE"
2050 PRINT:LINE INPUT "FILENAME:";A$
2060 OPEN "0",# —1,A$
2070 PRINT# —1,STR$(NN),STR$(TE)
2080 FOR 1=1 TO NN
2090 PRINT# —1,N$(1)
2100 NEXT:CLOSE# —1:RETURN

1141
Tandy users should change POKE 329 to POKE
282 in Lines 250, 480, 810, 940, 1380, 1760
and 1930. Also change EXEC 41194 to EXEC
36038 in Line 1550, and EXEC 36055 to EXEC
46481 in Line 1630.

Start chipping at your chains in the
evil king's medieval Alcatraz, and
escape with the sacred amulet* Enter
part one of INPUT's new adventure
game

This adventure game comes in several parts.
You'll find it challenging to play, but despite
the apparent complexity of the program it is
still based on the simple adventure framework
starting on page 264, and the text compressor,
starting on page 428.

The main part of the program is written in
BASIC, but unlike other adventures you may
have typed in, there are no clues in the
program as to how to solve the adventure.
This means that even the programmer can
enjoy playing the game. All the text is
encoded using the text compressor, allowing a
larger, more text-heavy adventure than would
be possible on domestic machines with
limited memories, as well as concealing any
clues. The encoded text will appear in a later
part.

Because of memory limitations, there is no
version for the Vic 20 or Spectrum 16K. And
as the Acorn program uses MODE 7 in order to
fit into the available memory, it will not run
on the Electron.

THE GAME
The sacred Amulet of the Nitpu has resided
safely in your village for thousands of years.
But recently, a disaster has happened—an evil
king has stolen it. The amulet now sits
somewhere in his forbidding, mist-shrouded
castle, from which the only sound is the
screaming of tortured prisoners.

There is no way into the fortress, so you
have contrived a desperate plan to recover the
amulet. To gain entry, you have allowed
yourself to be captured by the tyrant's men.
When you have the complete adventure you
must explore the castle, find the amulet, and
then escape. Beware of some of the characters
you'll encounter on your quest!

ENTERING THE PROGRAM
The game consists of three sections: the
BASIC program, the coded text and the
decoder. Start entering the BASIC from this
issue, but don't forget to SAVE the program on
tape. The remainder of the BASIC is given in
following parts, then you will get a numeric
listing for the coded text. The decoder is the
routine which you have already seen on pages
648 to 655. There will be instructions on

putting the program together as you go, and
when you have the complete program you can
RUN it and show the evil king a clean pair of
heels.

Like most full-scale adventures, Escape
contains a great deal of programming—the
completed game fills the BBC completely—
and will require a considerable amount of
keying in, particularly the coded text which
occupies two parts of Games Programming.
The effort won't be in vain, though, as you
will see no clues if you list the game.

a
10 BORDER 7: PAPER 7: INK 0: CLEAR 64580
110 CLS : POKE 23658,8
120 LET NN =1: GOSUB 3960
130 PRINT "Remember to press (ENTER) after

each instruction."
140 PRINT "PRESS (R) TO RESTART FROM

SAVED POSITION."
150 PRINT "PRESS ANY OTHER KEY TO

START."
155 LET D$=1NKEY$: IF D$="" THEN

GOTO 155
156 LET L=18: PRINT "HANG ON A

MINUTE."
160 DIM 0$(21,17): DIM K(21): DIM

E$(21,17): DIM F(21): DIM R$(32,17):
DIM R(32)

165 DIM L(22): RESTORE 4100: FOR Z=1 TO
22: READ L(Z): NEXT Z

170 IF D$ ="R" THEN GOSUB 3870: GOTO
270

270 CLS
280 IF L= —3 THEN GOSUB 1760
290 IF L<10 THEN GOSUB L(L): GOTO 330
300 IF L<23 THEN GOSUB L(L)
310 IF L=22 THEN LET L=16: GOTO 300
320 IF E$(L,1 TO LEN M$) = M$ THEN LET

NN =61: GOSUB 3960: GOTO 490
330 IF K(1)=1 AND L=1 THEN LET

NN =44: GOSUB 3960
340 IF K(2)=2 AND L=2 THEN LET

NN =45: GOSUB 3960
350 IF K(3)=3 AND L=3 THEN LET

NN =46: GOSUB 3960
360 IF K(8)=8 AND L=8 THEN LET

NN =47: GOSUB 3960
370 IF K(7) = L THEN LET NN =48: GOSUB

3960

380 IF K(9)=9 AND L=9 THEN LET
NN =49: GOSUB 3960

390 IF K(10)=10 AND L=10 THEN LET
NN =50: GOSUB 3960

400 IF K(11)=11 AND L=11 THEN LET
NN =51: GOSUB 3960

410 IF K(12)=12 AND L=12 THEN LET
NN =52: GOSUB 3960

420 IF K(14)=14 AND L=14 THEN LET
NN =53: GOSUB 3960

430 IF K(15)=15 AND L=15 THEN LET
NN =54: GOSUB 3960

440 IF K(17)=17 AND L=17 THEN LET
NN =55: GOSUB 3960

450 IF K(19)=19 AND L=19 THEN LET
NN =56: GOSUB 3960

460 IF K(20) =20 AND L=20 THEN LET
NN =57: GOSUB 3960

470 IF K(21)=21 AND L=21 THEN LET
NN =58: GOSUB 3960

480 IF K(6)=8 AND L=8 THEN LET
NN =59: GOSUB 3960

490 FOR Z=1 TO 21
500 IF Z=6 AND K(6) =8 THEN GOTO 520
510 IF K(Z)=L AND Z< >L AND Z< >7

THEN PRINT "THE ❑ ";0$(Z);" El IS HERE."
520 NEXT Z
700 IF 1=1 THEN LET N$=V$(1)
710 IF 1=2 THEN GOSUB 1970: GOTO 270
720 IF I=3 THEN GOSUB 3300: GOTO 270
730 IF 1=4 AND L=3 THEN GOSUB 1760
740 IF 1=5 THEN GOSUB 2800: GOTO 270
750 IF 1=6 THEN GOSUB 3390: GOTO 270
760 IF 1=7 THEN GOSUB 3440: GOTO 270
770 IF 1=8 THEN GOSUB 3560: GOTO 270
780 IF 1=9 THEN GOSUB 2450: GOTO 270
790 IF 1=10 THEN GOSUB 2090:

GOTO 270
800 IF 1=11 THEN GOSUB 3520:

GOTO 270
810 IF 1=12 THEN GOSUB 3730:

GOTO 270

10 CLR:POKE 53280,0: POKE 53281,0
20 PRINT"ETCHR$(5)TAB(255)TAB(245)

"LOADING TEXT"
40 OPEN 1,8,0,"TEXT,S,W"
50 INPUT#1,N:DIM A%(N)
60 FOR L=1 TO N:INPUT#1,A$:A%(L)=

VAL(A$):NEXT L

STARTING ESCAPE
THE MACHINES

THE GAME
THE PLOT

INSTRUCTIONS

70 INPUT#1,T:DIMZ%(T):FOR L=1 TO T:
INPUT# 1,A$:Z%(L) = VAL (A$):NEXT L

110 CLOSE 1
120 Z$="1234567890123456789012345678

901234567890":ZZ$=ZZ$+ZZ$
130 SYS 52976
140 DIM 0$(21),K(21),E$(21),F(21),R$(32),

R(32);LG$=CHR$ (153)
150 RESTORE:PRINT"013":TX =1:

GOSUB 9900
160 PRINT TAB(244)"LEMEMBER TO

PRESS < Emo 	> AFTER"
170 PRINTTAB(11)"EVERY INSTRUCTION.":

PRINT
180 PRINT TAB(5)"DRESS < [2> TO

RESTART GAME FROM":PRINT TAB(12)
"SAVED POSITION."

190 PRINT:PRINT TAB(6)" ❑ RESS ANY
OTHER KEY TO START"

200 GET G$:IF G$="" THEN 200
210 L=18:PRINT"0"TAB(255)TAB(247)

CHR$(14)" ❑ LEASE WAIT A FEW
MOMENTS"

220 DIM 0$(21),K(21),E$(21),FF(21),R$(32),
R(32)

230 IFG$ ="R" THEN GOSUB 4460:GOTO 340
240 PP =0:BB =1:V =10:DW=1:D$ = "":

=":11$ =":TT$ =":X=0:0=0:
KK=0:QQ=0:0P= 0:K=0

250 SS =1:C=0:M = 0:XX = 0J = INT
(RND(1) * 18) + 1:G = INT(RND(1)*1 8) +1

260 TT= 1:11= 1:VV =0:F = 0:KK= INT(RND
(1)*21) + 1:TX =70:GOSUB 9950: JM$=Z$

270 FOR NN =1 TO 21
280 READ K(NN),F(NN): TX= (NN*2+ 124):

GOSUB 9950:0$(NN)= Z$: TX= (NN*
2+125): GOSUB 9950

290 IF 0$(NN)=" ❑ "THEN
0$(NN)=""

300 NEXT NN
310 FOR MM =1 TO 32
320 READ R(MM): TX= 167+ MM:GOSUB

9950: R$ (MM)=Z$
330 NEXT MM
340 PRINT"Q"
350 IF L= -3 THEN 1970
360 IFL<10THEN ON L GOTO 1510,1560,

1690,1840,1880,1930,1750,1420,1150:
GOT0410

370 IFL<20THEN 0N L-10 GOTO 1190,
1260,1240,1330,1470,1640,1790,1340,
1060,1310

380 IF L > 22 THEN 390
385 ON L-9 GOSUB 1190,1260,1240,1330,

1470,1640,1790,1340,1060,1310,1360,
1140,2080

390 IF L=22 THEN L=16:GOTO 380
400 IF E$(L)=JM$ THEN TX =61:

GOSUB 9900: GOTO 570
410 IFK(1) =1ANDL =1 THEN TX= (44):

GOSUB 9900

420 IFK(2) = 2ANDL = 2 THEN TX= (45):
GOSUB 9900

430 IFK(3) = 3ANDL= 3 THEN TX= (46):
GOSUB 9900

440 IFK(8) = 8ANDL= 8 THEN TX= (47):
GOSUB 9900

450 IFK(7) = (L) THEN TX= (48):
GOSUB 9900

460 IFK(9) = 9ANDL =9 THEN TX= (49):
GOSUB 9900

470 IFK(10) = 10ANDL = 10 THEN TX= (50):
GOSUB 9900

480 IFK(11) =11ANDL =11 THEN TX= (51):
GOSUB 9900

490 IFK(12) =12ANDL =12 THEN TX= (52):
GOSUB 9900

500 IFK(14)=13ANDL=13 THEN TX= (53):
GOSUB 9900

510 IFK(15) =14ANDL=14 THEN TX= (54):
GOSUB 9900

520 IFK(17) =15ANDL =15 THEN TX= (55):
GOSUB 9900

530 IFK(19) =16ANDL =16 THEN TX= (56):
GOSUB 9900

540 IFK(20)=17ANDL=17 THEN TX= (57):
GOSUB 9900

550 IFK(21) =18ANDL=18 THEN TX= (58):
GOSUB 9900

560 IFK(6) = 8ANDL= 8 THEN TX= (59):
GOSUB 9900

570 FOR CC =1 TO 21
580 IF CC = 6 AND K(6)=8

THEN 600
590 IF K(CC)= L AND CC< >L AND

CC< >7 THEN PRINT"THE ❑ "O$(CC)
"1111S HERE."

600 NEXT CC
610 GC= FRE(0):PRINT CHR$(14)" 0 HAT

NOW?":INPUT 1$
620 IF 1$ =TT$ AND TT=0 OR 1$ =11$ AND

11=0 THEN GOSUB 3560:GOTO 340
630 FOR SC=1 TO LEN(I$) —1
640 IF MID$(1$,SC,1) ="Ill" THEN I =SC:

GOTO 660
650 NEXT SC
660 IF 1=0 THEN V$ =1$: GOTO 670
665 IF (1=1) <1 THEN V$ ="": GOT0670
666 V$=LEFT$(I$,I-1)
670 T$=MID$(3,1+1)
680 IF V$="GO"THEN V$=T$
690 AC$="":FOR CC =1 TO LEN(T$):AC=

ASC(MIDW$,CC,1)+CHR$(0))
700 IF AC<90 AND AC< >32 THEN

AC =AC + 32
710 AC$=AC$+CHR$(AC)
720 NEXT CC:T$= AC$
730 I = 0
740 FOR H=1 TO 32
760 IF LEFT$ (R$(H),LEN (V$))=V$ THEN

I = R(H)
770 NEXT H

10 MODE7:HIMEM=&7900
20 PRINT"LOADING TEXT AND

DECODER":1."DECODE"
30 z$=STRING$(255,"D"):z1$=STRING$

(255,"0")
40 H =OPENIN "CODE"
50 DIMa%(204),z%(1165)
60 FORP=1T0204:INPUT# H,a%(P):NEXT
70 FORP =1T01165:INPUT# H,z%(P):NEXT
80 CLOSE # H
90 CALLHIMEM +116
100 DSTR1NG = HIMEM +308
110 CLS:VDU23;8202;0;0;0;
120 PRINT"FNW(1)
130 PRINT"Remember to press <RETURN>

after'""each instruction":*FX202,
48, 207

140 PRINT"PRESS <r> TO RESTART
FROM SAVED POSITION"

150 PRINT"PRESS ANY OTHER KEY TO
START":D$=GET$:L=18:CLS:PRINT
"HANG ON A MINUTE"

160 DIMO$(21),K(21),E$(21),f(21),R$(32),
R(32)

170 IF 	="r" THEN PROCQ:GOTO 270
180 p = 0:b =1:V =10:dw = 1:D$ =

M$="":i$="":t$="":X=0:Q=0:
k=0:qq =0:0P= 0

190 s =1:C = 0:M= 0:x =0:j = RND(18):
G = RND(18):t =1:1= 1:v = 0:F =0:
KK = RND(21):JM$ = FNX(FNW(70))

200 FOR n=1 TO 21
210 READ K(n),f(n):0$(n) = FNX(FNW

(n*2 +124)):E$(n)= FNX(FNW
(n*2 + 125)):IFE$(n) = " ❑ "THEN
E$(n) =""

220 IFO$(n)="E" THENO$(n)=""
230 NEXT
240 FOR m=1 TO 32
250 READ R(m):R$(m)=FNX(FNW(167+m))
260 NEXT
270 CLS
280 IF L= —3 THEN PROCA
290 IF L<10 THEN ON L GOSUB 1330,1380,

1490,1640,1680,1730,1550,1240,990:
GOTO 330

300 IF L<23 THEN ON L-9 GOSUB 1020,
1080,1060,1150,1290,1440,1590,1160,
940,1130,1180,980,1890

310 IF L=22 THEN L=16:GOTO 300
320 IF E$(L)=JM$ THEN PRINTFNW(61):

GOTO 490
330 IFK(1) = 1ANDL = 1 PRINTFNW(44)
340 IFK(2)=2ANDL=2PRINTFNW(45)
350 IFK(3)=3ANDL=3PRINTFNW(46)
360 IFK(8) =8ANDL=8PRINTFNW(47)
370 IFK(7) = (L)PRINTFNW(48)
380 IFK(9) =9ANDL=9PRINTFNW(49)
390 IFK(10)=10ANDL =10PRINTFNW(50)

400 IFK(11)=11ANDL=11PRINTFNW(51)
410 IFK(12)=12ANDL=12PRINTFNW(52)
420 IFK(14)=14ANDL=14PRINTFNW(53)
430 IFK(15)=15ANDL=15PRINTFNW(54)
440 IFK(17)=17ANDL=17PRINTFNW(55)
450 IFK(19)=19ANDL=19PRINTFNW(56)
460 IFK(20) =20ANDL=20PRINTFNW(57)
470 IFK(21) = 21ANDL = 21 PRINTFNW(58)
480 IFK(6) =8ANDL=8PRINTFNW(59)
490 FOR c =1 TO 21
500 IF c=6 AND K(6)=8 THEN 520
5101F K(c)=L AND c< >L AND c< >7

THEN PRINT"TheE1"0$(c)" El is here."
520 NEXT
530 INPUT"What now?"I$

AC HI
10 CLEAR 2000,32000:PCLEAR 5
20 CLS:PRINT"LOADING DECODER ...":

CLOADM "DECODE"
30 ZO$=STRING$(255,32):Z1$=STRING$

(255,32)
40 PRINT"LOADING TEXT OFFSETS ...":

OPEN "I",#
50 DIM A(204):FOR P=1T0204:INPUT

—1,A(P):NEXT
60 CLOSE # —1
70 PRINT"LOADING COMPRESSED WORDS

80 CLOADM "WORDS"
90 GOSUB 6000

100 DIM 0$(21),K(21),E$(21),F(21),R$(32),
R(32)

110 CLS:RESTORE
120 WN=1:GOSUB5100
130 PRINT"REMEMBER TO PRESS

<ENTER> AFTER EACH
INSTRUCTION"

140 PRINT"PRESS <R> TO RESTART
FROM SAVED POSITION"

150 PRINT"PRESS ANY OTHER KEY TO
START"

151 D$=INKEY$:IF D$=`"' THEN 151
152 L=18:CLS:PRINT"HANG ON A

MINUTE"
160 DIM 0$(21),K(21),E$(21),F(21),R$(32),

R(32)
170 IF D$="R" THEN GOSUB 3870:GOTO

270
180 P7=0:B7=1:V=10:DW=1:D$="":

M$ = "": i 7$ =`"':T7$ ="":X =0:
0= 0:K= 0:0(1=0:0P =0

190 S7 =1:C = 0:M =0:X7= 0:J = RND(18):
G = RND(18):T7=1:I7 =1:V7 = 0:F=0:
KK=-- RND(21):WN = 70:GOSUB5200:
JM$=Z$

200 FOR N7=1 TO 21
210 READ K(N7),F(N7):WN = (N7*2+124):

GOSUB5200:0$(N7) =Z$:WN = (N7*2+
125):GOSUB5200:E$(N7) =Z$:IF
E$(N7)=" ❑ " THEN E$(N7)=`"'

220 IF 0$(N7) ="0" THEN 0$(N7)-=`"'

230 NEXT:K(7) = KK
240 FOR M7=1 TO 32
250 READ R(M7):WN =167 + M7:GOSUB

5200:R$(M7) =Z$
260 NEXT
270 CLS
280 IF L= —3 THEN GOSUB 1760
290 IF L<10 THEN ON L GOSUB 1330,1380,

1490,1640,1680,1730,1550,1240,990:
GOTO 330

300 IF L<23 THEN ON L-9 GOSUB 1020,
1080,1060,1150,1290,1440,1590,1160,
940,1130,1180,980,1890

310 IF L=22 THEN L=16:
GOT0300

320 IF E$(L)=JM$ THEN WN=61:GOSUB
5100:G010490

330 IF K(1)=1 AND L=1 THEN WN =44:
GOSUB5100

340 IF K(2)=2 AND L=2 THEN WN =45:
GOSUB5100

350 IF K(3)=3 AND L=3 THEN WN =46:
GOSUB5100

360 IF K(8)=8 AND L=8 THEN WN =47:
GOSUB5100

370 IF K(7)=(L)THEN WN =48:
GOSUB5100

380 IF K(9)=9 AND L=9 THEN WN =49:
GOSUB5100

390 IF K(10)=10 AND L=10 THEN
WN = 50:GOSUB5100

400 IF K(11)=11 AND L=11 THEN
WN=51:GOSUB5100

410 IF K(12)=12 AND L=12 THEN
WN = 52:GOSUB5100

420 IF K(14)=14 AND L=14 THEN
WN = 53:GOSUB5100

430 IF K(15)=15 AND L=15 THEN
WN = 54:GOSUB5100

440 IF K(17)=17 AND L=17 THEN
WN=55:GOSUB5100

450 IF K(19)=19 AND L=19 THEN
WN = 56:GOSU B5100

460 IF K(20) =20 AND L=20 THEN
WN=57:GOSUB5100

470 IF K(21)=21 AND L=21 THEN
WN = 58:GOSUB5100

480 IF K(6)=8 AND L=8 THEN WN =59:
GOSUB5100

490 FOR C7=1 TO 21
500 IF C7=6 AND K(6)=8

THEN 520
2230 WN=135:GOSUB5200:IF H$= "Y"

AND F(L)>1 AND E$(L) < >Z$ THEN
PRINT"YOU CAN'T FIGHT THE ";E$(L):

PRINT"WITH BARE HANDS!":GOSUB
5500:GOT02440

2240 IF H$< >IIY" AND W7=1
THEN 2440

2250 E7=RND(6):CLS
2260 CLS 8

CUMULATIVE INDEX

An interim index will be published each week. There will be a complete index in the last issue of INPUT.

A
Algorithms

in games 	1372-1373
use of with Pascal

1354,1389-1390
Animation

of sprites
Commodore 64 	1259-1263

with LOGO 	1317-1320
Applications

horoscope program 1245-1253
music composer program

1333-1337,1392-1396,
1416-1423

room planner program
1269-1275,1308-1313

Artificial intelligence 1264, 1294
in Cavendish Field game

1372-1377
using LISP 	1410-1411

Atoms, in LISP 	1412-1415

B
Basic programming

file handling 	1358-1364
fractals 	 1397-1401
moving colour sprites

Commodore 64
	

1258-1263
operating system
	

1322-1327
recursion
	

1289-1295
screen dumping programs

1365-1371

C
Cavendish Field game

part 1—design rules and
UDGs 	1254-1257

part 2—map and troop arrays
1282-1288

part 3—issuing orders
1301-1307

part 4—combat and morale
routines 	1346-1351

part 5—strengthening the
computer 	1372-1377

Cliffhanger
part 12—adding weather

1240-1244
part 13—rolling boulders 1

1276-1281
part 14—rolling boulders 2

1328-1332
part 15—walking Willie

1338-1345
part 16—jumping Willie 1

1378-1385

part 17—jumping Willie 2
1402-1409

Colour
code guessing game 1356-1357
of sprites

Commodore 64 	1262
representing in tonal screen

dump 	1369-1371

D
Data, separate storage of

1358-1364
Desperate decorator game

1314-1316
Drawing

in room planner program
1269-1275,1308-1313

with LOGO 	1296-1300

E
Editing

with LOGO 	 1296
with Pascal 	1355,1391

Escape adventure game
part 1 	 1424-1428

Evaluation, in LISP 1412-1415

F
Factorials, program to calculate

1291-1293
Files, handling 	1358-1364
Fractals 	 1397-1401

G
Games

Cavendish Field 	1254-1257,
1282-1288,1301-1307,
1346-1351,1372-1377

cliffhanger
1240-1244,1276-1281,
1328-1332,1338-1345,
1378-1385,1402-1409

desperate decorator 1314-1316
escape 1424-1428
horoscope program 1245-1253
life
	 1237-1239

`match that'
	

1356-1357
Graphics

displays, programs for dumping
1365-1371

sprites, Commodore 64
moving and storing 1258-1263
using fractals 1398-1401
using LOGO

1296-1300,1317-1320

H
Heuristics, use in Cavendish Field

1373-1377
Horoscope program 1245-1253

L
Languages

LISP 	 1410-1415
LOGO 1264-1268,1296-1300,

1317-1321,1352-1355,1386-1391
Life game 1237-1239
LISP

part 1
	

1410-1415
LOGO
	

1264-1268,
1296-1300,1317-1320

M
Machine code

games programming
see cliffhanger; life game

tonal screen dump 1369-1371
`Match that' colour code

guessing game 	1356-1357
Mathematical functions

with LOGO 	 1320
in fractal geometry 1397-1401
with LISP 	 1415

Memory
banks, range of

	

Commodore 64 	1258-1259
checking with LOGO 	1299
locations of VIC-II chip

	

Commodore 64 	1262
managing by OS 	1323-1327
storing sprites in

	

Commodore 64 	1258-1260
Music composer program

part 1 	 1333-1337
part 2 	 1392-1396
part 3 	 1416-1423

N
Numbers,

handling with LISP 1414-1415

0

	

Operating system 	1322-1327

P
Pascal

Part 1—algorithms 1352-1355
part 2—commands 1386-1391

Pointers, sprite
Commodore 64 	1260-1261

POKE
use of to access OS

Spectrum 	 1324
use of to enable and store sprites

Commodore 64 	1259-1263
Procedures,

in LOGO 	1268,1296-1300
Punctuation,

when handling files 1360-1363
with LISP 	 1412
with LOGO 	1320-1321
with Pascal 	1354-1355,1391

Q
Quicksort program, recursive

1293-1294

R
Recursion

in BASIC 	1289-1295
in fractal programs 1398-1401
in LOGO 	1299-1300

Repitition techniques,
in Pascal 	1387-1390

Room planner program
part 1 	 1269-1275
part 2 	 1308-1313

S
Screen dumping, of graphics

1365-1371
Sprites, Commodore 64

moving and storing 1258-1263
Sprites, LOGO 	1317-1320

T
Towers of Hanoi program

1294-1295
Turtle, use of 	1266-1268

for graphics 	1296-1300

V
VIC-II chip

Commodore 64 	 1258
memory locations of 	1262

Wargames
see Cavendish Field

Waveforms,
use of in music program
Commodore 64 	1417-1418

The publishers accept no responsibility for unsolicited material sent for publication in INPUT. All tapes and
written material should be accompanied by a stamped, self-addressed envelope.

Stop wasting time muddling through
rose complex jobs by using your
)mputer to PLAN THE BEST COURSE
pick your way through the maze of

'ternatives

' Banish silence from your
ogramming with interrupt-driven

rUSIC WHILE YOU WORK on the
OMMODORE and ACORN

Pretty patterns aren't the end of the
ory for FRACTALS* Use these
, ograms to generate SHAPES FROM
ATURE

Willie's destined for more than six
'xels under in CLIFFHANGER, but it's
) great undertaking—he'll live to picnic
zother day

Learn how to structure LISP programs
ring both inbuilt and user defined
nctions

. . . and for adventurous readers, part
)o of ESCAPE

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

